P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]
M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]
L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]
D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]
P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref]
[PubMed]
Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref]
[PubMed]
P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).
N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]
G. Sotiriou, “Biomedical applications of multifunctional plasmonic nanoparticles,” WIREs Nanomed. Nanobiotechnol. 5(1), 19–30 (2013).
[Crossref]
T. Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref]
[PubMed]
R. Quidant, “Plasmonic tweezers - The strength of surface plasmons,” Mater. Res. Bull. 37(8), 739–744 (2012).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]
[PubMed]
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photon. 4(4), 211–217 (2010).
[Crossref]
J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]
M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]
S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]
W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]
[PubMed]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
R. Sainidou and F. J. Garciá de Abajo, “Optical tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref]
[PubMed]
A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl Phys Lett. 89(25), 253114 (2006).
[Crossref]
F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref]
[PubMed]
A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
[Crossref]
[PubMed]
P. Nordlander and E. Prodan, “Plasmonic hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]
A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
J. R. Arias-Gonźalez and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20(7), 1201–1209 (2003).
[Crossref]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]
K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 22(83), 4534–4537 (1999).
[Crossref]
H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1516 (1991).
[Crossref]
M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24(24), 4493–4499 (1985).
[Crossref]
[PubMed]
D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]
M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24(24), 4493–4499 (1985).
[Crossref]
[PubMed]
M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl Phys Lett. 89(25), 253114 (2006).
[Crossref]
M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24(24), 4493–4499 (1985).
[Crossref]
[PubMed]
P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).
M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl Phys Lett. 89(25), 253114 (2006).
[Crossref]
P. Bergese and K. Hamad-Schifferli, Nanomaterial Interfaces in Biology (Springer, 2013), Chap. 3.
[Crossref]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]
M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 1998), Chap. 5.
[Crossref]
W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2016), Chap. 2.
W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and Applications (Springer, 2009), Chap. 2.
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
T. Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref]
[PubMed]
L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]
Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref]
[PubMed]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]
J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]
N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]
N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]
M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]
N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]
A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]
A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]
[PubMed]
M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
R. Sainidou and F. J. Garciá de Abajo, “Optical tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref]
[PubMed]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999), Chap. 8.
A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
P. Bergese and K. Hamad-Schifferli, Nanomaterial Interfaces in Biology (Springer, 2013), Chap. 3.
[Crossref]
Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref]
[PubMed]
P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref]
[PubMed]
H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1516 (1991).
[Crossref]
H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.
P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref]
[PubMed]
Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref]
[PubMed]
A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]
N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]
J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]
W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]
[PubMed]
H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1516 (1991).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 1998), Chap. 5.
[Crossref]
P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref]
[PubMed]
K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 22(83), 4534–4537 (1999).
[Crossref]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]
J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]
A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
T. Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref]
[PubMed]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref]
[PubMed]
J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24(24), 4493–4499 (1985).
[Crossref]
[PubMed]
Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref]
[PubMed]
S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]
W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]
[PubMed]
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]
W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2016), Chap. 2.
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]
P. Nordlander and E. Prodan, “Plasmonic hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).
K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 22(83), 4534–4537 (1999).
[Crossref]
M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24(24), 4493–4499 (1985).
[Crossref]
[PubMed]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]
A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]
A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]
M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]
P. Nordlander and E. Prodan, “Plasmonic hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24(24), 4493–4499 (1985).
[Crossref]
[PubMed]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]
L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]
R. Quidant, “Plasmonic tweezers - The strength of surface plasmons,” Mater. Res. Bull. 37(8), 739–744 (2012).
[Crossref]
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photon. 4(4), 211–217 (2010).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref]
[PubMed]
Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref]
[PubMed]
R. Sainidou and F. J. Garciá de Abajo, “Optical tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref]
[PubMed]
A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]
[PubMed]
W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]
[PubMed]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]
S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]
D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]
W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and Applications (Springer, 2009), Chap. 2.
M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]
G. Sotiriou, “Biomedical applications of multifunctional plasmonic nanoparticles,” WIREs Nanomed. Nanobiotechnol. 5(1), 19–30 (2013).
[Crossref]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]
M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]
F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref]
[PubMed]
D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photon. 4(4), 211–217 (2010).
[Crossref]
N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref]
[PubMed]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]
[PubMed]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]
Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref]
[PubMed]
P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref]
[PubMed]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
D. J. Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, “Modern applications of plasmonic nanoparticles: From energy to health,” Adv. Optical Mater. 3(5), 602–617 (2015).
[Crossref]
M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl Phys Lett. 89(25), 253114 (2006).
[Crossref]
M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24(24), 4493–4499 (1985).
[Crossref]
[PubMed]
Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong coupling between gold nanorods and slab,” Appl. Phys. Lett. 98(8), 083117 (2011).
[Crossref]
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastorizia-Santos, A. M. Funston, C. Novo, P. Maulvaney, L. M. Liz-Marzán, and F. J. Garciá de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]
[PubMed]
P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron 20(3), 4800112 (2014).
M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton. 4041570 (2010).
[Crossref]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, (3)668–677 (2003).
[Crossref]
T. Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13(22), 4358–4365 (2013).
[Crossref]
[PubMed]
M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10(1), 116–122 (2016).
[Crossref]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unravelling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5, e16092 (2016).
[Crossref]
R. Quidant, “Plasmonic tweezers - The strength of surface plasmons,” Mater. Res. Bull. 37(8), 739–744 (2012).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref]
W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref]
[PubMed]
A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]
[PubMed]
P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett. 14(6), 2965–2970 (2014).
[Crossref]
[PubMed]
Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near field optical traps,” Nano Lett. 14(6), 2971–2976 (2014).
[Crossref]
[PubMed]
P. Nordlander and E. Prodan, “Plasmonic hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]
F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[Crossref]
[PubMed]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]
A. Pinchuk, A. Hilger, G. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5(6), 348–356 (2011).
[Crossref]
A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 3(6), 365–370 (2008).
[Crossref]
D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photon. 4(4), 211–217 (2010).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
L. Neumeier, R. Quidant, and D.E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]
M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983).
[Crossref]
[PubMed]
M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
[Crossref]
[PubMed]
J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[Crossref]
N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houndré, “Observation of back action and self-induced trapping in a planar hollow planar photonic crystal cavity,” Phys. Rev. Lett. 110(15), 123601 (2013).
[Crossref]
R. Sainidou and F. J. Garciá de Abajo, “Optical tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref]
[PubMed]
K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 22(83), 4534–4537 (1999).
[Crossref]
H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1516 (1991).
[Crossref]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
G. Sotiriou, “Biomedical applications of multifunctional plasmonic nanoparticles,” WIREs Nanomed. Nanobiotechnol. 5(1), 19–30 (2013).
[Crossref]
W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2016), Chap. 2.
C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 1998), Chap. 5.
[Crossref]
H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.
P. Bergese and K. Hamad-Schifferli, Nanomaterial Interfaces in Biology (Springer, 2013), Chap. 3.
[Crossref]
Comsol Multiphysics ®
D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999), Chap. 8.
W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and Applications (Springer, 2009), Chap. 2.