Abstract

The inhomogeneous broadening of the bi-exciton state in quantum dots, i.e., the inhomogeneous broadening of the upper level of the cascade process, is not only a fundamental problem in quantum dots, but also closely related with the coherent control of this complex system and the quality of the entangled photon pairs, especially the time-bin entangled photon pairs. This inhomogeneous broadening is inherently a two-photon correlated phenomenon. In this work, we construct a genuine Franson-type nonlocal interference process to measure the inhomogeneous broadening of the bi-exciton state. The results show that the inhomogeneous broadening of the bi-exciton state is considerably smaller than that of the exciton state, that is why the entangled photon pairs can be generated by the cascade process in the quantum dot.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement and modification of biexciton-exciton time correlations

Tobias Huber, Ana Predojević, Hashem Zoubi, Harishankar Jayakumar, Glenn S. Solomon, and Gregor Weihs
Opt. Express 21(8) 9890-9898 (2013)

Efficient W-state entanglement concentration using quantum-dot and optical microcavities

Yu-Bo Sheng and Lan Zhou
J. Opt. Soc. Am. B 30(3) 678-686 (2013)

Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting

Stefan Schumacher, Jens Förstner, Artur Zrenner, Matthias Florian, Christopher Gies, Paul Gartner, and Frank Jahnke
Opt. Express 20(5) 5335-5342 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405, 923 (2000).
    [Crossref] [PubMed]
  2. J. Stangl, V. Holý, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76, 725 (2004).
    [Crossref]
  3. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 87, 183601 (2001).
    [Crossref]
  4. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot,” Phys. Rev. Lett. 101, 027401 (2008).
    [Crossref] [PubMed]
  5. F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
    [Crossref]
  6. A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys. Rev. Lett. 47, 460 (1981).
    [Crossref]
  7. H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086 (2000).
    [Crossref]
  8. J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
    [Crossref]
  9. G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
    [Crossref]
  10. C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
    [Crossref] [PubMed]
  11. C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B 66, 045308 (2002).
    [Crossref]
  12. Y.-L. Li, G. Chen, J.-S. Tang, and C.-F. Li, “Correlation of Exciton and Biexciton from a Single InAs Quantum Dot,” Chin. Phys. Lett. 29, 094201 (2012).
    [Crossref]
  13. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
    [Crossref] [PubMed]
  14. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
    [Crossref] [PubMed]
  15. R. Trotta, J. S. Wildmann, E. Zallo, O. G. Schmidt, and A. Rastelli, “Highly Entangled Photons from Hybrid Piezoelectric-Semiconductor Quantum Dot Devices,” Nano Lett. 14, 3439 (2014).
    [Crossref] [PubMed]
  16. H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, “Time-bin entangled photons from a quantum dot,” Nat. Commun. 54251 (2014).
    [Crossref] [PubMed]
  17. N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007)
    [Crossref]
  18. C. Simon and J. -P. Poizat, “Creating Single Time-Bin-Entangled Photon Pairs,” Phys. Rev. Lett. 94, 030502 (2005).
    [Crossref] [PubMed]
  19. P. K. Pathak and S. Hughes, “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B 83, 245301 (2011).
    [Crossref]
  20. T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
    [Crossref]
  21. T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New Journal of Physics 17, 123025 (2015).
    [Crossref]
  22. L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
    [Crossref] [PubMed]
  23. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [Crossref] [PubMed]
  24. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
    [Crossref] [PubMed]
  25. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563 (1998).
    [Crossref]
  26. J. Brendel, E. Mohler, and W. Martienssen, “Time-resolved dual-beam two-photon interferences with high visibility,” Phys. Rev. Lett. 66, 1142 (1991).
    [Crossref] [PubMed]
  27. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “Observation of a “quantum eraser”: A revival of coherence in a two-photon interference experiment,” Phys. Rev. A 45, 7729 (1992).
    [Crossref] [PubMed]
  28. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82, 2594 (1999).
    [Crossref]
  29. O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Optics Express 21, 25492 (2013).
    [Crossref] [PubMed]
  30. G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
    [Crossref]
  31. T. Huber, A. Predojević, H. Zoubi, H. Jayakumar, G. Solomon, and G. Weihs, “Measurement and modification of biexciton-exciton time correlations,” Opt. Express 21, 25492 (2013).
    [Crossref]
  32. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  33. S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
    [Crossref]
  34. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
    [Crossref]

2016 (2)

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
[Crossref]

2015 (1)

T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New Journal of Physics 17, 123025 (2015).
[Crossref]

2014 (2)

R. Trotta, J. S. Wildmann, E. Zallo, O. G. Schmidt, and A. Rastelli, “Highly Entangled Photons from Hybrid Piezoelectric-Semiconductor Quantum Dot Devices,” Nano Lett. 14, 3439 (2014).
[Crossref] [PubMed]

H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, “Time-bin entangled photons from a quantum dot,” Nat. Commun. 54251 (2014).
[Crossref] [PubMed]

2013 (3)

L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
[Crossref] [PubMed]

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Optics Express 21, 25492 (2013).
[Crossref] [PubMed]

T. Huber, A. Predojević, H. Zoubi, H. Jayakumar, G. Solomon, and G. Weihs, “Measurement and modification of biexciton-exciton time correlations,” Opt. Express 21, 25492 (2013).
[Crossref]

2012 (2)

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

Y.-L. Li, G. Chen, J.-S. Tang, and C.-F. Li, “Correlation of Exciton and Biexciton from a Single InAs Quantum Dot,” Chin. Phys. Lett. 29, 094201 (2012).
[Crossref]

2011 (1)

P. K. Pathak and S. Hughes, “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B 83, 245301 (2011).
[Crossref]

2010 (1)

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

2008 (1)

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot,” Phys. Rev. Lett. 101, 027401 (2008).
[Crossref] [PubMed]

2007 (1)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007)
[Crossref]

2006 (2)

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

2005 (1)

C. Simon and J. -P. Poizat, “Creating Single Time-Bin-Entangled Photon Pairs,” Phys. Rev. Lett. 94, 030502 (2005).
[Crossref] [PubMed]

2004 (1)

J. Stangl, V. Holý, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76, 725 (2004).
[Crossref]

2002 (2)

C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B 66, 045308 (2002).
[Crossref]

2001 (2)

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 87, 183601 (2001).
[Crossref]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

2000 (4)

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405, 923 (2000).
[Crossref] [PubMed]

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086 (2000).
[Crossref]

J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
[Crossref]

1999 (2)

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

1998 (1)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563 (1998).
[Crossref]

1992 (1)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “Observation of a “quantum eraser”: A revival of coherence in a two-photon interference experiment,” Phys. Rev. A 45, 7729 (1992).
[Crossref] [PubMed]

1991 (1)

J. Brendel, E. Mohler, and W. Martienssen, “Time-resolved dual-beam two-photon interferences with high visibility,” Phys. Rev. Lett. 66, 1142 (1991).
[Crossref] [PubMed]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

1981 (1)

A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys. Rev. Lett. 47, 460 (1981).
[Crossref]

Abram, I.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 87, 183601 (2001).
[Crossref]

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

André, R.

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Aspect, A.

A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys. Rev. Lett. 47, 460 (1981).
[Crossref]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Bacher, G.

J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
[Crossref]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

Bauer, G.

J. Stangl, V. Holý, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76, 725 (2004).
[Crossref]

Bayer, M.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405, 923 (2000).
[Crossref] [PubMed]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Besombes, L.

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Bougerol, C.

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563 (1998).
[Crossref]

J. Brendel, E. Mohler, and W. Martienssen, “Time-resolved dual-beam two-photon interferences with high visibility,” Phys. Rev. Lett. 66, 1142 (1991).
[Crossref] [PubMed]

Chen, G.

Y.-L. Li, G. Chen, J.-S. Tang, and C.-F. Li, “Correlation of Exciton and Biexciton from a Single InAs Quantum Dot,” Chin. Phys. Lett. 29, 094201 (2012).
[Crossref]

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “Observation of a “quantum eraser”: A revival of coherence in a two-photon interference experiment,” Phys. Rev. A 45, 7729 (1992).
[Crossref] [PubMed]

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Engelhardt, R.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

Fafard, S.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405, 923 (2000).
[Crossref] [PubMed]

Fang, W.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot,” Phys. Rev. Lett. 101, 027401 (2008).
[Crossref] [PubMed]

Fattal, D.

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B 66, 045308 (2002).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

Föger, D.

T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New Journal of Physics 17, 123025 (2015).
[Crossref]

Forchel, A.

J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
[Crossref]

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405, 923 (2000).
[Crossref] [PubMed]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

Gérard, J. M.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 87, 183601 (2001).
[Crossref]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Gershoni, D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Gippius, N. A.

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007)
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563 (1998).
[Crossref]

Goldberg, B. B.

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086 (2000).
[Crossref]

Grangier, P.

A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys. Rev. Lett. 47, 460 (1981).
[Crossref]

Grousson, R.

L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
[Crossref] [PubMed]

Hargart, F.

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

Hawrylak, P.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405, 923 (2000).
[Crossref] [PubMed]

Heitz, R.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

Höfling, S.

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

Holý, V.

J. Stangl, V. Holý, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76, 725 (2004).
[Crossref]

Hommel, D.

J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
[Crossref]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

Hostein, R.

L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
[Crossref] [PubMed]

Huber, T.

T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
[Crossref]

T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New Journal of Physics 17, 123025 (2015).
[Crossref]

H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, “Time-bin entangled photons from a quantum dot,” Nat. Commun. 54251 (2014).
[Crossref] [PubMed]

T. Huber, A. Predojević, H. Zoubi, H. Jayakumar, G. Solomon, and G. Weihs, “Measurement and modification of biexciton-exciton time correlations,” Opt. Express 21, 25492 (2013).
[Crossref]

Hughes, S.

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

P. K. Pathak and S. Hughes, “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B 83, 245301 (2011).
[Crossref]

Jayakumar, H.

H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, “Time-bin entangled photons from a quantum dot,” Nat. Commun. 54251 (2014).
[Crossref] [PubMed]

T. Huber, A. Predojević, H. Zoubi, H. Jayakumar, G. Solomon, and G. Weihs, “Measurement and modification of biexciton-exciton time correlations,” Opt. Express 21, 25492 (2013).
[Crossref]

Jetter, M.

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

Kamp, M.

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

Kauten, T.

H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, “Time-bin entangled photons from a quantum dot,” Nat. Commun. 54251 (2014).
[Crossref] [PubMed]

Kheng, K.

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Kim, Y.-H.

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Optics Express 21, 25492 (2013).
[Crossref] [PubMed]

Kim, Y.-S.

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Optics Express 21, 25492 (2013).
[Crossref] [PubMed]

Kulakovskii, V. D.

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

Kümmell, T.

J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “Observation of a “quantum eraser”: A revival of coherence in a two-photon interference experiment,” Phys. Rev. A 45, 7729 (1992).
[Crossref] [PubMed]

Kwon, O.

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Optics Express 21, 25492 (2013).
[Crossref] [PubMed]

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Lawall, J.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot,” Phys. Rev. Lett. 101, 027401 (2008).
[Crossref] [PubMed]

Lemaitre, A.

L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
[Crossref] [PubMed]

leonardi, K.

J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
[Crossref]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

Li, C.-F.

Y.-L. Li, G. Chen, J.-S. Tang, and C.-F. Li, “Correlation of Exciton and Biexciton from a Single InAs Quantum Dot,” Chin. Phys. Lett. 29, 094201 (2012).
[Crossref]

Li, Y.-L.

Y.-L. Li, G. Chen, J.-S. Tang, and C.-F. Li, “Correlation of Exciton and Biexciton from a Single InAs Quantum Dot,” Chin. Phys. Lett. 29, 094201 (2012).
[Crossref]

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Manin, L.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 87, 183601 (2001).
[Crossref]

Martienssen, W.

J. Brendel, E. Mohler, and W. Martienssen, “Time-resolved dual-beam two-photon interferences with high visibility,” Phys. Rev. Lett. 66, 1142 (1991).
[Crossref] [PubMed]

Martinez, A.

L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
[Crossref] [PubMed]

Michler, P.

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

Mohler, E.

J. Brendel, E. Mohler, and W. Martienssen, “Time-resolved dual-beam two-photon interferences with high visibility,” Phys. Rev. Lett. 66, 1142 (1991).
[Crossref] [PubMed]

Monniello, L.

L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
[Crossref] [PubMed]

Moreau, E.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 87, 183601 (2001).
[Crossref]

Muller, A.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot,” Phys. Rev. Lett. 101, 027401 (2008).
[Crossref] [PubMed]

Müller, M.

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

Ostermann, L.

T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
[Crossref]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Park, K.-K.

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Optics Express 21, 25492 (2013).
[Crossref] [PubMed]

Pathak, P. K.

P. K. Pathak and S. Hughes, “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B 83, 245301 (2011).
[Crossref]

Pelton, M.

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B 66, 045308 (2002).
[Crossref]

Petroff, P. M.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

Pohl, U. W.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

Poizat, J. -P.

C. Simon and J. -P. Poizat, “Creating Single Time-Bin-Entangled Photon Pairs,” Phys. Rev. Lett. 94, 030502 (2005).
[Crossref] [PubMed]

Poizat, J. -Ph.

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Portalupi, S. L.

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

Predojevi, A.

T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
[Crossref]

Predojevic, A.

T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New Journal of Physics 17, 123025 (2015).
[Crossref]

H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, “Time-bin entangled photons from a quantum dot,” Nat. Commun. 54251 (2014).
[Crossref] [PubMed]

T. Huber, A. Predojević, H. Zoubi, H. Jayakumar, G. Solomon, and G. Weihs, “Measurement and modification of biexciton-exciton time correlations,” Opt. Express 21, 25492 (2013).
[Crossref]

Prilmller, M.

T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
[Crossref]

Ra, Y.-S.

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Optics Express 21, 25492 (2013).
[Crossref] [PubMed]

Rastelli, A.

R. Trotta, J. S. Wildmann, E. Zallo, O. G. Schmidt, and A. Rastelli, “Highly Entangled Photons from Hybrid Piezoelectric-Semiconductor Quantum Dot Devices,” Nano Lett. 14, 3439 (2014).
[Crossref] [PubMed]

Richard, M.

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Richter, D.

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

Ritchie, D. A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Ritsch, H.

T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
[Crossref]

Robert, I.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 87, 183601 (2001).
[Crossref]

Robinson, H. D.

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086 (2000).
[Crossref]

Rodt, S.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

Roger, G.

A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys. Rev. Lett. 47, 460 (1981).
[Crossref]

Roy, C.

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

Roy-Choudhury, K.

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

Sallen, G.

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Santori, C.

C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B 66, 045308 (2002).
[Crossref]

Schmidt, O. G.

R. Trotta, J. S. Wildmann, E. Zallo, O. G. Schmidt, and A. Rastelli, “Highly Entangled Photons from Hybrid Piezoelectric-Semiconductor Quantum Dot Devices,” Nano Lett. 14, 3439 (2014).
[Crossref] [PubMed]

Schneider, C.

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Seufert, J.

J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
[Crossref]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

Shields, A. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Simon, C.

C. Simon and J. -P. Poizat, “Creating Single Time-Bin-Entangled Photon Pairs,” Phys. Rev. Lett. 94, 030502 (2005).
[Crossref] [PubMed]

Solomon, G.

T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New Journal of Physics 17, 123025 (2015).
[Crossref]

T. Huber, A. Predojević, H. Zoubi, H. Jayakumar, G. Solomon, and G. Weihs, “Measurement and modification of biexciton-exciton time correlations,” Opt. Express 21, 25492 (2013).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

Solomon, G. S.

T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
[Crossref]

H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, “Time-bin entangled photons from a quantum dot,” Nat. Commun. 54251 (2014).
[Crossref] [PubMed]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot,” Phys. Rev. Lett. 101, 027401 (2008).
[Crossref] [PubMed]

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B 66, 045308 (2002).
[Crossref]

Stangl, J.

J. Stangl, V. Holý, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76, 725 (2004).
[Crossref]

Steinberg, A. M.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “Observation of a “quantum eraser”: A revival of coherence in a two-photon interference experiment,” Phys. Rev. A 45, 7729 (1992).
[Crossref] [PubMed]

Steingrüber, R.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

Stern, O.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405, 923 (2000).
[Crossref] [PubMed]

Stevenson, R. M.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Stier, O.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

Tang, J.-S.

Y.-L. Li, G. Chen, J.-S. Tang, and C.-F. Li, “Correlation of Exciton and Biexciton from a Single InAs Quantum Dot,” Chin. Phys. Lett. 29, 094201 (2012).
[Crossref]

Tatarenko, S.

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007)
[Crossref]

Thierry-Mieg, V.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 87, 183601 (2001).
[Crossref]

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563 (1998).
[Crossref]

Tonin, C.

L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
[Crossref] [PubMed]

Tribu, A.

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Trotta, R.

R. Trotta, J. S. Wildmann, E. Zallo, O. G. Schmidt, and A. Rastelli, “Highly Entangled Photons from Hybrid Piezoelectric-Semiconductor Quantum Dot Devices,” Nano Lett. 14, 3439 (2014).
[Crossref] [PubMed]

Türck, V.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

Ulhaq, A.

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

Ulrich, S. M.

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

Voliotis, V.

L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
[Crossref] [PubMed]

Vuckovic, J.

C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

Weigand, R.

J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
[Crossref]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

Weihs, G.

T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
[Crossref]

T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New Journal of Physics 17, 123025 (2015).
[Crossref]

H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, “Time-bin entangled photons from a quantum dot,” Nat. Commun. 54251 (2014).
[Crossref] [PubMed]

T. Huber, A. Predojević, H. Zoubi, H. Jayakumar, G. Solomon, and G. Weihs, “Measurement and modification of biexciton-exciton time correlations,” Opt. Express 21, 25492 (2013).
[Crossref]

Weiler, S.

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

Wildmann, J. S.

R. Trotta, J. S. Wildmann, E. Zallo, O. G. Schmidt, and A. Rastelli, “Highly Entangled Photons from Hybrid Piezoelectric-Semiconductor Quantum Dot Devices,” Nano Lett. 14, 3439 (2014).
[Crossref] [PubMed]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B 66, 045308 (2002).
[Crossref]

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

Zallo, E.

R. Trotta, J. S. Wildmann, E. Zallo, O. G. Schmidt, and A. Rastelli, “Highly Entangled Photons from Hybrid Piezoelectric-Semiconductor Quantum Dot Devices,” Nano Lett. 14, 3439 (2014).
[Crossref] [PubMed]

Zbinden, H.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563 (1998).
[Crossref]

Zoubi, H.

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Applied Phys. Lett. (1)

J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Applied Phys. Lett. 76, 1872 (2000).
[Crossref]

Chin. Phys. Lett. (1)

Y.-L. Li, G. Chen, J.-S. Tang, and C.-F. Li, “Correlation of Exciton and Biexciton from a Single InAs Quantum Dot,” Chin. Phys. Lett. 29, 094201 (2012).
[Crossref]

Nano Lett. (1)

R. Trotta, J. S. Wildmann, E. Zallo, O. G. Schmidt, and A. Rastelli, “Highly Entangled Photons from Hybrid Piezoelectric-Semiconductor Quantum Dot Devices,” Nano Lett. 14, 3439 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G. Weihs, “Time-bin entangled photons from a quantum dot,” Nat. Commun. 54251 (2014).
[Crossref] [PubMed]

Nat. Photon. (2)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007)
[Crossref]

G. Sallen, A. Tribu, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. -Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696 (2010).
[Crossref]

Nature (3)

C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594 (2002).
[Crossref] [PubMed]

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405, 923 (2000).
[Crossref] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179 (2006).
[Crossref] [PubMed]

New Journal of Physics (1)

T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New Journal of Physics 17, 123025 (2015).
[Crossref]

Opt. Express (1)

Optics Express (1)

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Optics Express 21, 25492 (2013).
[Crossref] [PubMed]

Phys. Rev. A (1)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “Observation of a “quantum eraser”: A revival of coherence in a two-photon interference experiment,” Phys. Rev. A 45, 7729 (1992).
[Crossref] [PubMed]

Phys. Rev. B (7)

P. K. Pathak and S. Hughes, “Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage,” Phys. Rev. B 83, 245301 (2011).
[Crossref]

T. Huber, L. Ostermann, M. Prilmller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojevi, “Coherence and degree of time-bin entanglement from quantum dots,” Phys. Rev. B 93, 201301 (2016).
[Crossref]

S. Weiler, A. Ulhaq, S. M. Ulrich, D. Richter, M. Jetter, P. Michler, C. Roy, and S. Hughes, “Phonon-assisted incoherent excitation of a quantum dot and its emission properties,” Phys. Rev. B 86, 241304 (2012).
[Crossref]

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944 (2000).
[Crossref]

H. D. Robinson and B. B. Goldberg, “Light-induced spectral diffusion in single self-assembled quantum dots,” Phys. Rev. B 61, R5086 (2000).
[Crossref]

F. Hargart, M. Müller, K. Roy-Choudhury, S. L. Portalupi, C. Schneider, S. Höfling, M. Kamp, S. Hughes, and P. Michler, “Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states,” Phys. Rev. B 93, 115308 (2016).
[Crossref]

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B 66, 045308 (2002).
[Crossref]

Phys. Rev. Lett. (12)

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots,” Phys. Rev. Lett. 87, 183601 (2001).
[Crossref]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot,” Phys. Rev. Lett. 101, 027401 (2008).
[Crossref] [PubMed]

A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys. Rev. Lett. 47, 460 (1981).
[Crossref]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref] [PubMed]

C. Simon and J. -P. Poizat, “Creating Single Time-Bin-Entangled Photon Pairs,” Phys. Rev. Lett. 94, 030502 (2005).
[Crossref] [PubMed]

G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

L. Monniello, C. Tonin, R. Hostein, A. Lemaitre, A. Martinez, V. Voliotis, and R. Grousson, “Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot,” Phys. Rev. Lett. 111, 026403 (2013).
[Crossref] [PubMed]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563 (1998).
[Crossref]

J. Brendel, E. Mohler, and W. Martienssen, “Time-resolved dual-beam two-photon interferences with high visibility,” Phys. Rev. Lett. 66, 1142 (1991).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. Stangl, V. Holý, and G. Bauer, “Structural properties of self-organized semiconductor nanostructures,” Rev. Mod. Phys. 76, 725 (2004).
[Crossref]

Other (1)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The micro-photoluminescence spectra of the quantum dot sample at 10 K with He-Ne laser excitation. XX and X represent the bi-exciton and exciton, respectively. The laser power is set to 200 nW and is focused on to the sample by an objective, NA=0.47. The inset shows the excitation power dependence of the integrated PL intensity for the two photon lines in double logarithm coordinates. The slopes of the linear fitting are 0.89 and 1.97, which indicates that the two lines are separately generated from the exciton and bi-exciton photon. (b) Cross-correlation function of the exciton and bi-exciton photons. The blue dots are the histogram of the time-interval measurements, which are triggered by the bi-exciton photon and stopped by the exciton photon. The inset is the three-level model of the bi-exciton in a single quantum dot. τXX and τX are the lifetimes of the respective levels, and Δb and ΔX are the broadening of the energy levels. The total integration time is 2 h, and the time resolution of each bin is 162 ps. The green line is the normalized cross-correlation function with the parameters τXX = 1.1 ns and τX = 1.3 ns. We measured the lifetime of the biexciton and exciton with only one biexciton-exciton polarization cascade. Therefore, we expect the homogeneous broadening of the bi-exciton level to be Δb = 1/τXX − 1/τX = 0.14 ns−1.
Fig. 2
Fig. 2 Franson-type interference schematic diagram. The source is a three-level system with a relatively narrow broadening Δ1 for the upper level and a considerably wider broadening Δ2 for the intermediate state. Two photons are emitted from the cascade process and sent in distinct directions toward two identical unbalanced M-Z interferometers. The photon coincidence measurement includes the interference between the amplitudes along the shorter paths, S1 and S2, and the longer paths, L1 and L2.
Fig. 3
Fig. 3 Experimental setup for Franson interference. The interferometer is built with a polarized beam splitter (PBS) and two retro-reflectors on the short and long arms. The two quarter wave plates in the two arms are used to rotate the polarization 90 degrees after the beam passes through them twice. Another PBS and half-wave plate are used to generate interference. The photon pairs are in separate spacial modes and are detected by avalanche photo diodes (APDs) DXX and DX. Before the interferometer, only one type of exciton polarization cascade photons is filtered out by a polarizer, and the polarization is rotated to |H〉 + |V〉 by a half-wave plate. To reduce the phase fluctuations, a reference cw laser with a wavelength of 920 nm and a linewidth of less than 1 MHz is sent backward in the interferometer. Detector D1 is used to monitor the total intensity of the laser, and D2 detects the fringe of the interference of the laser. If the interference fringe moves, the signal is sent back to control a piezo stage, on which the reflection mirror of the shorter arm is placed. The phase plates in the longer arm can be tilted to alter the phase. HWP: half-wave plate, QWP: quarter-wave plate.
Fig. 4
Fig. 4 (a) Arrival time of the exciton photon recorded with respect to the biexciton photon. The delay of the longer arm relative to the shorter arm is fixed at ΔT = 7 ns. The bi-exciton photon goes through the long (short) path, but the exciton photon travels the short (long) path form the first (third) peak. The center peak is formed by the photons both taking the short path or the long path. Due to the distinguishability of these two cases, the center peak presents interference by tilting the phase plates in the two longer arms to alter the phase ϕ. We can see the maximum amplitude of the center peak when we alter the phase ϕ = ϕ1 + ϕ2 from the left side of Fig. 4(a) and the minimum amplitude from the right side of Fig. 4(a). (b) Normalized coincidences between bi-exciton and exciton at the output when changing the phase ϕ = ϕ1 + ϕ2 of the interferometer with the longer arm delay ΔT = 7 ns. With a sinusoidal function fitting, we obtain a visibility of the interference of approximately 0.35. (c) Relationship between the visibility and delay of the longer arm of the interferometer. Eq. (7) indicates that the visibility reduces exponentially. The dashed line is the result using the parameter of homogeneous broadening width Δb = 0.14 ns−1; the solid line is the fitting curve of the measurement of the Franson interference, according to which the inhomogeneous broadening of the bi-exciton level Δb′ = 0.154 ns−1 is obtained. The temperature of the sample is 10 K.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d n G d t = n G τ e + n X τ X , d n X d t = n G τ e ( 1 τ e + 1 τ X ) n X + n X X τ X X , d n X X d t = n X τ e n X X τ X X ,
C X , X X ( 2 ) ( Δ t ) = 0 T m n X X ( t ) n X ( t + Δ t ) d t ,
φ = Δ E Δ T / + ϕ
A ( r ) = k e i k r V a k ,
A ( r , t ) = e i H t / A ( r ) e i H t / ,
A ( r 1 , t ) | 0 = [ 1 2 A 0 ( r 1 , t ) + 1 2 e i ϕ 1 A 0 ( r 1 , t Δ T ) ] | 0 , A ( r 2 , t ) | 0 = [ 1 2 A 0 ( r 2 , t ) + 1 2 e i ϕ 2 A 0 ( r 2 , t Δ T ) ] | 0 ,
R c = η 1 η 2 0 | A ( r 1 , t ) A ( r 2 , t ) A ( r 2 , t ) A ( r 1 , t ) | 0 0 | A ( r 1 , t ) A ( r 2 , t ) A ( r 2 , t ) A ( r 1 , t ) | 0 exp ( Δ T Δ b ) cos ( Δ E Δ T / + ϕ ) + 1 ,
V ( Δ T ) = R c max R c min R c max + R c min = e Δ T Δ b ,

Metrics