Abstract

Third harmonic generation (THG) is a nonlinear optical phenomenon which can be applied in diverse research areas including interfacial studies, sub-wavelength light manipulation, and high sensitivity bio-molecular detection. Most precedent studies on THG have focused on dielectric and metallic materials, including silicon, gold, and germanium, due to their high nonlinear susceptibility. Sapphire, a widely-used optical substrate, has not been studied in depth for its third harmonic characteristics, despite its excellent optical transmission in the UV-visible range, high thermal conductance, and superior physical and chemical stability. In this research, we comprehensively studied THG at thin air-dielectric interfaces of sapphire wafers by controlling the wafer cutting planes, focusing depth, incidence angle, laser intensity, and input polarization of the input laser beam. These findings can lead to broader use of third harmonics for high-precision sapphire characterization, such as surface quality inspection, crystallinity determination, interfacial studies, delamination check, and real-time monitoring of crack propagation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer’s inter-layer defects

Yi Gao, Hyub Lee, Jiannan Jiao, Byung Jae Chun, Seungchul Kim, Dong-Hwan Kim, and Young-Jin Kim
Opt. Express 26(25) 32812-32823 (2018)

Third-harmonic generation microscopy with Bessel beams: a numerical study

Nicolas Olivier, Delphine Débarre, Pierre Mahou, and Emmanuel Beaurepaire
Opt. Express 20(22) 24886-24902 (2012)

Third-harmonic generation via broadband cascading in disordered quadratic nonlinear media

W. Wang, V. Roppo, K. Kalinowski, Y. Kong, D. N. Neshev, C. Cojocaru, J. Trull, R. Vilaseca, K. Staliunas, W. Krolikowski, S. M. Saltiel, and Yu. Kivshar
Opt. Express 17(22) 20117-20123 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  2. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
    [Crossref]
  3. P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
    [Crossref]
  4. B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
    [Crossref] [PubMed]
  5. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  6. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  7. W. K. Burns and N. Bloembergen, “Third-harmonic generation in absorbing media of cubic or isotropic symmetry,” Phys. Rev. B 4(10), 3437–3450 (1971).
    [Crossref]
  8. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
    [Crossref] [PubMed]
  9. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
    [Crossref] [PubMed]
  10. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
    [Crossref] [PubMed]
  11. J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
    [Crossref]
  12. A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
    [Crossref] [PubMed]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  14. V. Pishchik, E. R. Dobrovinskaya, and L. A. Lytvynov, Sapphire: Material, Manufacturing, Applications (Springer-Verlag US, 2009).
  15. K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
    [Crossref] [PubMed]
  16. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  17. V. Giordano, S. Grop, C. Fluhr, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: a reference for frequency stability and phase noise measurements,” J. Phys. Conf. Ser. 723(1), 012030 (2016).
    [Crossref]
  18. K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
    [Crossref] [PubMed]
  19. V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
    [Crossref]
  20. A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).
    [Crossref]
  21. M. Jacobsohn and U. Banin, “Size Dependence of Second Harmonic Generation in CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
    [Crossref]
  22. H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-harmonic generation from an atomically thin semiconductor,” Nat. Phys. 13(3), 262–265 (2017).
    [Crossref]
  23. T. Otobe, “First-principle description for the high-harmonic generation in a diamond by intense short laser pulse,” J. Appl. Phys. 111(9), 093112 (2012).
    [Crossref]
  24. G. Petrocelli, E. Pichini, F. Scudieri, and S. Martellucci, “Anisotropic effects in the third-harmonic-generation process in cubic crystals,” J. Opt. Soc. Am. B 10(5), 918–923 (1993).
    [Crossref]
  25. G. Pezzotti and W. Zhu, “Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina,” Phys. Chem. Chem. Phys. 17(4), 2608–2627 (2015).
    [Crossref] [PubMed]
  26. H. Yao and C. H. Yan, “Anisotropic optical responses of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 85(9), 6717–6722 (1999).
    [Crossref]
  27. L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
    [Crossref]

2017 (1)

H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-harmonic generation from an atomically thin semiconductor,” Nat. Phys. 13(3), 262–265 (2017).
[Crossref]

2016 (6)

V. Giordano, S. Grop, C. Fluhr, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: a reference for frequency stability and phase noise measurements,” J. Phys. Conf. Ser. 723(1), 012030 (2016).
[Crossref]

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

2015 (1)

G. Pezzotti and W. Zhu, “Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina,” Phys. Chem. Chem. Phys. 17(4), 2608–2627 (2015).
[Crossref] [PubMed]

2014 (2)

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

2013 (1)

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

2012 (3)

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

T. Otobe, “First-principle description for the high-harmonic generation in a diamond by intense short laser pulse,” J. Appl. Phys. 111(9), 093112 (2012).
[Crossref]

2008 (1)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

2003 (1)

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).
[Crossref]

2001 (1)

P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
[Crossref]

2000 (1)

M. Jacobsohn and U. Banin, “Size Dependence of Second Harmonic Generation in CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
[Crossref]

1999 (1)

H. Yao and C. H. Yan, “Anisotropic optical responses of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 85(9), 6717–6722 (1999).
[Crossref]

1995 (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

1993 (1)

1989 (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[Crossref]

1971 (1)

W. K. Burns and N. Bloembergen, “Third-harmonic generation in absorbing media of cubic or isotropic symmetry,” Phys. Rev. B 4(10), 3437–3450 (1971).
[Crossref]

Amitonova, L. V. D.

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

Anokhin, K. V.

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

Antonsson, E.

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Bakker, G. J.

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

Banin, U.

M. Jacobsohn and U. Banin, “Size Dependence of Second Harmonic Generation in CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
[Crossref]

Bhardwaj, M.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).
[Crossref]

Bloembergen, N.

W. K. Burns and N. Bloembergen, “Third-harmonic generation in absorbing media of cubic or isotropic symmetry,” Phys. Rev. B 4(10), 3437–3450 (1971).
[Crossref]

Brener, I.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Burns, W. K.

W. K. Burns and N. Bloembergen, “Third-harmonic generation in absorbing media of cubic or isotropic symmetry,” Phys. Rev. B 4(10), 3437–3450 (1971).
[Crossref]

Chipouline, A.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Choi, D. Y.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

Chong, K. E.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

Chowdhury, A.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).
[Crossref]

Decker, M.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Dubois, B.

V. Giordano, S. Grop, C. Fluhr, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: a reference for frequency stability and phase noise measurements,” J. Phys. Conf. Ser. 723(1), 012030 (2016).
[Crossref]

Ezhov, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Fedotov, A. B.

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

Fedotov, I. V.

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

Fedyanin, A. A.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Fluhr, C.

V. Giordano, S. Grop, C. Fluhr, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: a reference for frequency stability and phase noise measurements,” J. Phys. Conf. Ser. 723(1), 012030 (2016).
[Crossref]

Friedl, P.

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

Ghimire, S.

H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-harmonic generation from an atomically thin semiconductor,” Nat. Phys. 13(3), 262–265 (2017).
[Crossref]

Giordano, V.

V. Giordano, S. Grop, C. Fluhr, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: a reference for frequency stability and phase noise measurements,” J. Phys. Conf. Ser. 723(1), 012030 (2016).
[Crossref]

Graf, C.

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Grinblat, G.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Grop, S.

V. Giordano, S. Grop, C. Fluhr, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: a reference for frequency stability and phase noise measurements,” J. Phys. Conf. Ser. 723(1), 012030 (2016).
[Crossref]

Halfpap, I.

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Heinz, T. F.

H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-harmonic generation from an atomically thin semiconductor,” Nat. Phys. 13(3), 262–265 (2017).
[Crossref]

Helgert, C.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Higuchi, T.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[Crossref] [PubMed]

Hopkins, B.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Ishii, S.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[Crossref] [PubMed]

Ivashkina, O. I.

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

Jacobsohn, M.

M. Jacobsohn and U. Banin, “Size Dependence of Second Harmonic Generation in CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kersalé, Y.

V. Giordano, S. Grop, C. Fluhr, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: a reference for frequency stability and phase noise measurements,” J. Phys. Conf. Ser. 723(1), 012030 (2016).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kivshar, Y. S.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Kley, E. B.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Kling, M. F.

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Konishi, K.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[Crossref] [PubMed]

Kuwata-Gonokami, M.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[Crossref] [PubMed]

Lanin, A. A.

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

Larsson, J.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[Crossref] [PubMed]

Lederer, F.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Li, J.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[Crossref] [PubMed]

Li, X.

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

Li, Y.

H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-harmonic generation from an atomically thin semiconductor,” Nat. Phys. 13(3), 262–265 (2017).
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Liu, H.

H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-harmonic generation from an atomically thin semiconductor,” Nat. Phys. 13(3), 262–265 (2017).
[Crossref]

Ma, Y.

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

Maier, S. A.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Martellucci, S.

Melik-Gaykazyan, E. V.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Menski, A.

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Miller, N. A.

P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
[Crossref]

Miroshnichenko, A. E.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Mondes, V.

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Neshev, D. N.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Ng, H. M.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).
[Crossref]

Nielsen, M. P.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Otobe, T.

T. Otobe, “First-principle description for the high-harmonic generation in a diamond by intense short laser pulse,” J. Appl. Phys. 111(9), 093112 (2012).
[Crossref]

Oulton, R. F.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Panov, V. I.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Paul, T.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Pertsch, T.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Petrocelli, G.

Pezzotti, G.

G. Pezzotti and W. Zhu, “Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina,” Phys. Chem. Chem. Phys. 17(4), 2608–2627 (2015).
[Crossref] [PubMed]

Pichini, E.

Plenge, J.

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Raschpichler, C.

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Reinhold, J.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Reis, D. A.

H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-harmonic generation from an atomically thin semiconductor,” Nat. Phys. 13(3), 262–265 (2017).
[Crossref]

Rockstuhl, C.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Rubiola, E.

V. Giordano, S. Grop, C. Fluhr, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: a reference for frequency stability and phase noise measurements,” J. Phys. Conf. Ser. 723(1), 012030 (2016).
[Crossref]

Rühl, E.

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Saeta, P. N.

P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
[Crossref]

Scudieri, F.

Shcherbakov, M. R.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Shen, Y. R.

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[Crossref]

Shorokhov, A. S.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Smirnova, D. A.

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

Staude, I.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Sun, F.

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

Tang, D.

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

Tsang, T. Y. F.

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

Tünnermann, A.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Wang, F.

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

Wang, X.

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

Weigelin, B.

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

Weimann, N. G.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).
[Crossref]

Yan, C. H.

H. Yao and C. H. Yan, “Anisotropic optical responses of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 85(9), 6717–6722 (1999).
[Crossref]

Yao, H.

H. Yao and C. H. Yan, “Anisotropic optical responses of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 85(9), 6717–6722 (1999).
[Crossref]

You, Y. S.

H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-harmonic generation from an atomically thin semiconductor,” Nat. Phys. 13(3), 262–265 (2017).
[Crossref]

Zheltikov, A. M.

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zheng, K.

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

Zhu, J.

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

Zhu, W.

G. Pezzotti and W. Zhu, “Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina,” Phys. Chem. Chem. Phys. 17(4), 2608–2627 (2015).
[Crossref] [PubMed]

Zots, M. A.

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

ACS Nano (1)

K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, “Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer,” ACS Nano 10(8), 7792–7798 (2016).
[Crossref] [PubMed]

Appl. Phys. B (1)

V. Mondes, E. Antonsson, J. Plenge, C. Raschpichler, I. Halfpap, A. Menski, C. Graf, M. F. Kling, and E. Rühl, “Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays,” Appl. Phys. B 122(6), 155 (2016).
[Crossref]

Appl. Phys. Lett. (3)

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).
[Crossref]

P. N. Saeta and N. A. Miller, “Distinguishing surface and bulk contributions to third-harmonic generation in silicon,” Appl. Phys. Lett. 79(17), 2704–2706 (2001).
[Crossref]

L. V. D. Amitonova, A. A. Lanin, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Dark-field third-harmonic imaging,” Appl. Phys. Lett. 103(9), 093701 (2013).
[Crossref]

J. Appl. Phys. (2)

H. Yao and C. H. Yan, “Anisotropic optical responses of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 85(9), 6717–6722 (1999).
[Crossref]

T. Otobe, “First-principle description for the high-harmonic generation in a diamond by intense short laser pulse,” J. Appl. Phys. 111(9), 093112 (2012).
[Crossref]

J. Cell Sci. (1)

B. Weigelin, G. J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

M. Jacobsohn and U. Banin, “Size Dependence of Second Harmonic Generation in CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 104(1), 1–5 (2000).
[Crossref]

J. Phys. Conf. Ser. (1)

V. Giordano, S. Grop, C. Fluhr, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: a reference for frequency stability and phase noise measurements,” J. Phys. Conf. Ser. 723(1), 012030 (2016).
[Crossref]

Nano Lett. (3)

A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances,” Nano Lett. 16(8), 4857–4861 (2016).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, “High-harmonic generation from an atomically thin semiconductor,” Nat. Phys. 13(3), 262–265 (2017).
[Crossref]

Nature (2)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
[Crossref]

Phys. Chem. Chem. Phys. (1)

G. Pezzotti and W. Zhu, “Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina,” Phys. Chem. Chem. Phys. 17(4), 2608–2627 (2015).
[Crossref] [PubMed]

Phys. Rev. A (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

Phys. Rev. B (2)

W. K. Burns and N. Bloembergen, “Third-harmonic generation in absorbing media of cubic or isotropic symmetry,” Phys. Rev. B 4(10), 3437–3450 (1971).
[Crossref]

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
[Crossref]

Phys. Rev. Lett. (1)

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[Crossref] [PubMed]

Other (4)

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

V. Pishchik, E. R. Dobrovinskaya, and L. A. Lytvynov, Sapphire: Material, Manufacturing, Applications (Springer-Verlag US, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Third harmonic generation in crystalline sapphire. (a) Optical layout and the spectrum of fundamental laser beam. (b) Atomic structure of C-plane sapphire as an example. Input polarization state, incidence angle, and excitation depth were controlled to characterize the THG from sapphire wafers with different cutting planes. Abbreviations: HWP: half-wave plate, LPF: long-pass filter, and EMCCD: electron multiplying charge-coupled device.
Fig. 2
Fig. 2 THG generated from sapphire wafers with different cutting planes. (a) THG spectra from A, C, M and R-plane sapphire wafers. (b) THG yield vs. pumping power density. (c) Normalized THG bandwidth compared with that of fundamental beam. (d) Atomic dipole potential energy with electric fields for noncentrosymmetric (left) and centrosymmetric (right) medium.
Fig. 3
Fig. 3 Crystallographic orientation dependence of THG from sapphires. (a) 3-D (top) and 2-D (bottom) intensity spectrum (from 500 to 850 nm) generated at an A-plane sapphire wafer under different input polarization states. Clear polarization dependence of THG was observed without SHG. (b) to (e) THG intensity spectra from A, C, M, and R-plane sapphire wafers with different incident laser polarizations, Breaks are inserted from 540 to 760 nm for a magnified view around THG and SHG. (f) Sapphire crystal cutting planes. (g) Sectioned THG intensity profile at 531 nm with different crystal cuts and incident polarization states.
Fig. 4
Fig. 4 THG at different excitation depth in sapphire wafers. (a) System schematics for testing THG at different focal depths. (b) THG intensity at different focal depth in A, C, M and R-plane sapphires. (c) to (f) THG intensity map with different excitation depths for A, C, M and R-plane sapphires.
Fig. 5
Fig. 5 THG intensity and propagation direction with different incidence angle and wafer inclination. (a) Experimental setup for THG excitation with different incidence angle, the black dotted lines are guidelines to show the incidence angle tilt; (b) and (c) THG intensity change with different incidence angle for top and bottom generated THG, respectively; (d) and (e) Fundamental and THG beam location for top and bottom surface excited THG with different incidence angle; (f) and (g) Fundamental and THG beam location for top and bottom surface excited THG with different wafer inclination. The fundamental and THG beams are colored red and green respectively for clear identification, the dotted lines are guidelines to show the differences in beam location for top and bottom surface excited THG, scale bar stands for 20 μm.

Metrics