Abstract

A non-iterative design and precise fabrication method of diffractive optical elements (DOEs) on multiple freeform surfaces is proposed and investigated in this paper. Complex amplitude modulation (CAM) technology is applied to design complicated DOEs. The wave-front for desired DOEs fabrication is interfered with a plane wave and then be encoded to a pure phase hologram. Simulations for different DOEs (binary and gray scales) on freeform surfaces are performed and the relative errors are 0.56% and 0.78%, respectively. Since the reconstructed optical fields generated by spatial light modulator (SLM) can be recorded into light-sensitive materials (photopolymer), the DOEs fabrication is realized by optical exposure. The results show that the proposed method can design and fabricate DOEs on multi-freeform surfaces at one time with high quality. Since the CAM method ensures precise reconstruction without iterations, the fabrication is accurate as well as the design is fast. It is expected that the proposed method could be applied in the precise 3D optical fabrication and processing in the future.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of complicated diffractive optical elements on multiple curved surfaces

Ran Tian, Juan Liu, Xin Li, Xugang Wang, and Yongtian Wang
Opt. Express 23(26) 32917-32925 (2015)

Modulation of optical intensity on curved surfaces and its application to fabricate DOEs with arbitrary profile by interference

Haozhi Zhao, Juan Liu, Ru Xiao, Xin Li, Rui Shi, Peng Liu, Haizheng Zhong, Bingsuo Zou, and Yongtian Wang
Opt. Express 21(4) 5140-5148 (2013)

3D optical intensity modulation on curved surfaces by optimization method and its application to fabricate arbitrary patterns

Xugang Wang, Juan Liu, Jian Han, Nannan Zhang, Xin Li, Bin Hu, and Yongtian Wang
Opt. Express 22(17) 20387-20395 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Yoo, H. Lee, D. Radtke, M. Stumpf, U. Zeitner, and J. Kanicki, “A maskless laser-write lithography processing of thin-film transistors on a hemispherical surface,” Microelectron. Eng. 87(1), 83–87 (2010).
  2. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
    [PubMed]
  3. D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007).
    [PubMed]
  4. Y. Xie, Z. Lu, F. Li, J. Zhao, and Z. Weng, “Lithographic fabrication of large diffractive optical elements on a concave lens surface,” Opt. Express 10(20), 1043–1047 (2002).
    [PubMed]
  5. Y. Xie, Z. Lu, and F. Li, “Lithographic fabrication of large curved hologram by laser writer,” Opt. Express 12(9), 1810–1814 (2004).
    [PubMed]
  6. D. Radtke and U. D. Zeitner, “Laser-lithography on non-planar surfaces,” Opt. Express 15(3), 1167–1174 (2007).
    [PubMed]
  7. T. Wang, W. Yu, D. Zhang, C. Li, H. Zhang, W. Xu, Z. Xu, H. Liu, Q. Sun, and Z. Lu, “Lithographic fabrication of diffractive optical elements in hybrid sol-gel glass on 3-D curved surfaces,” Opt. Express 18(24), 25102–25107 (2010).
    [PubMed]
  8. M. Mikutis, T. Kudtius, G. Slekys, D. Paipulas, and S. Juodkazis, “High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams,” Opt. Mater. Express 3(11), 1862–1871 (2013).
  9. L. Yuan, M. L. Ng, and P. R. Herman, “Femtosecond laser writing of phase-tuned volume gratings for symmetry control in 3D photonic crystal holographic lithography,” Opt. Mater. Express 5(3), 515–529 (2015).
  10. P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).
  11. J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).
  12. L. Yuan and P. R. Herman, “Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography,” The Royal Society of Chemistry 7(47), 19905–19913 (2015).
  13. T. Senn, J. P. Esquivel, N. Sabate, and B. Lochel, “Fabrication of high aspect ratio nanostructures on 3D surfaces,” Microelectron. Eng. 88(9), 3043–3048 (2011).
  14. K. M. Baker, “Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces,” Appl. Opt. 38(2), 352–356 (1999).
    [PubMed]
  15. J. Nishii, “Glass-imprinting for optical device fabrication,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2009), paper AThC1.
  16. A. Mizutani, S. Takahira, and H. Kikuta, “Two-spherical-wave ultraviolet interferometer for making an antireflective subwavelength periodic pattern on a curved surface,” Appl. Opt. 49(32), 6268–6275 (2010).
    [PubMed]
  17. R. Shi, J. Liu, J. Xu, D. Liu, Y. Pan, J. Xie, and Y. Wang, “Designing and fabricating diffractive optical elements with a complex profile by interference,” Opt. Lett. 36(20), 4053–4055 (2011).
    [PubMed]
  18. H. Zhao, J. Liu, R. Xiao, X. Li, R. Shi, P. Liu, H. Zhong, B. Zou, and Y. Wang, “Modulation of optical intensity on curved surfaces and its application to fabricate DOEs with arbitrary profile by interference,” Opt. Express 21(4), 5140–5148 (2013).
    [PubMed]
  19. X. Wang, J. Liu, J. Han, N. Zhang, X. Li, B. Hu, and Y. Wang, “3D optical intensity modulation on curved surfaces by optimization method and its application to fabricate arbitrary patterns,” Opt. Express 22(17), 20387–20395 (2014).
    [PubMed]
  20. R. Tian, J. Liu, X. Li, X. Wang, and Y. Wang, “Design and fabrication of complicated diffractive optical elements on multiple curved surfaces,” Opt. Express 23(26), 32917–32925 (2015).
    [PubMed]
  21. J. P. Liu, W. Y. Hsieh, T. C. Poon, and P. Tsang, “Complex Fresnel hologram display using a single SLM,” Appl. Opt. 50(34), H128–H135 (2011).
    [PubMed]
  22. Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
    [PubMed]
  23. X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
    [PubMed]
  24. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
    [PubMed]
  25. J. P. Liu, W. Y. Hsieh, T. C. Poon, and P. Tsang, “Complex Fresnel hologram display using a single SLM,” Appl. Opt. 50(34), H128–H135 (2011).
    [PubMed]
  26. H. Song, G. Sung, S. Choi, K. Won, H.-S. Lee, and H. Kim, “Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter,” Opt. Express 20(28), 29844–29853 (2012).
    [PubMed]
  27. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  28. A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt. 10(3), 035302 (2008).
  29. H. Akahori, “Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform,” Appl. Opt. 25(5), 802–811 (1986).
    [PubMed]
  30. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961–969 (1990).
  31. M. Gruber, “Diffractive optical elements as raster-image generators,” Appl. Opt. 40(32), 5830–5839 (2001).
    [PubMed]
  32. C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection,” Opt. Lett. 35(13), 2230–2232 (2010).
    [PubMed]
  33. F. Bowman, Introduction to Bessel functions (Dover Publications, 1958), Chap. 1.

2017 (1)

2016 (1)

2015 (3)

2014 (1)

2013 (3)

2012 (1)

2011 (4)

2010 (4)

2009 (1)

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).

2008 (2)

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt. 10(3), 035302 (2008).

2007 (2)

2004 (1)

2002 (1)

2001 (1)

1999 (2)

K. M. Baker, “Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces,” Appl. Opt. 38(2), 352–356 (1999).
[PubMed]

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

1990 (1)

1986 (1)

Akahori, H.

Bailey, T.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Baker, K. M.

Bay, C.

Choi, B.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Choi, S.

Choi, W. M.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Christmas, J.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt. 10(3), 035302 (2008).

Colburn, M.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Collings, N.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt. 10(3), 035302 (2008).

Crossland, W. A.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt. 10(3), 035302 (2008).

Damle, S.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Duan, X.

Duparré, J.

Ekerdt, J.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Esquivel, J. P.

T. Senn, J. P. Esquivel, N. Sabate, and B. Lochel, “Fabrication of high aspect ratio nanostructures on 3D surfaces,” Microelectron. Eng. 88(9), 3043–3048 (2011).

Freeman, J.

Fujita, H.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).

Gao, Q.

Geddes, J. B.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Georgiou, A.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt. 10(3), 035302 (2008).

Gruber, M.

Han, J.

Herman, P. R.

L. Yuan, M. L. Ng, and P. R. Herman, “Femtosecond laser writing of phase-tuned volume gratings for symmetry control in 3D photonic crystal holographic lithography,” Opt. Mater. Express 5(3), 515–529 (2015).

L. Yuan and P. R. Herman, “Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography,” The Royal Society of Chemistry 7(47), 19905–19913 (2015).

Hsieh, W. Y.

Hu, B.

Huang, Y.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Hübner, N.

Jia, J.

Johnson, S.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Juodkazis, S.

Kanicki, J.

G. Yoo, H. Lee, D. Radtke, M. Stumpf, U. Zeitner, and J. Kanicki, “A maskless laser-write lithography processing of thin-film transistors on a hemispherical surface,” Microelectron. Eng. 87(1), 83–87 (2010).

Kikuta, H.

Kim, B. J.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).

Kim, H.

Kim, J. G.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).

Ko, H. C.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Kudtius, T.

Lee, H.

G. Yoo, H. Lee, D. Radtke, M. Stumpf, U. Zeitner, and J. Kanicki, “A maskless laser-write lithography processing of thin-film transistors on a hemispherical surface,” Microelectron. Eng. 87(1), 83–87 (2010).

Lee, H.-S.

Li, C.

Li, F.

Li, X.

Liu, D.

Liu, H.

Liu, J.

Liu, J. P.

Liu, P.

Lochel, B.

T. Senn, J. P. Esquivel, N. Sabate, and B. Lochel, “Fabrication of high aspect ratio nanostructures on 3D surfaces,” Microelectron. Eng. 88(9), 3043–3048 (2011).

Lu, Z.

Malyarchuk, V.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Mikutis, M.

Mizutani, A.

Moore, J.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt. 10(3), 035302 (2008).

Ng, M. L.

Nounu, H.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Paipulas, D.

Pan, Y.

Poon, T. C.

Radtke, D.

Rogers, J. A.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Ruchhoeft, P.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Sabate, N.

T. Senn, J. P. Esquivel, N. Sabate, and B. Lochel, “Fabrication of high aspect ratio nanostructures on 3D surfaces,” Microelectron. Eng. 88(9), 3043–3048 (2011).

Senn, T.

T. Senn, J. P. Esquivel, N. Sabate, and B. Lochel, “Fabrication of high aspect ratio nanostructures on 3D surfaces,” Microelectron. Eng. 88(9), 3043–3048 (2011).

Shi, R.

Slekys, G.

Song, H.

Song, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Sreenivasan, S. V.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Stewart, M.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Stoykovich, M. P.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Stumpf, M.

G. Yoo, H. Lee, D. Radtke, M. Stumpf, U. Zeitner, and J. Kanicki, “A maskless laser-write lithography processing of thin-film transistors on a hemispherical surface,” Microelectron. Eng. 87(1), 83–87 (2010).

Sun, Q.

Sung, G.

Takahira, S.

Takama, N.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).

Tian, R.

Tsang, P.

Tünnermann, A.

Wang, S.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Wang, T.

Wang, X.

Wang, Y.

Weng, Z.

Wilkinson, T.

Willson, C. G.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Wolfe, J. C.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Won, K.

Wyrowski, F.

Xiao, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Xiao, R.

Xie, J.

Xie, Y.

Xu, J.

Xu, W.

Xu, Z.

Yoo, G.

G. Yoo, H. Lee, D. Radtke, M. Stumpf, U. Zeitner, and J. Kanicki, “A maskless laser-write lithography processing of thin-film transistors on a hemispherical surface,” Microelectron. Eng. 87(1), 83–87 (2010).

Yu, C.-J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Yu, W.

Yuan, L.

L. Yuan and P. R. Herman, “Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography,” The Royal Society of Chemistry 7(47), 19905–19913 (2015).

L. Yuan, M. L. Ng, and P. R. Herman, “Femtosecond laser writing of phase-tuned volume gratings for symmetry control in 3D photonic crystal holographic lithography,” Opt. Mater. Express 5(3), 515–529 (2015).

Zeitner, U.

G. Yoo, H. Lee, D. Radtke, M. Stumpf, U. Zeitner, and J. Kanicki, “A maskless laser-write lithography processing of thin-film transistors on a hemispherical surface,” Microelectron. Eng. 87(1), 83–87 (2010).

Zeitner, U. D.

Zhang, D.

Zhang, H.

Zhang, N.

Zhao, H.

Zhao, J.

Zhao, T.

Zhong, H.

Zou, B.

Appl. Opt. (6)

J. Micromech. Microeng. (1)

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).

J. Opt. A, Pure Appl. Opt. (1)

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt. 10(3), 035302 (2008).

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965–2969 (1999).

Microelectron. Eng. (2)

T. Senn, J. P. Esquivel, N. Sabate, and B. Lochel, “Fabrication of high aspect ratio nanostructures on 3D surfaces,” Microelectron. Eng. 88(9), 3043–3048 (2011).

G. Yoo, H. Lee, D. Radtke, M. Stumpf, U. Zeitner, and J. Kanicki, “A maskless laser-write lithography processing of thin-film transistors on a hemispherical surface,” Microelectron. Eng. 87(1), 83–87 (2010).

Nature (1)

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[PubMed]

Opt. Express (12)

D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007).
[PubMed]

Y. Xie, Z. Lu, F. Li, J. Zhao, and Z. Weng, “Lithographic fabrication of large diffractive optical elements on a concave lens surface,” Opt. Express 10(20), 1043–1047 (2002).
[PubMed]

Y. Xie, Z. Lu, and F. Li, “Lithographic fabrication of large curved hologram by laser writer,” Opt. Express 12(9), 1810–1814 (2004).
[PubMed]

D. Radtke and U. D. Zeitner, “Laser-lithography on non-planar surfaces,” Opt. Express 15(3), 1167–1174 (2007).
[PubMed]

T. Wang, W. Yu, D. Zhang, C. Li, H. Zhang, W. Xu, Z. Xu, H. Liu, Q. Sun, and Z. Lu, “Lithographic fabrication of diffractive optical elements in hybrid sol-gel glass on 3-D curved surfaces,” Opt. Express 18(24), 25102–25107 (2010).
[PubMed]

H. Song, G. Sung, S. Choi, K. Won, H.-S. Lee, and H. Kim, “Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter,” Opt. Express 20(28), 29844–29853 (2012).
[PubMed]

H. Zhao, J. Liu, R. Xiao, X. Li, R. Shi, P. Liu, H. Zhong, B. Zou, and Y. Wang, “Modulation of optical intensity on curved surfaces and its application to fabricate DOEs with arbitrary profile by interference,” Opt. Express 21(4), 5140–5148 (2013).
[PubMed]

X. Wang, J. Liu, J. Han, N. Zhang, X. Li, B. Hu, and Y. Wang, “3D optical intensity modulation on curved surfaces by optimization method and its application to fabricate arbitrary patterns,” Opt. Express 22(17), 20387–20395 (2014).
[PubMed]

R. Tian, J. Liu, X. Li, X. Wang, and Y. Wang, “Design and fabrication of complicated diffractive optical elements on multiple curved surfaces,” Opt. Express 23(26), 32917–32925 (2015).
[PubMed]

Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
[PubMed]

X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
[PubMed]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[PubMed]

Opt. Lett. (2)

Opt. Mater. Express (2)

The Royal Society of Chemistry (1)

L. Yuan and P. R. Herman, “Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography,” The Royal Society of Chemistry 7(47), 19905–19913 (2015).

Other (3)

J. Nishii, “Glass-imprinting for optical device fabrication,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2009), paper AThC1.

F. Bowman, Introduction to Bessel functions (Dover Publications, 1958), Chap. 1.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic view of the light propagation between the plane H and the curved surfaces S 1 , S 2 , S 3 .
Fig. 2
Fig. 2 Schematic diagram of two symmetrical cylindrical surfaces.
Fig. 3
Fig. 3 Top view of numerical simulation of 3D patterns with 256 × 256 pixels on multiple surfaces: (a), (d) the intensity distribution of the original patterns, (b), (e) the intensity distribution of the reconstructed patterns by proposed method, (c), (f) the intensity distribution of the reconstructed patterns by Fidoc algorithm after 10 iterations
Fig. 4
Fig. 4 Numerical simulation of 3D patterns on cylindrical surfaces: (a) the intensity distributions of the initial patterns, (b) the intensity distribution of the reconstructed patterns by proposed method, (c) reconstructed patterns after 10 iterations.
Fig. 5
Fig. 5 The relationship between RE and the number of iteration: (a) two RE curves contrast diagram of “曲面加工”, (b) two RE curves contrast diagram of “flower”.
Fig. 6
Fig. 6 Numerical simulation of 3D patterns with 128 × 128 pixels on multiple surfaces: (a) the intensity distribution of the original patterns, (b) the intensity distribution of the reconstructed patterns after 10 iterations by Fidoc algorithm, (c) the intensity distribution of the reconstructed patterns after 10 iterations by our proposed method, (d) the relationship between relative error of the two algorithms and the number of iteration respectively.
Fig. 7
Fig. 7 Top view of numerical simulation of 3D patterns with 128 × 128 pixels on multiple surfaces: (a), (d) and (g) the original patterns, (b), (e) and (h) the reconstructed patterns by proposed method, (c), (f) and (i) the reconstructed patterns by Fidoc algorithm with 10 iterations.
Fig. 8
Fig. 8 Schematic view of the optical experimental setup.
Fig. 9
Fig. 9 (a) Picture of the binary pattern fabricated on S1 and (b) picture of the gray level pattern fabricated on cylindrical surface S2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A i ( x i , y i , z i ) = j λ Σ H E ( ξ , η , z ) exp ( j 2 π r i ' / λ ) r i ' d σ .
E ( ξ , η , z ) = i = 1 n 1 j λ Σ i A i ( x i , y i , z i ) exp ( j 2 π r i / λ ) r i d σ i ( i = 1 , 2 , 3 ) ,
u ( x , y ) = A O 2 + A R 2 + 2 A O A R cos [ φ O ( x , y ) φ R ] .
τ ( x , y ) = τ 0 exp [ j κ ( A O 2 + A R 2 ) ] exp [ j 2 κ A O A R cos [ φ O ( x , y ) φ R ] = Γ exp [ j α cos θ ( x , y ) ] .
E ( x , y ) = τ 0 + J m [ α O 0 ( x , y ) j m exp { j [ m φ o ( x , y ) ( m + 1 ) φ r ] } ,
E 1 j τ 0 α O 0 ( x , y ) exp [ j φ o ( x , y ) ] .

Metrics