Abstract

In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response

Bingxin Han, Xiangjun Li, Chuanshuai Sui, Jinyan Diao, Xufeng Jing, and Zhi Hong
Opt. Mater. Express 8(8) 2197-2207 (2018)

Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene

Christos Argyropoulos
Opt. Express 23(18) 23787-23797 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. B. Zel’Dovich, “Electromagnetic interaction with parity violation,” Sov. Phys. JETP 6(6), 1184–1186 (1958).
  2. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
    [PubMed]
  3. Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
    [PubMed]
  4. Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).
  5. Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
  6. M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).
  7. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
    [PubMed]
  8. H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
  9. Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
    [PubMed]
  10. M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).
  11. H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).
  12. A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
  13. M. V. Cojocari, K. I. Schegoleva, and A. A. Basharin, “Blueshift and phase tunability in planar THz metamaterials: the role of losses and toroidal dipole contribution,” Opt. Lett. 42(9), 1700–1703 (2017).
    [PubMed]
  14. P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42(4), 835–838 (2017).
    [PubMed]
  15. J. Li, J. Shao, Y. H. Wang, M. J. Zhu, J. Q. Li, and Z. G. Dong, “Toroidal dipolar response by a dielectric microtube metamaterial in the terahertz regime,” Opt. Express 23(22), 29138–29144 (2015).
    [PubMed]
  16. W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
    [PubMed]
  17. A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
  18. A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).
  19. G. D. Liu, X. Zhai, L. L. Wang, Q. Lin, S. X. Xia, X. Luo, and C. J. Zhao, “A high-performance refractive index sensor based on fano resonance in Si split-ring metasurface,” Plasmonics, https://doi.org/10.1007/s11468-016-0478-9 (2017).
  20. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).
  21. W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
    [PubMed]
  22. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [PubMed]
  23. H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).
  24. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [PubMed]
  25. H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
  26. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
    [PubMed]
  27. G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).
  28. S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
  29. S. Y. Xiao, T.Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” arXiv:1705.09082 (2017).
  30. X. Chen and W. Fan, “Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance,” Opt. Lett. 42(10), 2034–2037 (2017).
    [PubMed]
  31. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
    [PubMed]
  32. C. Argyropoulos, “Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene,” Opt. Express 23(18), 23787–23797 (2015).
    [PubMed]
  33. Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
    [PubMed]
  34. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  35. W. Zhao, X. Leng, and Y. Jiang, “Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning,” Opt. Express 23(5), 6858–6866 (2015).
    [PubMed]
  36. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [PubMed]
  37. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007), Chap. 1.
  38. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [PubMed]
  39. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
    [PubMed]

2017 (9)

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

M. V. Cojocari, K. I. Schegoleva, and A. A. Basharin, “Blueshift and phase tunability in planar THz metamaterials: the role of losses and toroidal dipole contribution,” Opt. Lett. 42(9), 1700–1703 (2017).
[PubMed]

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42(4), 835–838 (2017).
[PubMed]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[PubMed]

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

X. Chen and W. Fan, “Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance,” Opt. Lett. 42(10), 2034–2037 (2017).
[PubMed]

2016 (4)

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
[PubMed]

2015 (9)

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

W. Zhao, X. Leng, and Y. Jiang, “Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning,” Opt. Express 23(5), 6858–6866 (2015).
[PubMed]

J. Li, J. Shao, Y. H. Wang, M. J. Zhu, J. Q. Li, and Z. G. Dong, “Toroidal dipolar response by a dielectric microtube metamaterial in the terahertz regime,” Opt. Express 23(22), 29138–29144 (2015).
[PubMed]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[PubMed]

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

C. Argyropoulos, “Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene,” Opt. Express 23(18), 23787–23797 (2015).
[PubMed]

H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
[PubMed]

2014 (1)

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

2013 (3)

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

2012 (3)

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[PubMed]

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

2011 (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

2010 (1)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

2008 (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

1958 (1)

I. B. Zel’Dovich, “Electromagnetic interaction with parity violation,” Sov. Phys. JETP 6(6), 1184–1186 (1958).

Alici, K. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Argyropoulos, C.

Arju, N.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Bao, Y.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

Baryshnikova, K. V.

Basharin, A. A.

M. V. Cojocari, K. I. Schegoleva, and A. A. Basharin, “Blueshift and phase tunability in planar THz metamaterials: the role of losses and toroidal dipole contribution,” Opt. Lett. 42(9), 1700–1703 (2017).
[PubMed]

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Cai, W.

Cao, W.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Chan, C. T.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Chen, H.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Chen, X.

Cheng, L.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Chuguevsky, V.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

Cojocari, M. V.

Cong, L.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Cumming, B. P.

Ding, G. W.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Dong, J.

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Dong, Z. G.

Du, L.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Economou, E. N.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

Evlyukhin, A. B.

Fan, W.

Fan, Y.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Fang, Z.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

Fedotov, V. A.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Fozdar, D. Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Ge, L.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Gu, M.

Guo, L.

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Gupta, M.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

Han, D.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Han, J.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Han, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).

Hao, Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Hu, H.

Huang, Y.

Huang, Z. R.

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Jiang, T.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Jiang, X.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Jiang, Y.

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Kaelberer, T.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

Kafesaki, M.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Karabchevsky, A.

Khanikaev, A. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Kholmanov, I.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Lei, B.

Leng, X.

Li, H.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Li, H. J.

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Li, H. M.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Li, J.

Li, J. Q.

J. Li, J. Shao, Y. H. Wang, M. J. Zhu, J. Q. Li, and Z. G. Dong, “Toroidal dipolar response by a dielectric microtube metamaterial in the terahertz regime,” Opt. Express 23(22), 29138–29144 (2015).
[PubMed]

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Li, M.

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Li, Q.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Lin, Q.

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Liu, G. D.

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Liu, J. Q.

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[PubMed]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Liu, L.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Liu, S. B.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Liu, S. Y.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Liu, W.

Liu, Y.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Lu, C.

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Lu, H.

Luo, W.

Manjappa, M.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Meng, H. Y.

Miroshnichenko, A. E.

Mousavi, S. H.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Ni, P.

Ögüt, B.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Papasimakis, N.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Purtseladze, D.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Ren, M.

Rho, J.

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Ruoff, R. S.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Savinov, V.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Schegoleva, K. I.

Shalin, A. S.

Shang, X. J.

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Shao, J.

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Shvets, G.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Sigle, W.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Singh, R.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Soukoulis, C. M.

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Srivastava, Y. K.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

Suk, J. W.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Sun, B.

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Talebi, N.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Tasolamprou, A. C.

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

Tatar, K.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Terekhov, P. D.

Tian, Z.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Tsai, D. P.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

Tsilipakos, O.

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

van Aken, P. A.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Vogelgesang, R.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Volsky, N.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

Wang, B.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Wang, B. X.

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Wang, L.

Wang, L. L.

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[PubMed]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Wang, S. Y.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Wang, T.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Wang, Y. H.

Wei, Z.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Wen, S. C.

Xia, S. X.

Xiang, H.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Xiang, Y.

Xiao, S.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Xiao, S. Y.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Xu, C.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Xu, J.

Xu, N.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Xue, X.

Yan, X.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Yang, H.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Yin, X.

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[PubMed]

Yu, Z. Y.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Zel’Dovich, I. B.

I. B. Zel’Dovich, “Electromagnetic interaction with parity violation,” Sov. Phys. JETP 6(6), 1184–1186 (1958).

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Zhai, X.

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[PubMed]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Zhang, H. F.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Zhang, J.

Zhang, W.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Zhang, X.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
[PubMed]

Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[PubMed]

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Zhang, Z. Q.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Zhao, W.

Zheludev, N. I.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Zhu, J.

Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[PubMed]

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Zhu, M. J.

Zhu, X.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Appl. Phys. Lett. (4)

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).

J. Phys. D Appl. Phys. (1)

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Nano Lett. (2)

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Nanoscale (1)

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Opt. Express (5)

Opt. Lett. (6)

Phys. Chem. Chem. Phys. (1)

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Phys. Rev. B (4)

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

Phys. Rev. Lett. (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Phys. Rev. X (1)

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Plasmonics (1)

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Sci. Rep. (1)

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

Science (2)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

Sov. Phys. JETP (1)

I. B. Zel’Dovich, “Electromagnetic interaction with parity violation,” Sov. Phys. JETP 6(6), 1184–1186 (1958).

Other (4)

G. D. Liu, X. Zhai, L. L. Wang, Q. Lin, S. X. Xia, X. Luo, and C. J. Zhao, “A high-performance refractive index sensor based on fano resonance in Si split-ring metasurface,” Plasmonics, https://doi.org/10.1007/s11468-016-0478-9 (2017).

S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007), Chap. 1.

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

S. Y. Xiao, T.Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” arXiv:1705.09082 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of the unit cell for (a) the dielectric metasurface and (b) the hybrid graphene-dielectric metasurface. The proposed structures are composed of a pair of asymmetric Si split-ring resonators (ASSRRs) which are of mirror symmetry about yz and xz plane. Corresponding electromagnetic excitation configuration (with polarization direction along the y axis) and geometric parameters are denoted by black letters in Fig. 1 (a).
Fig. 2
Fig. 2 (a) Transmission spectrum of the dielectric metasurface without a graphene layer. (b) Scattered power and (c) phases of the five major multipoles of the dielectric metasurface, including electric dipoles (P), magnetic dipoles (M), toroidal dipoles (T), electric quadrupoles (Q)e, and magnetic quadrupoles (Q)m. The log scale in the y axis of Fig. 1(b) is chosen so as to reveal more clearly the contribution of the M and Qe as well. The magnetic field Hz components (d) and the displacement current density Jz components (e) at the resonant wavelength of 1310.86 nm are also simulated. Arrows indicate instantaneous directions of the displacement current flow.
Fig. 3
Fig. 3 (a) – (d) Simulated transmission spectra without and with the graphene layer, showing the active modulation of toroidal dipolar resonance, respectively. (e) – (h) Corresponding distributions of the displacement current density |(J)| at resonant wavelength for (a) – (d), respectively.
Fig. 4
Fig. 4 The wavelength dependent (a) the real part (b) the imaginary part of graphene conductivity. The Fermi energy is varied from 0.4 eV to 0.6 eV, as shown in the insets.
Fig. 5
Fig. 5 (a) - (d) Simulated transmission spectra of the dielectric metasurface without and with graphene layer (EF = 0.4 eV). (e) - (h) Computed percentage of the absolute value of the transmission coefficient difference versus the incident wavelength. The asymmetry degree is varied from 0° to 40°, as shown in the insets.
Fig. 6
Fig. 6 Simulated the z-component of the displacement current density Jz at the wavelength λ = 1310.86 nm (a) without and (b) with graphene layer while asymmetry degree is Δβ = 0°.
Fig. 7
Fig. 7 Simulated the displacement current density |(J)| distributions at the resonant wavelength (a) - (c) without and (e) - (f) with the graphene layer, respectively. The asymmetry degree Δβ is varied from 20° to 40° at a step of 10°, as shown in the insets.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ( ω )=  2 e 2 T π i ω + i τ 1 log[ 2cosh( E F 2 K B T ) ] +  e 2 4 [H( ω/2 )+ 4iω π 0 dε H( ϵ )  H(ω/2) ω 2   4 ε 2 ] ,
electric dipole moment:P=  1 iω J d 3 r
magnetic dipole moment:M=  1 2c (r×J) d 3 r
toroidal dipole moment:T=  1 10c [(rJ)r2 r 2 J] d 3 r
electric quadrupole moment: Q αβ =  1 iω [ r α J β + r β J α 2 3 (rJ)] d 3 r
and magnetic quadrupole moment: M αβ =  1 3c [ ( r×J ) α r β + (r×J) β r α ] d 3 r

Metrics