Abstract

We developed a large multiplexing capacity dense ultra-short (DUS)-FBG array for high spatial resolution distributed sensing applications. With identical central wavelength and low peak reflectivity (−40 dB), all the ultra-short FBGs share the short length (1 mm) and extremely small spacing (500 μm). The large multiplexing capacity and lower crosstalk of the DUS-FBG is investigated through both simulation and experiment. Use of DUS-FBG array interrogated by optical frequency domain reflectometry (OFDR) for distributed temperature and non-uniform strain sensing was conducted. We demonstrated high spatial resolution over 6680 FBGs along a 10 m-long fiber, and temperature and strain precision of 1.00 °Cand 20.02 με. Distributed temperature and non-uniform strain sensing experiment results are consistent with the theoretical analysis, and verify the high spatial resolution and large multiplexing capacity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High spatial resolution distributed fiber strain sensor based on phase-OFDR

Jiong Li, Jiulin Gan, Zhishen Zhang, Xiaobo Heng, Changsheng Yang, Qi Qian, Shanhui Xu, and Zhongmin Yang
Opt. Express 25(22) 27913-27922 (2017)

Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis

Rui Cheng, Li Xia, Chaotan Sima, Yanli Ran, Jalal Rohollahnejad, Jiaao Zhou, Yongqiang Wen, and Can Yu
Opt. Express 24(3) 2466-2484 (2016)

Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings

Zhengying Li, Yuheng Tong, Xuelei Fu, Jiaqi Wang, Qingqing Guo, Haihu Yu, and Xiaoyi Bao
Opt. Express 26(13) 17437-17446 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin Distributed Discrimination of Strain and Temperature Using a Polarization-Maintaining Optical Fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
  2. G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
    [PubMed]
  3. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [PubMed]
  4. A. Rogers, “Distributed optical-fibre sensing,” Meas. Sci. Technol. 10(8), R75 (1999).
  5. P. Bao, M. Yuan, S. Dong, H. Song, and J. Xue, “Fiber bragg grating sensor fatigue crack real-time monitoring based on spectrum cross-correlation analysis,” J. Sound Vibrat. 332(1), 43–57 (2013).
  6. Z. Li, M. Liu, Y. Wang, Q. Liu, and J. Gong, “Delay calibration method for wavelength-swept laser-based fbg demodulation system,” IEEE Photonics Technol. Lett. 26(20), 2090–2092 (2014).
  7. W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).
  8. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” Opt. Soc. Am. 2006, ThE42 (2006).
  9. J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).
  10. S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 11177 (2015).
    [PubMed]
  11. B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, M. H. Yu, and P. F. Wysocki, “Measurement of localized heating in fiber optic components with millimeter spatial resolution,” in Optical Fiber Communication Conference (2006).
  12. M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
  13. B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).
  14. A. L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2017).
  15. H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge fbg sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Trans. Jpn. Soc. Mechanical Eng. Part A. 72(724), 1912–1920 (2008).
  16. J. Sancho, S. Chin, D. Barrera, S. Sales, and L. Thévenaz, “Time-frequency analysis of long fiber Bragg gratings with low reflectivity,” Opt. Express 21(6), 7171–7179 (2013).
    [PubMed]
  17. K. Hotate and K. Kajiwara, “Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function,” Opt. Express 16(11), 7881–7887 (2008).
    [PubMed]
  18. M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
    [PubMed]
  19. H. Igawa, H. Murayama, T. Nakamura, I. Yamaguchi, K. Kageyama, and K. Uzawa, “Measurement of distributed strain and load identification using 1500 mm gauge length fbg and optical frequency domain reflectometry,” in 20th International Conference on Optical Fibre Sensors (2009), paper 75035I.
  20. M. Froggatt and J. Moore, “Distributed measurement of static strain in an optical fiber with multiple bragg gratings at nominally equal wavelengths,” Appl. Opt. 37(10), 1741–1746 (1998).
    [PubMed]
  21. M. Froggatt, R. J. Seeley, and D. K. Gifford, “High resolution interferometric optical frequency domain reflectometry (OFDR) beyond the laser coherence length,” United States patent, US7515276 (2009).
  22. K. Yuksel, M. Wuilpart, and P. Mégret, “Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer,” Opt. Express 17(7), 5845–5851 (2009).
    [PubMed]
  23. J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).
  24. W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).
  25. P. K. C. Chan, W. Jin, J. M. Gong, and M. S. Demokan, “Multiplexing of fiber bragg grating sensors using a fmcw technique,” IEEE Photonics Technol. Lett. 11(11), 1470–1472 (1999).
  26. Y. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
  27. H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber bragg grating arrays,” Phys. Procedia 48, 184–190 (2013).
  28. H. Guo, J. Tang, X. Li, Y. Zheng, H. Yu, and H. Yu, “On-line writing identical and weak fiber bragg grating arrays,” Chin. Opt. Lett. 11(3), 0602(2013).
  29. D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011).

2017 (1)

A. L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2017).

2015 (1)

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 11177 (2015).
[PubMed]

2014 (4)

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[PubMed]

Z. Li, M. Liu, Y. Wang, Q. Liu, and J. Gong, “Delay calibration method for wavelength-swept laser-based fbg demodulation system,” IEEE Photonics Technol. Lett. 26(20), 2090–2092 (2014).

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

2013 (5)

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber bragg grating arrays,” Phys. Procedia 48, 184–190 (2013).

P. Bao, M. Yuan, S. Dong, H. Song, and J. Xue, “Fiber bragg grating sensor fatigue crack real-time monitoring based on spectrum cross-correlation analysis,” J. Sound Vibrat. 332(1), 43–57 (2013).

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

J. Sancho, S. Chin, D. Barrera, S. Sales, and L. Thévenaz, “Time-frequency analysis of long fiber Bragg gratings with low reflectivity,” Opt. Express 21(6), 7171–7179 (2013).
[PubMed]

2012 (3)

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[PubMed]

Y. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).

2011 (1)

D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011).

2010 (2)

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin Distributed Discrimination of Strain and Temperature Using a Polarization-Maintaining Optical Fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).

G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
[PubMed]

2009 (1)

2008 (2)

H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge fbg sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Trans. Jpn. Soc. Mechanical Eng. Part A. 72(724), 1912–1920 (2008).

K. Hotate and K. Kajiwara, “Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function,” Opt. Express 16(11), 7881–7887 (2008).
[PubMed]

2006 (1)

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” Opt. Soc. Am. 2006, ThE42 (2006).

2001 (1)

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).

1999 (2)

A. Rogers, “Distributed optical-fibre sensing,” Meas. Sci. Technol. 10(8), R75 (1999).

P. K. C. Chan, W. Jin, J. M. Gong, and M. S. Demokan, “Multiplexing of fiber bragg grating sensors using a fmcw technique,” IEEE Photonics Technol. Lett. 11(11), 1470–1472 (1999).

1998 (1)

Allison, S. G.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).

Bao, P.

P. Bao, M. Yuan, S. Dong, H. Song, and J. Xue, “Fiber bragg grating sensor fatigue crack real-time monitoring based on spectrum cross-correlation analysis,” J. Sound Vibrat. 332(1), 43–57 (2013).

Bao, X.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[PubMed]

Barrera, D.

A. L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2017).

J. Sancho, S. Chin, D. Barrera, S. Sales, and L. Thévenaz, “Time-frequency analysis of long fiber Bragg gratings with low reflectivity,” Opt. Express 21(6), 7171–7179 (2013).
[PubMed]

Batten, C. F.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).

Bolognini, G.

Capmany, J.

A. L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2017).

Chan, P. K. C.

P. K. C. Chan, W. Jin, J. M. Gong, and M. S. Demokan, “Multiplexing of fiber bragg grating sensors using a fmcw technique,” IEEE Photonics Technol. Lett. 11(11), 1470–1472 (1999).

Chen, L.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[PubMed]

Childers, B. A.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).

Chin, S.

Demokan, M. S.

P. K. C. Chan, W. Jin, J. M. Gong, and M. S. Demokan, “Multiplexing of fiber bragg grating sensors using a fmcw technique,” IEEE Photonics Technol. Lett. 11(11), 1470–1472 (1999).

Dong, B.

Dong, S.

P. Bao, M. Yuan, S. Dong, H. Song, and J. Xue, “Fiber bragg grating sensor fatigue crack real-time monitoring based on spectrum cross-correlation analysis,” J. Sound Vibrat. 332(1), 43–57 (2013).

Froggatt, M.

Froggatt, M. E.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” Opt. Soc. Am. 2006, ThE42 (2006).

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, M. H. Yu, and P. F. Wysocki, “Measurement of localized heating in fiber optic components with millimeter spatial resolution,” in Optical Fiber Communication Conference (2006).

Gagné, M.

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 11177 (2015).
[PubMed]

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[PubMed]

Gifford, D. K.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” Opt. Soc. Am. 2006, ThE42 (2006).

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, M. H. Yu, and P. F. Wysocki, “Measurement of localized heating in fiber optic components with millimeter spatial resolution,” in Optical Fiber Communication Conference (2006).

Gong, J.

Z. Li, M. Liu, Y. Wang, Q. Liu, and J. Gong, “Delay calibration method for wavelength-swept laser-based fbg demodulation system,” IEEE Photonics Technol. Lett. 26(20), 2090–2092 (2014).

Y. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).

Gong, J. M.

P. K. C. Chan, W. Jin, J. M. Gong, and M. S. Demokan, “Multiplexing of fiber bragg grating sensors using a fmcw technique,” IEEE Photonics Technol. Lett. 11(11), 1470–1472 (1999).

Guo, H.

H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber bragg grating arrays,” Phys. Procedia 48, 184–190 (2013).

Hare, D. A.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).

He, Z.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin Distributed Discrimination of Strain and Temperature Using a Polarization-Maintaining Optical Fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).

Hervás, J.

A. L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2017).

Hotate, K.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin Distributed Discrimination of Strain and Temperature Using a Polarization-Maintaining Optical Fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).

K. Hotate and K. Kajiwara, “Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function,” Opt. Express 16(11), 7881–7887 (2008).
[PubMed]

Igawa, H.

D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011).

H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge fbg sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Trans. Jpn. Soc. Mechanical Eng. Part A. 72(724), 1912–1920 (2008).

Jegley, D. C.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).

Jin, W.

P. K. C. Chan, W. Jin, J. M. Gong, and M. S. Demokan, “Multiplexing of fiber bragg grating sensors using a fmcw technique,” IEEE Photonics Technol. Lett. 11(11), 1470–1472 (1999).

Kageyama, K.

D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011).

H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge fbg sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Trans. Jpn. Soc. Mechanical Eng. Part A. 72(724), 1912–1920 (2008).

Kajiwara, K.

Kasai, T.

H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge fbg sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Trans. Jpn. Soc. Mechanical Eng. Part A. 72(724), 1912–1920 (2008).

Kashyap, R.

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 11177 (2015).
[PubMed]

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[PubMed]

Kreger, S. T.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” Opt. Soc. Am. 2006, ThE42 (2006).

Lambin-Iezzi, V.

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 11177 (2015).
[PubMed]

Lapointe, J.

Li, W.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

Li, X.

H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber bragg grating arrays,” Phys. Procedia 48, 184–190 (2013).

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).

Li, Z.

Z. Li, M. Liu, Y. Wang, Q. Liu, and J. Gong, “Delay calibration method for wavelength-swept laser-based fbg demodulation system,” IEEE Photonics Technol. Lett. 26(20), 2090–2092 (2014).

Liu, D.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).

Liu, H.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).

Liu, M.

Z. Li, M. Liu, Y. Wang, Q. Liu, and J. Gong, “Delay calibration method for wavelength-swept laser-based fbg demodulation system,” IEEE Photonics Technol. Lett. 26(20), 2090–2092 (2014).

Liu, Q.

Z. Li, M. Liu, Y. Wang, Q. Liu, and J. Gong, “Delay calibration method for wavelength-swept laser-based fbg demodulation system,” IEEE Photonics Technol. Lett. 26(20), 2090–2092 (2014).

Loranger, S.

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 11177 (2015).
[PubMed]

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[PubMed]

Lu, P.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

Mégret, P.

Moore, J.

Moore, T. C.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).

Murayama, H.

D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011).

H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge fbg sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Trans. Jpn. Soc. Mechanical Eng. Part A. 72(724), 1912–1920 (2008).

Ohta, K.

H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge fbg sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Trans. Jpn. Soc. Mechanical Eng. Part A. 72(724), 1912–1920 (2008).

Omichi, K.

D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011).

Ricchiuti, A. L.

A. L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2017).

Rogers, A.

A. Rogers, “Distributed optical-fibre sensing,” Meas. Sci. Technol. 10(8), R75 (1999).

Sales, S.

A. L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2017).

J. Sancho, S. Chin, D. Barrera, S. Sales, and L. Thévenaz, “Time-frequency analysis of long fiber Bragg gratings with low reflectivity,” Opt. Express 21(6), 7171–7179 (2013).
[PubMed]

Sancho, J.

Shillig, T. J.

Soller, B. J.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” Opt. Soc. Am. 2006, ThE42 (2006).

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, M. H. Yu, and P. F. Wysocki, “Measurement of localized heating in fiber optic components with millimeter spatial resolution,” in Optical Fiber Communication Conference (2006).

Song, H.

P. Bao, M. Yuan, S. Dong, H. Song, and J. Xue, “Fiber bragg grating sensor fatigue crack real-time monitoring based on spectrum cross-correlation analysis,” J. Sound Vibrat. 332(1), 43–57 (2013).

Song, J.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

Soto, M. A.

Sun, Q.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).

Tang, J.

H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber bragg grating arrays,” Phys. Procedia 48, 184–190 (2013).

Thévenaz, L.

Uzawa, K.

D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011).

Wada, D.

D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011).

Wang, A.

Wang, D. Y.

Wang, Y.

Z. Li, M. Liu, Y. Wang, Q. Liu, and J. Gong, “Delay calibration method for wavelength-swept laser-based fbg demodulation system,” IEEE Photonics Technol. Lett. 26(20), 2090–2092 (2014).

Y. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).

Wang, Z.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).

Wolfe, M. S.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” Opt. Soc. Am. 2006, ThE42 (2006).

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, M. H. Yu, and P. F. Wysocki, “Measurement of localized heating in fiber optic components with millimeter spatial resolution,” in Optical Fiber Communication Conference (2006).

Wu, Y.

H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber bragg grating arrays,” Phys. Procedia 48, 184–190 (2013).

Wuilpart, M.

Wysocki, P. F.

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, M. H. Yu, and P. F. Wysocki, “Measurement of localized heating in fiber optic components with millimeter spatial resolution,” in Optical Fiber Communication Conference (2006).

Xu, Y.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

Xue, J.

P. Bao, M. Yuan, S. Dong, H. Song, and J. Xue, “Fiber bragg grating sensor fatigue crack real-time monitoring based on spectrum cross-correlation analysis,” J. Sound Vibrat. 332(1), 43–57 (2013).

Yamaguchi, I.

H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge fbg sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Trans. Jpn. Soc. Mechanical Eng. Part A. 72(724), 1912–1920 (2008).

Yu, H.

H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber bragg grating arrays,” Phys. Procedia 48, 184–190 (2013).

Yu, M. H.

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, M. H. Yu, and P. F. Wysocki, “Measurement of localized heating in fiber optic components with millimeter spatial resolution,” in Optical Fiber Communication Conference (2006).

Yuan, M.

P. Bao, M. Yuan, S. Dong, H. Song, and J. Xue, “Fiber bragg grating sensor fatigue crack real-time monitoring based on spectrum cross-correlation analysis,” J. Sound Vibrat. 332(1), 43–57 (2013).

Yuksel, K.

Zhang, M.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).

Zheng, Y.

H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber bragg grating arrays,” Phys. Procedia 48, 184–190 (2013).

Zou, W.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin Distributed Discrimination of Strain and Temperature Using a Polarization-Maintaining Optical Fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).

Appl. Opt. (1)

IEEE Photonics J. (3)

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

A. L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor,” IEEE Photonics J. 6(6), 1–10 (2017).

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photonics J. 6(3), 1–8 (2014).

IEEE Photonics Technol. Lett. (3)

P. K. C. Chan, W. Jin, J. M. Gong, and M. S. Demokan, “Multiplexing of fiber bragg grating sensors using a fmcw technique,” IEEE Photonics Technol. Lett. 11(11), 1470–1472 (1999).

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin Distributed Discrimination of Strain and Temperature Using a Polarization-Maintaining Optical Fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).

Z. Li, M. Liu, Y. Wang, Q. Liu, and J. Gong, “Delay calibration method for wavelength-swept laser-based fbg demodulation system,” IEEE Photonics Technol. Lett. 26(20), 2090–2092 (2014).

J. Lightwave Technol. (1)

J. Sound Vibrat. (1)

P. Bao, M. Yuan, S. Dong, H. Song, and J. Xue, “Fiber bragg grating sensor fatigue crack real-time monitoring based on spectrum cross-correlation analysis,” J. Sound Vibrat. 332(1), 43–57 (2013).

Meas. Sci. Technol. (1)

A. Rogers, “Distributed optical-fibre sensing,” Meas. Sci. Technol. 10(8), R75 (1999).

Opt. Commun. (3)

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).

W. Li, L. Chen, and X. Bao, “Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry,” Opt. Commun. 311(2), 26–32 (2013).

Opt. Express (5)

Opt. Soc. Am. (1)

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” Opt. Soc. Am. 2006, ThE42 (2006).

Phys. Procedia (1)

H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber bragg grating arrays,” Phys. Procedia 48, 184–190 (2013).

Proc. Soc. PhotoInstrumentation Eng. (1)

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” Proc. Soc. PhotoInstrumentation Eng. 4332, 133–142 (2001).

Sci. Rep. (1)

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 11177 (2015).
[PubMed]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[PubMed]

Smart Mater. Struct. (1)

D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurement of strain and temperature by polarization maintaining fiber bragg grating based on optical frequency domain reflectometry,” Smart Mater. Struct. 20(8), 085028 (2011).

Trans. Jpn. Soc. Mechanical Eng. Part A. (1)

H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge fbg sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Trans. Jpn. Soc. Mechanical Eng. Part A. 72(724), 1912–1920 (2008).

Other (4)

H. Igawa, H. Murayama, T. Nakamura, I. Yamaguchi, K. Kageyama, and K. Uzawa, “Measurement of distributed strain and load identification using 1500 mm gauge length fbg and optical frequency domain reflectometry,” in 20th International Conference on Optical Fibre Sensors (2009), paper 75035I.

M. Froggatt, R. J. Seeley, and D. K. Gifford, “High resolution interferometric optical frequency domain reflectometry (OFDR) beyond the laser coherence length,” United States patent, US7515276 (2009).

H. Guo, J. Tang, X. Li, Y. Zheng, H. Yu, and H. Yu, “On-line writing identical and weak fiber bragg grating arrays,” Chin. Opt. Lett. 11(3), 0602(2013).

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, M. H. Yu, and P. F. Wysocki, “Measurement of localized heating in fiber optic components with millimeter spatial resolution,” in Optical Fiber Communication Conference (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of sensing system.
Fig. 2
Fig. 2 The process and test of the system nonlinear calibration: (a) Process of nonlinear compensation algorithm; (b) OFDR-like traces before (black line) and after (red line) using amendment; (c) The enlarged drawing of the red line in (b).
Fig. 3
Fig. 3 Demodulation comparison of different reference frequency beat length: (a) 12.7 m; (b) 27.7 m; (c) 47.4 m; (d) 57.2 m; (e), (f), (g), (h) shows the enlarged drawing of the position of (14.6-14.62m), (29.6-29.62 m), (49.32-49.34 m), (59-59.02 m).
Fig. 4
Fig. 4 Simulation of system multiplexing capacity: (a) Spectral shadowing effect suppression: last single FBG reflection; (b) Multiple-reflection crosstalk effect suppression.
Fig. 5
Fig. 5 The parameters of DUS-FBG array with the same 4000 US-FBGs: Spacing: (a) DUS-FBG1; (b) DUS-FBG2; (c) DUS-FBG3; (d) DUS-FBG4; Center wavelength: (e) DUS-FBG1; (f) DUS-FBG2; (g) DUS-FBG3; (h) DUS-FBG4.
Fig. 6
Fig. 6 Four types DUS-FBG array of the amplitude distribution at various positions: (a) DUS-FBG1, (b) DUS-FBG2, (c) DUS-FBG3, (d) DUS-FBG4; Zoom in:(e) DUS-FBG1(14.6-14.62 m), (f) DUS-FBG2 (29.6-29.62 m),(g) DUS-FBG3 (49.32-49.34 m),(h) DUS-FBG4 (59-59.02 m).
Fig. 7
Fig. 7 DUS-FBG multiplexing capacity discussion, the amplitude distribution at various positions: (a) DUS-FBG1 (3000 FBGs), (b) DUS-FBG1 (2500 FBGs), (c) DUS-FBG4 (6680 FBGs); Zoom in: (d) DUS-FBG1 (3000 FBGs) (8.0 m-8.02 m), (e) DUS-FBG1 (2500 FBGs) (7.3 m-7.32 m), (f) DUS-FBG4 (6680 FBGs) (13.0 m-13.02 m).
Fig. 8
Fig. 8 The temperature test of system performance: (a) temperature coefficient calibration; (b) Ratio coefficient; (c) The linearity of DUS- FBG array.
Fig. 9
Fig. 9 The strain test of system performance: (a) strain coefficient calibration; (b) Ratio coefficient (0.60.8 m); (c) Ratio coefficient (9.5-9.7 m); (d) linearity of strain (0.6-0.8 m); (e) linearity of strain (9.5-9.7 m).
Fig. 10
Fig. 10 Temperature distributions sensing test: (a) Test 1; (b) Test 2; (3) Test 3; Inset graph shows the enlarged drawing of the position of (0.85-1.15 m), (5.2-5.6 m), (8.6-9 m).
Fig. 11
Fig. 11 Non-uniform Strain distributed sensing test: (a) Tensile tests on simply beams with through holes; (b) Strain simulation; (c) d1 = 2 mm, non-uniform distributed strain demodulation result; (d) d2 = 1 mm, non-uniform distributed strain demodulation result.
Fig. 12
Fig. 12 Non-uniform distributed sensing test: (a) Simulation (2-2.15 m); (b) Experiment (2-2.15 m); (c) Simulation (9-9.15 m); (d) Experiment (9-9.15 m).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ L = 1 Δ T c 2 γ ν n e f f

Metrics