Abstract

This study numerically investigates the enhancement of photonic microwave generation using an optically injected semiconductor laser operating at period-one (P1) nonlinear dynamics through ultrashort optical feedback. For the purpose of practical applications where system miniaturization is generally preferred, a feedback delay time that is one to two orders of magnitude shorter than the relaxation resonance period of a typical laser is emphasized. Various dynamical states that are more complicated than the P1 dynamics can be excited under a number of ultrashort optical feedback conditions. Within the range of the P1 dynamics, on one hand, the frequency of the P1 microwave oscillation can be greatly enhanced by up to more than three folds. Generally speaking, the microwave frequency enhances with the optical feedback power and phase, while it varies saw-wise with the optical feedback delay time. On the other hand, the purity of the P1 microwave oscillation can be highly improved by up to more than three orders of magnitude. In general, the microwave purity improves with the optical feedback power and delay time, while it only varies within an order of magnitude with the optical feedback phase. These results suggest that the ultrashort optical feedback provides the optically injected laser system with an extra degree of freedom to manipulate/improve the characteristics of the P1 microwave oscillation without changing the optical injection condition.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers

Kai-Hung Lo, Sheng-Kwang Hwang, and Silvano Donati
Opt. Express 22(15) 18648-18661 (2014)

Numerical investigation of photonic microwave generation in an optically injected semiconductor laser subject to filtered optical feedback

Chenpeng Xue, Songkun Ji, Yanhua Hong, Ning Jiang, Hongqiang Li, and Kun Qiu
Opt. Express 27(4) 5065-5082 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  2. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
    [Crossref]
  3. U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
    [Crossref]
  4. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
    [Crossref]
  5. O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5, 1264–1266 (1993).
    [Crossref]
  6. C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
    [Crossref]
  7. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
    [Crossref]
  8. S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35, 1911–1913 (2010).
    [Crossref] [PubMed]
  9. S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µ m semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16, 972–974 (2004).
    [Crossref]
  10. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. J. Chang-Hasnain, and M. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16, 6609–6618 (2008).
    [Crossref] [PubMed]
  11. H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” IEEE J. Lightwave Technol. 26, 2706–2711 (2008).
    [Crossref]
  12. C. T. Lin, P. T. Shih, W. J. Jiang, J. Chen, P. C. Peng, and S. Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17, 19749–19756 (2009).
    [Crossref] [PubMed]
  13. T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11, 1476–1478 (1999).
    [Crossref]
  14. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
    [Crossref]
  15. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
    [Crossref] [PubMed]
  16. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22, 763–765 (2010).
    [Crossref]
  17. Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3, 644–650 (2011).
    [Crossref]
  18. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20, 13390–13401 (2012).
    [Crossref] [PubMed]
  19. J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38, 344–346 (2013).
    [Crossref] [PubMed]
  20. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
    [Crossref]
  21. A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21, 10772–10778 (2013).
    [Crossref] [PubMed]
  22. K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22, 18648–18661 (2014).
    [Crossref] [PubMed]
  23. Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express,  23, 6520–6532 (2015).
    [Crossref] [PubMed]
  24. J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23, 2777–2797 (2015).
    [Crossref] [PubMed]
  25. C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41, 1153–1156 (2016).
    [Crossref] [PubMed]
  26. L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express,  24, 18252–18265 (2016).
    [Crossref] [PubMed]
  27. J. S. Suelzer, T. B. Simpson, P. Devgan, and N. G. Usechak, “Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback,” Opt. Lett. 42, 3181–3184 (2017).
    [Crossref] [PubMed]
  28. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
    [Crossref]
  29. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
    [Crossref]
  30. S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012).
    [Crossref]
  31. S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
    [Crossref]
  32. T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
    [Crossref] [PubMed]
  33. B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
    [Crossref]
  34. S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
    [Crossref]
  35. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
    [Crossref]
  36. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
    [Crossref] [PubMed]
  37. C. J. Lin, M. AlMulla, and J. M. Liu, “Harmonic analysis of limit-cycle oscillations of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 50, 815–822 (2014).
  38. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
    [Crossref] [PubMed]
  39. R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31, 3600–3602 (2006).
    [Crossref] [PubMed]
  40. S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009).
    [Crossref] [PubMed]
  41. C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34, 3821–3823 (2009).
    [Crossref] [PubMed]
  42. C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
    [Crossref]
  43. Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
    [Crossref] [PubMed]
  44. Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).
    [Crossref] [PubMed]
  45. P. Zhou, F. Z. Zhang, Q. S. Guo, and S. L. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24, 18460–18467 (2016).
    [Crossref] [PubMed]
  46. J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser,” Opt. Lett. 41, 5764–5767 (2016).
    [Crossref] [PubMed]
  47. Y. H. Hung, J. H. Yan, K. M. Feng, and S. K. Hwang, “Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection,” Opt. Lett. 42, 2402–2405 (2017).
    [Crossref] [PubMed]
  48. K. L. Hsieh, S. K. Hwang, and C. L. Yang, “Photonic microwave time delay using slow- and fast-light effects in optically injected semiconductor lasers,” Opt. Lett. 42, 3307–3310 (2017).
    [Crossref] [PubMed]
  49. O. Ushakov, S. Bauer, O. Brox, H.-J. Wunsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92, 043902 (2004).
    [Crossref] [PubMed]
  50. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
    [Crossref] [PubMed]
  51. A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).
  52. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
    [Crossref] [PubMed]
  53. R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22, 11727–11740 (2014).
    [Crossref] [PubMed]

2017 (4)

2016 (4)

2015 (2)

2014 (4)

K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22, 18648–18661 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

C. J. Lin, M. AlMulla, and J. M. Liu, “Harmonic analysis of limit-cycle oscillations of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 50, 815–822 (2014).

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22, 11727–11740 (2014).
[Crossref] [PubMed]

2013 (6)

2012 (3)

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20, 13390–13401 (2012).
[Crossref] [PubMed]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012).
[Crossref]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

2011 (3)

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[Crossref]

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3, 644–650 (2011).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

2010 (5)

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[Crossref]

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35, 1911–1913 (2010).
[Crossref] [PubMed]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22, 763–765 (2010).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[Crossref]

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (3)

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. J. Chang-Hasnain, and M. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16, 6609–6618 (2008).
[Crossref] [PubMed]

H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” IEEE J. Lightwave Technol. 26, 2706–2711 (2008).
[Crossref]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (3)

2004 (4)

O. Ushakov, S. Bauer, O. Brox, H.-J. Wunsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92, 043902 (2004).
[Crossref] [PubMed]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µ m semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16, 972–974 (2004).
[Crossref]

1999 (1)

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11, 1476–1478 (1999).
[Crossref]

1998 (1)

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

1996 (2)

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

1993 (1)

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5, 1264–1266 (1993).
[Crossref]

1992 (1)

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
[Crossref]

Adams, M. J.

Akizawa, Y.

A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22, 11727–11740 (2014).
[Crossref] [PubMed]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

C. J. Lin, M. AlMulla, and J. M. Liu, “Harmonic analysis of limit-cycle oscillations of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 50, 815–822 (2014).

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

Alsing, P. M.

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Arai, K.

Argyris, A.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
[Crossref] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[Crossref] [PubMed]

Bauer, S.

O. Ushakov, S. Bauer, O. Brox, H.-J. Wunsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92, 043902 (2004).
[Crossref] [PubMed]

Bogris, A.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
[Crossref] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[Crossref] [PubMed]

Bosco, D.

A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).

Broberg, B.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
[Crossref]

Brox, O.

O. Ushakov, S. Bauer, O. Brox, H.-J. Wunsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92, 043902 (2004).
[Crossref] [PubMed]

Bruun, M.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
[Crossref]

Chan, S. C.

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41, 1153–1156 (2016).
[Crossref] [PubMed]

J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser,” Opt. Lett. 41, 5764–5767 (2016).
[Crossref] [PubMed]

J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23, 2777–2797 (2015).
[Crossref] [PubMed]

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38, 344–346 (2013).
[Crossref] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[Crossref]

C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34, 3821–3823 (2009).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
[Crossref] [PubMed]

R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31, 3600–3602 (2006).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

Chang-Hasnain, C. J.

Chen, H. F.

Chen, J.

Chi, H.

H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” IEEE J. Lightwave Technol. 26, 2706–2711 (2008).
[Crossref]

Chi, S.

Chlouverakis, K. E.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[Crossref] [PubMed]

Christensen, E. L.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
[Crossref]

Chu, C. H.

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
[Crossref] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

Cui, C.

Davis, P.

Devgan, P.

Diaz, R.

Doft, F.

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11, 1476–1478 (1999).
[Crossref]

Donati, S.

Erneux, T.

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Fan, L.

Feng, K. M.

Fu, X.

Gavrielides, A.

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Gliese, U.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
[Crossref]

Grillot, F.

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41, 1153–1156 (2016).
[Crossref] [PubMed]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[Crossref]

Grivas, E.

Guo, Q. S.

Hamacher, M.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
[Crossref] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[Crossref] [PubMed]

Harayama, T.

A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22, 11727–11740 (2014).
[Crossref] [PubMed]

Henneberger, F.

O. Ushakov, S. Bauer, O. Brox, H.-J. Wunsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92, 043902 (2004).
[Crossref] [PubMed]

Henning, I. D.

Hsieh, K. L.

Hsieh, S. C.

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[Crossref]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Hung, Y. H.

Hurtado, A.

Hwang, S. K.

K. L. Hsieh, S. K. Hwang, and C. L. Yang, “Photonic microwave time delay using slow- and fast-light effects in optically injected semiconductor lasers,” Opt. Lett. 42, 3307–3310 (2017).
[Crossref] [PubMed]

Y. H. Hung, J. H. Yan, K. M. Feng, and S. K. Hwang, “Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection,” Opt. Lett. 42, 2402–2405 (2017).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express,  23, 6520–6532 (2015).
[Crossref] [PubMed]

K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22, 18648–18661 (2014).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).
[Crossref] [PubMed]

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
[Crossref] [PubMed]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012).
[Crossref]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[Crossref]

S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[Crossref] [PubMed]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µ m semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16, 972–974 (2004).
[Crossref]

Inubushi, M.

A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).

Jiang, W. J.

Karsaklian, A.

A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22, 763–765 (2010).
[Crossref]

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Krauskopf, B.

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

Lau, E. K.

Lau, K. Y.

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5, 1264–1266 (1993).
[Crossref]

Lenstra, D.

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

Lester, L. F.

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41, 1153–1156 (2016).
[Crossref] [PubMed]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21, 10772–10778 (2013).
[Crossref] [PubMed]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22, 763–765 (2010).
[Crossref]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[Crossref]

Li, C.Y.

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[Crossref]

Li, S. S.

Li, X. Z.

Li, Y.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22, 763–765 (2010).
[Crossref]

Liang, D. H.

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[Crossref]

Liang, Q.

Lin, C. J.

C. J. Lin, M. AlMulla, and J. M. Liu, “Harmonic analysis of limit-cycle oscillations of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 50, 815–822 (2014).

Lin, C. T.

Lin, C. Y.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[Crossref]

S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009).
[Crossref] [PubMed]

Lin, F. Y.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3, 644–650 (2011).
[Crossref]

Lin, S. L.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

Lindgren, S.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
[Crossref]

Liu, J. M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

C. J. Lin, M. AlMulla, and J. M. Liu, “Harmonic analysis of limit-cycle oscillations of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 50, 815–822 (2014).

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
[Crossref] [PubMed]

R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31, 3600–3602 (2006).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µ m semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16, 972–974 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Lo, K. H.

Maleki, L.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

Mee, J.

Murakowski, J. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Naderi, N. A.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22, 763–765 (2010).
[Crossref]

Nami, M.

Nielsen, T. N.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
[Crossref]

Ohara, S.

A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).

Pan, S.

Pan, S. L.

Parekh, D.

Peng, P. C.

Pochet, M.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22, 763–765 (2010).
[Crossref]

Prather, D. W.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Qi, X. Q.

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

Quirce, A.

Raghunathan, R.

Sato, N.

A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).

Schires, K.

Schneider, G. J.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Schuetz, C. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Shi, S.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Shih, P. T.

Simpson, T. B.

J. S. Suelzer, T. B. Simpson, P. Devgan, and N. G. Usechak, “Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback,” Opt. Lett. 42, 3181–3184 (2017).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11, 1476–1478 (1999).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Solgaard, O.

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5, 1264–1266 (1993).
[Crossref]

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
[Crossref]

Suelzer, J. S.

Sunada, S.

Sung, H. K.

Syvridis, D.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
[Crossref] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[Crossref] [PubMed]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Takahashi, R.

Tang, X.

Tollenaar, N.

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

Uchida, A.

A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22, 11727–11740 (2014).
[Crossref] [PubMed]

Usechak, N. G.

J. S. Suelzer, T. B. Simpson, P. Devgan, and N. G. Usechak, “Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback,” Opt. Lett. 42, 3181–3184 (2017).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

Ushakov, O.

O. Ushakov, S. Bauer, O. Brox, H.-J. Wunsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92, 043902 (2004).
[Crossref] [PubMed]

Valle, A.

Wang, C.

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µ m semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16, 972–974 (2004).
[Crossref]

Wu, M.

Wu, Z.

Wunsche, H.-J.

O. Ushakov, S. Bauer, O. Brox, H.-J. Wunsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92, 043902 (2004).
[Crossref] [PubMed]

Xia, G.

Yan, J. H.

Yang, C. L.

Yao, J.

Yao, J. P.

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

Yoshimura, K.

Yuan, Y. S.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3, 644–650 (2011).
[Crossref]

Zhang, F. Z.

Zhao, X.

Zhou, P.

Zhuang, J. P.

Appl. Phys. Lett. (2)

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[Crossref]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[Crossref]

IEEE J. Lightwave Technol. (1)

H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” IEEE J. Lightwave Technol. 26, 2706–2711 (2008).
[Crossref]

IEEE J. Quantum Electron. (4)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[Crossref]

C. J. Lin, M. AlMulla, and J. M. Liu, “Harmonic analysis of limit-cycle oscillations of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 50, 815–822 (2014).

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

IEEE Photonics J. (2)

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3, 644–650 (2011).
[Crossref]

A. Karsaklian, D. Bosco, S. Ohara, N. Sato, Y. Akizawa, A. Uchida, T. Harayama, and M. Inubushi, “Dynamics versus feedback delay time in photonic integrated circuits: Mapping the short cavity regime,” IEEE Photonics J. 9, 6600512 (2017).

IEEE Photonics Technol. Lett. (5)

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11, 1476–1478 (1999).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22, 763–765 (2010).
[Crossref]

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photonics Technol. Lett. 4, 936–938 (1992).
[Crossref]

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5, 1264–1266 (1993).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µ m semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16, 972–974 (2004).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Opt. Commun. (2)

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[Crossref]

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

Opt. Express (12)

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010).
[Crossref] [PubMed]

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22, 11727–11740 (2014).
[Crossref] [PubMed]

P. Zhou, F. Z. Zhang, Q. S. Guo, and S. L. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24, 18460–18467 (2016).
[Crossref] [PubMed]

L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express,  24, 18252–18265 (2016).
[Crossref] [PubMed]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21, 10772–10778 (2013).
[Crossref] [PubMed]

K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22, 18648–18661 (2014).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express,  23, 6520–6532 (2015).
[Crossref] [PubMed]

J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23, 2777–2797 (2015).
[Crossref] [PubMed]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. J. Chang-Hasnain, and M. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16, 6609–6618 (2008).
[Crossref] [PubMed]

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20, 13390–13401 (2012).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
[Crossref] [PubMed]

C. T. Lin, P. T. Shih, W. J. Jiang, J. Chen, P. C. Peng, and S. Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17, 19749–19756 (2009).
[Crossref] [PubMed]

Opt. Lett. (13)

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38, 344–346 (2013).
[Crossref] [PubMed]

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35, 1911–1913 (2010).
[Crossref] [PubMed]

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41, 1153–1156 (2016).
[Crossref] [PubMed]

J. S. Suelzer, T. B. Simpson, P. Devgan, and N. G. Usechak, “Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback,” Opt. Lett. 42, 3181–3184 (2017).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[Crossref] [PubMed]

R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31, 3600–3602 (2006).
[Crossref] [PubMed]

S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009).
[Crossref] [PubMed]

C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34, 3821–3823 (2009).
[Crossref] [PubMed]

J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser,” Opt. Lett. 41, 5764–5767 (2016).
[Crossref] [PubMed]

Y. H. Hung, J. H. Yan, K. M. Feng, and S. K. Hwang, “Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection,” Opt. Lett. 42, 2402–2405 (2017).
[Crossref] [PubMed]

K. L. Hsieh, S. K. Hwang, and C. L. Yang, “Photonic microwave time delay using slow- and fast-light effects in optically injected semiconductor lasers,” Opt. Lett. 42, 3307–3310 (2017).
[Crossref] [PubMed]

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).
[Crossref] [PubMed]

Phys. Rev. A (1)

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

O. Ushakov, S. Bauer, O. Brox, H.-J. Wunsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92, 043902 (2004).
[Crossref] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012).
[Crossref]

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Optical spectra (left column) and microwave spectra (right column) of the laser subject to both optical injection at (ξi, fi) = (0.4, 40 GHz) and optical feedback at (ξf, τf) = (0, 0 ps) for (a–i)(a–ii), (0.1, 0.95 ps) for (b–i)(b–ii), (0.4, 0.95 ps) for (c–i)(c–ii), and (0.1, 23.5 ps) for (d–i)(d–ii), respectively. Red curves, no laser noise is considered; Gray curves, laser noise is considered. The x axes of the optical spectra are relative to the free-running frequency of the laser. Each inset is an enlargement of each corresponding microwave spectrum in a linear scale with a Lorentzian fitting curve in blue.
Fig. 2
Fig. 2 Dynamical mapping of the laser subject to both optical injection and optical feedback in terms of ξf and τf at (ξi, fi) = (0.4, 40 GHz). Red regions, period-one dynamics (P1); Blue regions, period-two dynamics (P2); Gray regions, quasi-periodic dynamics (QP); Black regions, chaos and other instabilities (C).
Fig. 3
Fig. 3 (a) Microwave frequency f0 in terms of ξf at τf = 0.95 ps (black squares), 9.5 ps (red circles), 23.5 ps (blue up-triangles), and 30.51 ps (green down-triangles), respectively. (b) Shifted laser cavity resonance frequency (open symbols) and lower oscillation sideband frequency (closed symbols) in terms of ξf at τf = 0.95 ps (black squares) and 23.5 ps (blue up-triangles), respectively. The y axes of (b) are relative to the free-running frequency of the laser. The injection condition is kept at (ξi, fi) = (0.4, 40 GHz).
Fig. 4
Fig. 4 (a) Microwave frequency f0 in terms of τf at ξf = 0.1 (black squares), 0.2 (red circles), 0.3 (blue up-triangles), and 0.4 (green down-triangles), respectively. (b) Shifted laser cavity resonance frequency (open symbols) and lower oscillation sideband frequency (closed symbols) in terms of τf at ξf = 0.1 (black squares) and 0.4 (green down-triangles), respectively. The y axes of (b) are relative to the free-running frequency of the laser. The injection condition is kept at (ξi, fi) = (0.4, 40 GHz).
Fig. 5
Fig. 5 (a) Feedback loop frequency fl (black curve) and abrupt microwave frequency enhancement Δf0 at ξf =0.1 (black squares), 0.2 (red circles), 0.3 (blue up-triangles), and 0.4 (green down-triangles), respectively, in terms of τf. (b) Reciprocal of T1 (red squares) and frequency difference between the lower P1 oscillation sideband and the free-running laser oscillation (black curve) in terms of ξf.
Fig. 6
Fig. 6 Mappings of microwave frequency f0 in terms of ξf and τf at (ξi, fi) = (0.4, 40 GHz). Each number labeled in the figure indicates the microwave frequency, in GHz, along the boundary between two different gray-scaled regions.
Fig. 7
Fig. 7 Mappings of microwave frequency f0 (a) in terms of θ and ξf at τf = 23.5 ps and (b) in terms of θ and τf at ξf = 0.4, respectively, when (ξi, fi) = (0.4, 40 GHz). The white regions present dynamical states other than the P1 dynamics. Each number labeled in (a) indicates the microwave frequency, in GHz, along the boundary between two different gray-scaled regions.
Fig. 8
Fig. 8 Microwave linewdith Δν (black symbols) and phase noise variance (red symbols) in terms of ξf at (a) τf = 0.95 ps and (b) τf = 23.5 ps, respectively, when (ξi, fi) = (0.4, 40 GHz).
Fig. 9
Fig. 9 Microwave linewdith Δν (black symbols) and phase noise variance (red symbols) in terms of τf at (a) ξf =0.1 and (b) ξf =0.4, respectively, when (ξi, fi) = (0.4, 40 GHz).
Fig. 10
Fig. 10 Mappings of phase noise variance in terms of ξf and τf at (ξi, fi) = (0.4, 40 GHz). The log-scaled values of the phase noise variance are presented.
Fig. 11
Fig. 11 Mappings of phase noise variance (a) in terms of θ and ξf at τf = 23.5 ps and (b) in terms of θ and τf at ξf = 0.4, respectively, when (ξi, fi) = (0.4, 40 GHz). The white regions present dynamical states other than the P1 dynamics. The log-scaled values of the phase noise variance are presented.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d a d t = 1 2 [ γ c γ n γ s J ˜ n ˜ γ p ( 2 a + a 2 ) ] ( 1 + a ) + ξ i γ c cos ( Ω i t + ϕ ) + ξ f γ c [ 1 + a ( t τ f ) ] cos [ ϕ ( t τ f ) ϕ ( t ) + θ ] + F a
d ϕ d t = b 2 [ γ c γ n γ s J ˜ n ˜ γ p ( 2 a + a 2 ) ] ξ i γ c 1 + a sin ( Ω i t + ϕ ) + ξ f γ c 1 + a ( t τ f ) 1 + a ( t ) sin [ ϕ ( t τ f ) ϕ ( t ) + θ ] + F ϕ 1 + a
d n ˜ d t = γ s n ˜ γ n ( 1 + a ) 2 n ˜ γ s J ˜ ( 2 a + a 2 ) + γ s γ p γ c J ˜ ( 2 a + a 2 ) ( 1 + a ) 2
ω s = b 2 [ γ c γ n γ s J ˜ n ˜ γ p ( 2 a + a 2 ) ]

Metrics