Abstract

We examine the difference between the newly developed IES TM-30 color indices and some of the most common previously established color indices for LED systems which are used for lighting purposes, focusing on the influence of realistic spectral variations among different system designs and manufacturing runs. We find a significantly stronger influence of the employed blue InGaN wavelength on TM-30 Rf and Rg than on CRI Ra and FCI. In addition, for the established combination of green converted InGaN chips with red InGaAlP chips, we observe large differences in the effect of the wavelength of the red emission of InGaAlP chips on Rf and Ra.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
LED light with enhanced color saturation and improved white light perception

Xiangfen Feng, Wei Xu, Qiuyi Han, and Shanduan Zhang
Opt. Express 24(1) 573-585 (2016)

Correlation between color quality metric predictions and visual appreciation of light sources

Kevin Smet, Wouter R. Ryckaert, Michael R. Pointer, Geert Deconinck, and Peter Hanselaer
Opt. Express 19(9) 8151-8166 (2011)

Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition

Kevin W. Houser, Minchen Wei, Aurélien David, Michael R. Krames, and Xiangyou Sharon Shen
Opt. Express 21(8) 10393-10411 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
    [Crossref] [PubMed]
  2. X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Light. Res. Technol. 36(3), 183–199 (2004).
    [Crossref]
  3. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
    [Crossref]
  4. K. W. Houser, M. Wei, A. David, M. R. Krames, and X. S. Shen, “Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition,” Opt. Express 21(8), 10393–10411 (2013).
    [Crossref] [PubMed]
  5. Illuminating Engineering Society of North America, “IES Method for Evaluating Light Source Color Rendition,” Technical Memorandum IES TM-30–15 (2015)
  6. W. Xu, M. Wei, K. A. G. Smet, and Y. Lin, “The prediction of perceived colour differences by colour fidelity metrics,” Light. Res. Technol. (in press).
  7. M. P. Royer, A. Wilkerson, M. Wei, K. W. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. (in press).
  8. K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying colour-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
    [Crossref]
  9. Y. Lin, J. He, A. Tsukitani, and H. Noguchi, “Colour quality evaluation of natural objects based on the Feeling of Contrast Index,” Light. Res. Technol. 48(3), 323–339 (2016).
    [Crossref]
  10. T. Q. Khanh, P. Bodroghi, Q. T. Vinh, and D. Stojanovic, “Color preference, naturalness, vividness and color quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol. (in press).
  11. M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
    [Crossref]
  12. M. S. Rea and J. P. Freyssinier, “White Lighting,” Color Res. Appl. 38(2), 82–92 (2013).
    [Crossref]
  13. M. Wei and K. W. Houser, “What is the cause of apparent preference for sources with chromaticity below the blackbody locus?” Leukos 12(1–2), 95–99 (2016).
    [Crossref]
  14. F. Szabó, R. Kéri, J. Schanda, P. Csuti, A. Wilm, and E. Baur, “A study of preferred colour rendering of light sources: Shop lighting,” Light. Res. Technol. 48(3), 286–306 (2016).
    [Crossref]
  15. K.A.G. Smet, Light and Lighting Laboratory, KU Leuven, Technology Campus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium (communication in CIE TC 1–90 WebEx meeting, 17 December 2015)
  16. K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1–2), 39–50 (2016).
    [Crossref]
  17. M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. (in press).

2016 (4)

Y. Lin, J. He, A. Tsukitani, and H. Noguchi, “Colour quality evaluation of natural objects based on the Feeling of Contrast Index,” Light. Res. Technol. 48(3), 323–339 (2016).
[Crossref]

M. Wei and K. W. Houser, “What is the cause of apparent preference for sources with chromaticity below the blackbody locus?” Leukos 12(1–2), 95–99 (2016).
[Crossref]

F. Szabó, R. Kéri, J. Schanda, P. Csuti, A. Wilm, and E. Baur, “A study of preferred colour rendering of light sources: Shop lighting,” Light. Res. Technol. 48(3), 286–306 (2016).
[Crossref]

K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1–2), 39–50 (2016).
[Crossref]

2015 (1)

2014 (1)

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

2013 (2)

2008 (1)

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

2007 (1)

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying colour-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

2004 (1)

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Light. Res. Technol. 36(3), 183–199 (2004).
[Crossref]

Allen, G. R.

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

Baur, E.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, A. Wilm, and E. Baur, “A study of preferred colour rendering of light sources: Shop lighting,” Light. Res. Technol. 48(3), 286–306 (2016).
[Crossref]

Beers, W. W.

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

Bodroghi, P.

T. Q. Khanh, P. Bodroghi, Q. T. Vinh, and D. Stojanovic, “Color preference, naturalness, vividness and color quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol. (in press).

Csuti, P.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, A. Wilm, and E. Baur, “A study of preferred colour rendering of light sources: Shop lighting,” Light. Res. Technol. 48(3), 286–306 (2016).
[Crossref]

David, A.

Davis, R.

M. P. Royer, A. Wilkerson, M. Wei, K. W. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. (in press).

Fini, P. T.

Freyssinier, J. P.

M. S. Rea and J. P. Freyssinier, “White Lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

Freyssinier-Nova, J. P.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

Guo, X.

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Light. Res. Technol. 36(3), 183–199 (2004).
[Crossref]

Hashimoto, K.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying colour-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

He, J.

Y. Lin, J. He, A. Tsukitani, and H. Noguchi, “Colour quality evaluation of natural objects based on the Feeling of Contrast Index,” Light. Res. Technol. 48(3), 323–339 (2016).
[Crossref]

Houser, K. W.

M. Wei and K. W. Houser, “What is the cause of apparent preference for sources with chromaticity below the blackbody locus?” Leukos 12(1–2), 95–99 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

K. W. Houser, M. Wei, A. David, M. R. Krames, and X. S. Shen, “Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition,” Opt. Express 21(8), 10393–10411 (2013).
[Crossref] [PubMed]

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Light. Res. Technol. 36(3), 183–199 (2004).
[Crossref]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. (in press).

M. P. Royer, A. Wilkerson, M. Wei, K. W. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. (in press).

Kéri, R.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, A. Wilm, and E. Baur, “A study of preferred colour rendering of light sources: Shop lighting,” Light. Res. Technol. 48(3), 286–306 (2016).
[Crossref]

Khanh, T. Q.

T. Q. Khanh, P. Bodroghi, Q. T. Vinh, and D. Stojanovic, “Color preference, naturalness, vividness and color quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol. (in press).

Krames, M. R.

Lin, Y.

Y. Lin, J. He, A. Tsukitani, and H. Noguchi, “Colour quality evaluation of natural objects based on the Feeling of Contrast Index,” Light. Res. Technol. 48(3), 323–339 (2016).
[Crossref]

W. Xu, M. Wei, K. A. G. Smet, and Y. Lin, “The prediction of perceived colour differences by colour fidelity metrics,” Light. Res. Technol. (in press).

Nayatani, Y.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying colour-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Noguchi, H.

Y. Lin, J. He, A. Tsukitani, and H. Noguchi, “Colour quality evaluation of natural objects based on the Feeling of Contrast Index,” Light. Res. Technol. 48(3), 323–339 (2016).
[Crossref]

Ohno, Y.

Rea, M. S.

M. S. Rea and J. P. Freyssinier, “White Lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

Royer, M. P.

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

M. P. Royer, A. Wilkerson, M. Wei, K. W. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. (in press).

Schanda, J.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, A. Wilm, and E. Baur, “A study of preferred colour rendering of light sources: Shop lighting,” Light. Res. Technol. 48(3), 286–306 (2016).
[Crossref]

Shen, X. S.

Shimizu, M.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying colour-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Smet, K. A. G.

K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1–2), 39–50 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

W. Xu, M. Wei, K. A. G. Smet, and Y. Lin, “The prediction of perceived colour differences by colour fidelity metrics,” Light. Res. Technol. (in press).

Stojanovic, D.

T. Q. Khanh, P. Bodroghi, Q. T. Vinh, and D. Stojanovic, “Color preference, naturalness, vividness and color quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol. (in press).

Szabó, F.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, A. Wilm, and E. Baur, “A study of preferred colour rendering of light sources: Shop lighting,” Light. Res. Technol. 48(3), 286–306 (2016).
[Crossref]

Tsukitani, A.

Y. Lin, J. He, A. Tsukitani, and H. Noguchi, “Colour quality evaluation of natural objects based on the Feeling of Contrast Index,” Light. Res. Technol. 48(3), 323–339 (2016).
[Crossref]

Vinh, Q. T.

T. Q. Khanh, P. Bodroghi, Q. T. Vinh, and D. Stojanovic, “Color preference, naturalness, vividness and color quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol. (in press).

Wei, M.

M. Wei and K. W. Houser, “What is the cause of apparent preference for sources with chromaticity below the blackbody locus?” Leukos 12(1–2), 95–99 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

K. W. Houser, M. Wei, A. David, M. R. Krames, and X. S. Shen, “Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition,” Opt. Express 21(8), 10393–10411 (2013).
[Crossref] [PubMed]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. (in press).

M. P. Royer, A. Wilkerson, M. Wei, K. W. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. (in press).

W. Xu, M. Wei, K. A. G. Smet, and Y. Lin, “The prediction of perceived colour differences by colour fidelity metrics,” Light. Res. Technol. (in press).

Whitehead, L.

K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1–2), 39–50 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

Wilkerson, A.

M. P. Royer, A. Wilkerson, M. Wei, K. W. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. (in press).

Wilm, A.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, A. Wilm, and E. Baur, “A study of preferred colour rendering of light sources: Shop lighting,” Light. Res. Technol. 48(3), 286–306 (2016).
[Crossref]

Xu, W.

W. Xu, M. Wei, K. A. G. Smet, and Y. Lin, “The prediction of perceived colour differences by colour fidelity metrics,” Light. Res. Technol. (in press).

Yano, T.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying colour-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Color Res. Appl. (3)

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying colour-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

M. S. Rea and J. P. Freyssinier, “White Lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: a tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

Leukos (3)

K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1–2), 39–50 (2016).
[Crossref]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

M. Wei and K. W. Houser, “What is the cause of apparent preference for sources with chromaticity below the blackbody locus?” Leukos 12(1–2), 95–99 (2016).
[Crossref]

Light. Res. Technol. (3)

F. Szabó, R. Kéri, J. Schanda, P. Csuti, A. Wilm, and E. Baur, “A study of preferred colour rendering of light sources: Shop lighting,” Light. Res. Technol. 48(3), 286–306 (2016).
[Crossref]

Y. Lin, J. He, A. Tsukitani, and H. Noguchi, “Colour quality evaluation of natural objects based on the Feeling of Contrast Index,” Light. Res. Technol. 48(3), 323–339 (2016).
[Crossref]

X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Light. Res. Technol. 36(3), 183–199 (2004).
[Crossref]

Opt. Express (2)

Other (6)

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. (in press).

T. Q. Khanh, P. Bodroghi, Q. T. Vinh, and D. Stojanovic, “Color preference, naturalness, vividness and color quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol. (in press).

Illuminating Engineering Society of North America, “IES Method for Evaluating Light Source Color Rendition,” Technical Memorandum IES TM-30–15 (2015)

W. Xu, M. Wei, K. A. G. Smet, and Y. Lin, “The prediction of perceived colour differences by colour fidelity metrics,” Light. Res. Technol. (in press).

M. P. Royer, A. Wilkerson, M. Wei, K. W. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. (in press).

K.A.G. Smet, Light and Lighting Laboratory, KU Leuven, Technology Campus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium (communication in CIE TC 1–90 WebEx meeting, 17 December 2015)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Spectra of phosphor converted LEDs (left) and Brilliant Mix LEDs (right) at 3000K on the blackbody locus. The captions indicate the dominant wavelengths used for the respective spectra.
Fig. 2
Fig. 2 Comparison of Rf and Ra for 3000K LEDs with different chip wavelengths and phosphor mixtures (left, dashed lines connect identical phosphor systems) and for Brilliant Mix LEDs with different InGaN and InGaAlP chip wavelengths (right, dashed lines connect identical InGaN and InGaAlP wavelengths, respectively).
Fig. 3
Fig. 3 Comparison of Rg (left) and GAI (right) with FCI for phosphor converted (P.C.) and Brilliant Mix (B.M.) LEDs with different blue chip wavelengths. The dashed line is the trend for phosphor converted 450 nm pumped LEDs.
Fig. 4
Fig. 4 IES TM-30-15 color vector graphic of three spectra of phosphor converted LEDs with the CRI-90 phosphor mixture and the dominant wavelengths 442, 450 and 458 nm.
Fig. 5
Fig. 5 Dependence of FCI, Rg, and GAI for chromaticities below blackbody at 3000K for three phosphor mixtures pumped with 450 nm. The distance dC from blackbody is given in MacAdams steps.

Metrics