Abstract

A distributed optical fibre acoustic sensor is numerically modelled. To increase the flexibility of the model, the building blocks of the sensing system are modelled separately and later combined to form the numerical model. This approach is adopted to facilitate the evaluation of each of the individual building blocks and their effects on the output of the sensor. The numerical model is used to assess the effect of parameters such as the linewidth of the laser source, the width of the probe pulse, and the frequency and amplitude of perturbation on the response of the sensing system. It is shown that the precision and accuracy of the sensing system are affected by the frequency and amplitude of perturbation as well as the pulse width and linewidth of the probe pulse.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance analysis of distributed optical fiber acoustic sensors based on φ-OTDR

Mengmeng Chen, Ali Masoudi, and Gilberto Brambilla
Opt. Express 27(7) 9684-9695 (2019)

Distributed acoustic sensor based on a two-mode fiber

Mengmeng Chen, Ali Masoudi, Francesca Parmigiani, and Gilberto Brambilla
Opt. Express 26(19) 25399-25407 (2018)

Distributed gas sensing with optical fibre photothermal interferometry

Yuechuan Lin, Fei Liu, Xiangge He, Wei Jin, Min Zhang, Fan Yang, Hoi Lut Ho, Yanzhen Tan, and Lijuan Gu
Opt. Express 25(25) 31568-31585 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
    [Crossref]
  2. C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
    [Crossref]
  3. H. Gabai, Y. Botsev, M. Hahami, and A. Eyal, “Optical frequency domain reflectometry at maximum update rate using I/Q detection,” Opt. Lett. 40(8), 1725–1728 (2015).
    [Crossref] [PubMed]
  4. G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an ϕ-OTDR system for quantitative vibration measurement,” IEEE Photon. Technol. Lett. 27(12), 2811–2816 (2015).
    [Crossref]
  5. G. Fang, T. Xu, S. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol. 33(13), 2811–2816 (2015).
    [Crossref]
  6. Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent ϕ-OTDR based on I/Q demodulation and homodyne detection,” Opt. express 24(2), 853–858 (2016).
    [Crossref] [PubMed]
  7. G Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photon. J. 8(3), 6802412 (2016).
    [Crossref]
  8. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
    [Crossref] [PubMed]
  9. A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fibre dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42(2), 290–293 (2017).
    [Crossref] [PubMed]
  10. X. He, S. Xie, F. Liu, S. Cao, L. Gu, X. Zheng, and M. Zhang, “Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR,” Opt. Lett. 42(3), 442–445 (2017).
    [Crossref] [PubMed]
  11. S. Liehr, Y. S. Muanenda, S. Munzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express 25(2), 720–729 (2017).
    [Crossref] [PubMed]
  12. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  13. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express,  20(24), 26942–26949 (2012).
    [Crossref] [PubMed]
  14. A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
    [Crossref] [PubMed]
  15. Y. Mizuno, N. Hayashi, H. Fukuda, K.Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).
    [Crossref]
  16. A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
    [Crossref] [PubMed]
  17. L.B. Liokumovich, N.A. Ushakov, O.I. Kotov, M.A. Bisyarin, and A.H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightw. Technol. 33(17), 3660–3671 (2015).
    [Crossref]
  18. A. H. Hartog and K. Kader, “Distributed fiber optic sensor system with improved linearity,” US Patent 2012/0 067118A1 (2012).
  19. A. Masoudi, M. Belal, and T. P. Newson, “Distributed optical fibre audible frequency sensor,” Proc. SPIE 9157, 91573T (2014).
    [Crossref]
  20. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  21. S. K. Sheem, T. G. Giallorenzi, and K. Koo, “Optical techniques to solve the signal fading problem in fiber interferometers,” Appl. Opt. 21(4), 689–693 (1982).
    [Crossref] [PubMed]
  22. M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett. 26(2), 58–60 (2000).
    [Crossref]
  23. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1995).
  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  25. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17(18), 2867–2869 (1978).
    [Crossref] [PubMed]
  26. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18(9), 1445–1448 (1979).
    [Crossref] [PubMed]
  27. P. Healey, “Statistics of Rayleigh backscatter from a single-mode fiber,” Electron. Lett. 21(6), 226–228 (1985).
    [Crossref]
  28. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightw. Technol. 10(7), 982–987 (1992).
    [Crossref]
  29. L. Shi, T. Zhu, Q. He, and S. Huang, “Effect of laser linewidth on phase-OTDR based distributed vibration sensing regime,” Proc. SPIE 9157, 91576H (2014).
  30. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightw. Technol. 23(6), 2081–2087 (2005).
    [Crossref]

2017 (3)

2016 (5)

Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent ϕ-OTDR based on I/Q demodulation and homodyne detection,” Opt. express 24(2), 853–858 (2016).
[Crossref] [PubMed]

G Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photon. J. 8(3), 6802412 (2016).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Fukuda, K.Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).
[Crossref]

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

2015 (5)

L.B. Liokumovich, N.A. Ushakov, O.I. Kotov, M.A. Bisyarin, and A.H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightw. Technol. 33(17), 3660–3671 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

H. Gabai, Y. Botsev, M. Hahami, and A. Eyal, “Optical frequency domain reflectometry at maximum update rate using I/Q detection,” Opt. Lett. 40(8), 1725–1728 (2015).
[Crossref] [PubMed]

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an ϕ-OTDR system for quantitative vibration measurement,” IEEE Photon. Technol. Lett. 27(12), 2811–2816 (2015).
[Crossref]

G. Fang, T. Xu, S. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol. 33(13), 2811–2816 (2015).
[Crossref]

2014 (3)

A. Masoudi, M. Belal, and T. P. Newson, “Distributed optical fibre audible frequency sensor,” Proc. SPIE 9157, 91573T (2014).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

L. Shi, T. Zhu, Q. He, and S. Huang, “Effect of laser linewidth on phase-OTDR based distributed vibration sensing regime,” Proc. SPIE 9157, 91576H (2014).

2013 (2)

A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

2012 (1)

2011 (1)

2005 (1)

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightw. Technol. 23(6), 2081–2087 (2005).
[Crossref]

2000 (1)

1992 (1)

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightw. Technol. 10(7), 982–987 (1992).
[Crossref]

1985 (1)

P. Healey, “Statistics of Rayleigh backscatter from a single-mode fiber,” Electron. Lett. 21(6), 226–228 (1985).
[Crossref]

1982 (1)

1979 (1)

1978 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Alekseev, A. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “Distributed optical fibre audible frequency sensor,” Proc. SPIE 9157, 91573T (2014).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
[Crossref] [PubMed]

Bisyarin, M.A.

L.B. Liokumovich, N.A. Ushakov, O.I. Kotov, M.A. Bisyarin, and A.H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightw. Technol. 33(17), 3660–3671 (2015).
[Crossref]

Botsev, Y.

Butter, C. D.

Cao, S.

Choi, K. N.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightw. Technol. 23(6), 2081–2087 (2005).
[Crossref]

Eyal, A.

Fan, M.

Fan, X.

G Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photon. J. 8(3), 6802412 (2016).
[Crossref]

Fang, G.

G. Fang, T. Xu, S. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol. 33(13), 2811–2816 (2015).
[Crossref]

Feng, S.

G. Fang, T. Xu, S. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol. 33(13), 2811–2816 (2015).
[Crossref]

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K.Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).
[Crossref]

Gabai, H.

Garcia-Ruiz, A.

Giallorenzi, T. G.

Gonzalez-Herraez, M.

Gorshkov, B. G.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Gu, L.

Hahami, M.

Hartog, A. H.

A. H. Hartog and K. Kader, “Distributed fiber optic sensor system with improved linearity,” US Patent 2012/0 067118A1 (2012).

Hartog, A.H.

L.B. Liokumovich, N.A. Ushakov, O.I. Kotov, M.A. Bisyarin, and A.H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightw. Technol. 33(17), 3660–3671 (2015).
[Crossref]

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Fukuda, K.Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).
[Crossref]

He, Q.

L. Shi, T. Zhu, Q. He, and S. Huang, “Effect of laser linewidth on phase-OTDR based distributed vibration sensing regime,” Proc. SPIE 9157, 91576H (2014).

He, X.

He, Z.

G Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photon. J. 8(3), 6802412 (2016).
[Crossref]

Healey, P.

P. Healey, “Statistics of Rayleigh backscatter from a single-mode fiber,” Electron. Lett. 21(6), 226–228 (1985).
[Crossref]

Hocker, G. B.

Horiguchi, T.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightw. Technol. 10(7), 982–987 (1992).
[Crossref]

Huang, S.

L. Shi, T. Zhu, Q. He, and S. Huang, “Effect of laser linewidth on phase-OTDR based distributed vibration sensing regime,” Proc. SPIE 9157, 91576H (2014).

Johnson, G. A.

Juarez, J. C.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightw. Technol. 23(6), 2081–2087 (2005).
[Crossref]

Kader, K.

A. H. Hartog and K. Kader, “Distributed fiber optic sensor system with improved linearity,” US Patent 2012/0 067118A1 (2012).

Koo, K.

Kotov, O.I.

L.B. Liokumovich, N.A. Ushakov, O.I. Kotov, M.A. Bisyarin, and A.H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightw. Technol. 33(17), 3660–3671 (2015).
[Crossref]

Koyamada, Y.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightw. Technol. 10(7), 982–987 (1992).
[Crossref]

Krebber, K.

Li, F.

G. Fang, T. Xu, S. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol. 33(13), 2811–2816 (2015).
[Crossref]

Liehr, S.

Liokumovich, L.B.

L.B. Liokumovich, N.A. Ushakov, O.I. Kotov, M.A. Bisyarin, and A.H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightw. Technol. 33(17), 3660–3671 (2015).
[Crossref]

Liu, F.

Liu, Q.

G Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photon. J. 8(3), 6802412 (2016).
[Crossref]

Liu, X.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Loayssa, A.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1995).

Maier, E. W.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightw. Technol. 23(6), 2081–2087 (2005).
[Crossref]

Martin-Lopez, S.

Martins, H. F.

Masoudi, A.

A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fibre dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42(2), 290–293 (2017).
[Crossref] [PubMed]

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “Distributed optical fibre audible frequency sensor,” Proc. SPIE 9157, 91573T (2014).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
[Crossref] [PubMed]

Mermelstein, M. D.

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K.Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).
[Crossref]

Motil, A.

Muanenda, Y. S.

Munzenberger, S.

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Fukuda, K.Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).
[Crossref]

Nakarmi, B.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an ϕ-OTDR system for quantitative vibration measurement,” IEEE Photon. Technol. Lett. 27(12), 2811–2816 (2015).
[Crossref]

Newson, T. P.

A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fibre dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42(2), 290–293 (2017).
[Crossref] [PubMed]

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “Distributed optical fibre audible frequency sensor,” Proc. SPIE 9157, 91573T (2014).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
[Crossref] [PubMed]

Pastor-Graells, J.

Peled, Y.

Peng, F.

Peng, G.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Posey, R.

Potapov, V. T.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Qian, X.

Rao, J.

Rao, Y.

Sagues, M.

Shang, Y.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Sheem, S. K.

Shi, L.

L. Shi, T. Zhu, Q. He, and S. Huang, “Effect of laser linewidth on phase-OTDR based distributed vibration sensing regime,” Proc. SPIE 9157, 91576H (2014).

Shimizu, K.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightw. Technol. 10(7), 982–987 (1992).
[Crossref]

Simikin, D. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1995).

Song, K.Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K.Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).
[Crossref]

Sun, W.

Taylor, H. F.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightw. Technol. 23(6), 2081–2087 (2005).
[Crossref]

Tu, G.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an ϕ-OTDR system for quantitative vibration measurement,” IEEE Photon. Technol. Lett. 27(12), 2811–2816 (2015).
[Crossref]

Tur, M.

Urricelqui, J.

Ushakov, N.A.

L.B. Liokumovich, N.A. Ushakov, O.I. Kotov, M.A. Bisyarin, and A.H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightw. Technol. 33(17), 3660–3671 (2015).
[Crossref]

Vdovenko, V. S.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Vohra, S. T.

Wang, B.

G Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photon. J. 8(3), 6802412 (2016).
[Crossref]

Wang, C.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Wang, S.

G Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photon. J. 8(3), 6802412 (2016).
[Crossref]

Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent ϕ-OTDR based on I/Q demodulation and homodyne detection,” Opt. express 24(2), 853–858 (2016).
[Crossref] [PubMed]

Wang, Z.

Xia, L.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an ϕ-OTDR system for quantitative vibration measurement,” IEEE Photon. Technol. Lett. 27(12), 2811–2816 (2015).
[Crossref]

Xie, S.

Xu, T.

G. Fang, T. Xu, S. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol. 33(13), 2811–2816 (2015).
[Crossref]

Xue, N.

Yang, G

G Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photon. J. 8(3), 6802412 (2016).
[Crossref]

Yaron, L.

Zhang, L.

Zhang, M.

Zhang, X.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an ϕ-OTDR system for quantitative vibration measurement,” IEEE Photon. Technol. Lett. 27(12), 2811–2816 (2015).
[Crossref]

Zhang, Y.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an ϕ-OTDR system for quantitative vibration measurement,” IEEE Photon. Technol. Lett. 27(12), 2811–2816 (2015).
[Crossref]

Zheng, X.

Zhu, F.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an ϕ-OTDR system for quantitative vibration measurement,” IEEE Photon. Technol. Lett. 27(12), 2811–2816 (2015).
[Crossref]

Zhu, T.

L. Shi, T. Zhu, Q. He, and S. Huang, “Effect of laser linewidth on phase-OTDR based distributed vibration sensing regime,” Proc. SPIE 9157, 91576H (2014).

Zornoza, A.

Appl. Opt. (3)

Electron. Lett. (1)

P. Healey, “Statistics of Rayleigh backscatter from a single-mode fiber,” Electron. Lett. 21(6), 226–228 (1985).
[Crossref]

IEEE Photon. J. (1)

G Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photon. J. 8(3), 6802412 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an ϕ-OTDR system for quantitative vibration measurement,” IEEE Photon. Technol. Lett. 27(12), 2811–2816 (2015).
[Crossref]

J. Lightw. Technol. (4)

G. Fang, T. Xu, S. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol. 33(13), 2811–2816 (2015).
[Crossref]

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightw. Technol. 23(6), 2081–2087 (2005).
[Crossref]

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightw. Technol. 10(7), 982–987 (1992).
[Crossref]

L.B. Liokumovich, N.A. Ushakov, O.I. Kotov, M.A. Bisyarin, and A.H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightw. Technol. 33(17), 3660–3671 (2015).
[Crossref]

Laser Phys. (1)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Light Sci. Appl. (1)

Y. Mizuno, N. Hayashi, H. Fukuda, K.Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5, e16184 (2016).
[Crossref]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Opt. Commun. (1)

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (2)

A. Masoudi, M. Belal, and T. P. Newson, “Distributed optical fibre audible frequency sensor,” Proc. SPIE 9157, 91573T (2014).
[Crossref]

L. Shi, T. Zhu, Q. He, and S. Huang, “Effect of laser linewidth on phase-OTDR based distributed vibration sensing regime,” Proc. SPIE 9157, 91576H (2014).

Rev. Sci. Instrum. (1)

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

Other (3)

A. H. Hartog and K. Kader, “Distributed fiber optic sensor system with improved linearity,” US Patent 2012/0 067118A1 (2012).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1995).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The flowchart of the numerical model used to simulate the operation of phase-sensitive distributed vibration sensor.
Fig. 2
Fig. 2 The schematic of the experimental setup modelled using the new simulation technique. DFB Laser: Distributed feedback laser, EDFA: Erbium-doped fibre amplifier.
Fig. 3
Fig. 3 Schematic representation of sensing fibre model. The red circles in the picture represent the scattering points in the fibre. The diameter of the circles represent the size of the scattering points while the location of the circles indicate the random position of the scatterers.
Fig. 4
Fig. 4 Spatial and spectral profile of sech-squared probe pulse.
Fig. 5
Fig. 5 Mathematical procedure used to convert the backscattered electric field EF to the outputs of the IMZI. The solid arrows indicate through ports while the dashed arrows indicate coupled ports.
Fig. 6
Fig. 6 The first reliability test results. (a) Backscattered CRN pattern for a probe pulse with 1pm, 10pm, and 100pm linewidths, (b) Probability density function (PDF) of the backscattered CRN for the three linewidths. The simulation results (the solid curves) are juxtaposed with the theoretical analysis (the dashed curves), (c) Changes in the CRN level of the backscattered trace as a function of the square root of the light-source coherence-length.
Fig. 7
Fig. 7 Effect of the probe pulse linewidth on the backscattered CRN of a perturbed fibre. (a) CRN for a light source with 3pm linewidth, (b) CRN for a light source with 30pm linewidth. Each trace representing the CRN pattern at a certain time.
Fig. 8
Fig. 8 Simulation results of the numerically modelled sensing system interrogated by 50cm probe pulse while two regions of the sensing fibre were sinusoidally modulated at 1kHz and 2kHz with an amplitude of 2.5με and 1.5με, respectively. (a) Backscattered CRN from the sensing fibre, (b) 3D representation of the differential phase after differentiate and cross-multiply demodulation in time domain, and (c) 3D representation of the differential phase after differentiate and cross-multiply demodulation in frequency domain.
Fig. 9
Fig. 9 Numerical model response to 1kHz sinusoidal strain to a range of strain levels between 100 and 2με. (a) Numerical model output as a function of amplitude of induced strain, (b) Standard deviation of different realization of the system model versus the amplitude of induced strain.
Fig. 10
Fig. 10 Numerical model response to 0.5με perturbations for a frequency range of 250Hz to 2000Hz. (a) Numerical model output as a function of the frequency of the induced strain, (b) Standard deviation of different realization of the model versus the frequency of induced strain.
Fig. 11
Fig. 11 (a) Relationship between the standard deviation of the strain level simulated using the numerical model and the linewidth of the probe pulse. For this diagram, the sensing system was modelled for a range of linewidths from 0.1pm to 100pm for a fixed pulse width of 3m. (b) Relationship between the standard deviation of the strain level simulated using the numerical model and the width of the probe pulse. For this diagram, the sensing system was modelled by stepping the pulse widths from 50cm to 2m in 25cm steps while the linewidth of the probe pulse was fixed to 3pm.
Fig. 12
Fig. 12 Distribution of inhomogeneities along two fixed sections of the sensing fibre before and after longitudinal elongation.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

Fib = [ L 1 s 1 L 2 s 2 L n s n ] .
L k = k . D + rand [ D 2 , D 2 ]
Δ ν > 0.315 τ p
L C = c n Δ ν / N
φ ( λ q , d k ) = φ ( λ q , d 1 ) + 2 π n λ q k Δ d
EF ( λ q , L p ) = u = 0 m s u + p a ( q ) u exp [ j ( 2 β q L u + p + φ ( q ) u ) ] = u = 0 m A ( λ q , L p ) u exp [ j δ ( λ q , L p ) u ]
{ A ( λ q , L p ) u = s u + p a ( q ) u δ ( λ q , L p ) u = 2 β q L u + p + φ ( q ) u .
EF ( λ q , L p ) = 𝔸 ( λ q , L p ) exp [ j ( ϕ ( λ q , L p ) ) ]
[ 𝔸 ( λ q , L p ) ] 2 = u = 0 m ν = 0 m A ( λ q , L p ) u A ( λ q , L p ) v × cos [ δ ( λ q , L p ) u δ ( λ q , L p ) v ]
tan [ ϕ ( λ q , L p ) ] = u = 0 m A ( λ q , L p ) u sin ( δ ( λ q , L p ) u ) u = 0 m A ( λ q , L p ) u cos ( δ ( λ q , L p ) u ) .
{ E O 1 = 1 3 ( E A ¯ + E B ¯ e j 2 π 3 ) E O 2 = 1 3 ( E A ¯ e j 2 π 3 + E B ¯ e j 2 π 3 ) E O 3 = 1 3 ( E A ¯ e j 2 π 3 + E B ¯ ) .
E A ¯ = i = λ 1 λ N E A ¯ ( i ) exp [ j ( ω i t + α i ) ] E B ¯ = i = λ 1 λ N E B ¯ ( i ) exp [ j ( ω i t + β i ) ] .
{ E O 1 = 1 3 i = λ 1 λ N E O 1 ( i ) exp [ j ( ω i t + Φ 1 ( i ) ) ] E O 2 = 1 3 i = λ 1 λ N E O 2 ( i ) exp [ j ( ω i t + Φ 2 ( i ) ) ] E O 3 = 1 3 i = λ 1 λ N E O 3 ( i ) exp [ j ( ω i t + Φ 3 ( i ) ) ]
E O 1 ( i ) 2 = E A ¯ ( i ) 2 + E B ¯ ( i ) 2 + 2 E A ¯ ( i ) E B ¯ ( i ) cos ( α i β i 2 π 3 ) E O 2 ( i ) 2 = E A ¯ ( i ) 2 + E B ¯ ( i ) 2 + 2 E A ¯ ( i ) E B ¯ ( i ) cos ( α i β i ) E O 3 ( i ) 2 = E A ¯ ( i ) 2 + E B ¯ ( i ) 2 + 2 E A ¯ ( i ) E B ¯ ( i ) cos ( α i β i + 2 π 3 ) .
I Det = 1 T 0 T [ i = λ 1 λ N E O 1 ( i ) cos ( ω i t + Φ 1 ( i ) ) ] 2 d t
I Det = 1 T 0 T i = λ 1 λ N ( E O 1 ( i ) ) 2 2 d t + 1 T 0 T i = λ 1 λ N k > i λ N [ E O 1 ( i ) E O 1 ( k ) cos ( Δ ω t + Δ Φ ) ] d t
I Det = 1 T 0 T i = λ 1 λ N ( E O 1 ( i ) ) 2 2 d t + i = λ 1 λ N k > i λ N [ 1 T 0 T E O 1 ( i ) E O 1 ( k ) cos ( Δ ω t + Δ Φ ) ] d t .
T = n . D c
I Det = i = λ 1 λ N ( E O 1 ( i ) ) 2 2 + i = λ 1 λ N k > i λ N [ E O 1 ( i ) E O 1 ( k ) sin ( Δ ω . T + Δ Φ ) sin ( Δ Φ ) Δ ω . T ] .
Δ Φ = l { β 1 2 β n 2 [ ( 1 μ ) p 12 μ p 11 ] }
Δ Φ = l β × 0.78 .
L coh = λ 2 n . Δ λ
σ CRN 1 / N L coh L pw .
Δ φ = 2 π n λ . 2 + φ 2 φ 1
Δ φ ¯ = 2 π n λ . 2 ( + Δ ) + φ 2 ¯ φ 1 ¯
Δ ϕ = Δ φ ¯ Δ φ = 2 π n λ . 2 Δ + ( φ 2 ¯ φ 2 ) ( φ 1 ¯ φ 1 ) .

Metrics