Abstract

We propose the synthesis of frequency dispersion of layered structures based on the design of multi-ordered optical filters using nanocircuit concepts. Following the well-known insertion loss method commonly employed in the design of electronic and microwave filters, here we theoretically show how we can tailor optical dispersion as we carry out the design of several low-pass, high-pass, band-pass and band-stop filters of different order with a (maximally flat) Butterworth response. We numerically demonstrate that these filters can be designed by combining metasurfaces made of one or two materials acting as optical lumped elements, and, hence, leading to simple, easy to apply, design rules. The theoretical results based on this circuital approach are validated with full-wave numerical simulations. The results presented here can be extended to virtually any frequency dispersion synthesis, filter design procedure and/or functionality, thus opening up exciting possibilities in the design of composite materials with on-demand dispersion and high-performance and compact optical filters using one or two materials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks

Fereshteh Abbasi and Nader Engheta
Opt. Express 22(21) 25109-25119 (2014)

Metatronic analogues of the Wheatstone bridge

Yue Li, Iñigo Liberal, and Nader Engheta
J. Opt. Soc. Am. B 33(2) A72-A79 (2016)

Microwave engineering filter synthesis technique for coupled ridge resonator filters

Thach G. Nguyen, Kiplimo Yego, Guanghui Ren, Andreas Boes, and Arnan Mitchell
Opt. Express 27(23) 34370-34381 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25(11), 651–652 (1974).
    [Crossref]
  2. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  3. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [Crossref]
  4. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
    [Crossref]
  5. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
    [Crossref]
  6. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
    [Crossref] [PubMed]
  7. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
    [Crossref] [PubMed]
  8. D. Park, S. Kim, I. Park, and H. Lim, “Higher order optical resonant filters based on coupled defect resonators in photonic crystals,” J. Lightwave Technol. 23(5), 1923–1928 (2005).
    [Crossref]
  9. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15(4), 1823–1831 (2007).
    [Crossref] [PubMed]
  10. D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene-based plasmonic tunable low-pass filters in the terahertz band,” IEEE Trans. NanoTechnol. 13(6), 1145–1153 (2014).
    [Crossref]
  11. A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
    [Crossref]
  12. J. Nakabayashi, D. Yamamoto, and S. Kurihara, “Band-selective filter in a zigzag graphene nanoribbon,” Phys. Rev. Lett. 102(6), 066803 (2009).
    [Crossref] [PubMed]
  13. Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
    [Crossref]
  14. L. O’Faolain and A. Tsarev, “Experimental demonstration of original optical filter based on multiply coupled waveguides,” Opt. Lett. 39(12), 3627 (2014).
    [Crossref] [PubMed]
  15. D. M. Pozar, Microwave and RF Design of Wireless Systems (JohnWiley & Sons, Inc., 2002).
  16. M. David, Pozar, Microwave Engineering, 4th ed. (JohnWiley & Sons, Inc., 2012).
  17. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
    [Crossref] [PubMed]
  18. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [Crossref] [PubMed]
  19. Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
    [Crossref] [PubMed]
  20. H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
    [Crossref] [PubMed]
  21. J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
    [Crossref] [PubMed]
  22. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
    [Crossref]
  23. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
    [Crossref] [PubMed]
  24. A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects Using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
    [Crossref] [PubMed]
  25. N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
    [Crossref] [PubMed]
  26. D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nat. Commun. 5, 4354 (2014).
    [Crossref] [PubMed]
  27. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
    [Crossref] [PubMed]
  28. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
    [Crossref] [PubMed]
  29. A. Alù, M. E. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
    [Crossref]
  30. F. Abbasi and N. Engheta, “Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks,” Opt. Express 22(21), 25109–25119 (2014).
    [Crossref] [PubMed]
  31. B. A. Munk, Frequency Selective Surfaces: Theory and Design (JohnWiley & Sons, Inc., 2000).
  32. R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
    [Crossref]
  33. H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett. 82(21), 3605–3607 (2003).
    [Crossref]
  34. S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett. 41(4), 266–269 (2004).
    [Crossref]
  35. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
    [Crossref]
  36. J. Cheng, W. L. Wang, H. Mosallaei, and E. Kaxiras, “Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation,” Nano Lett. 14(1), 50–56 (2014).
    [Crossref] [PubMed]
  37. J. Cheng and H. Mosallaei, “Truly achromatic optical metasurfaces: a filter circuit theory-based design,” J. Opt. Soc. Am. B 32(10), 2115–2121 (2015).
    [Crossref]
  38. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
    [Crossref] [PubMed]
  39. J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express 19(23), 23279–23285 (2011).
    [Crossref] [PubMed]
  40. C. Saeidi and D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Opt. Express 21(13), 16170–16180 (2013).
    [Crossref] [PubMed]
  41. C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
    [Crossref]
  42. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Inc., 2003).
  43. R. E. Collin, Foundations for Microwave Engineering, 2nd ed. (IEEE Computer Society Press, 2001).
  44. Y. Li and N. Engheta, “Structuring band-pass dispersion with cascaded high- and low-pass optical metatronic metasrufaces,” in URSI Commission B,International Symposium on Electromagnetic Theory (2016).
  45. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  46. E. D. PALIK, Handbook of Optical Constants of Solids (Elsevier, 1985).
  47. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
    [Crossref]
  48. B. T. Sullivan and K. L. Byrt, “Metal/dielectric transmission interference filters with low reflectance. 2. Experimental results,” Appl. Opt. 34(25), 5684–5694 (1995).
    [Crossref] [PubMed]
  49. A. M. Melo, M. A. Kornberg, P. Kaufmann, M. H. Piazzetta, E. C. Bortolucci, M. B. Zakia, O. H. Bauer, A. Poglitsch, and A. M. P. Alves da Silva, “Metal mesh resonant filters for terahertz frequencies,” Appl. Opt. 47(32), 6064–6069 (2008).
    [Crossref] [PubMed]

2015 (1)

2014 (7)

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene-based plasmonic tunable low-pass filters in the terahertz band,” IEEE Trans. NanoTechnol. 13(6), 1145–1153 (2014).
[Crossref]

L. O’Faolain and A. Tsarev, “Experimental demonstration of original optical filter based on multiply coupled waveguides,” Opt. Lett. 39(12), 3627 (2014).
[Crossref] [PubMed]

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nat. Commun. 5, 4354 (2014).
[Crossref] [PubMed]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

F. Abbasi and N. Engheta, “Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks,” Opt. Express 22(21), 25109–25119 (2014).
[Crossref] [PubMed]

J. Cheng, W. L. Wang, H. Mosallaei, and E. Kaxiras, “Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation,” Nano Lett. 14(1), 50–56 (2014).
[Crossref] [PubMed]

2013 (6)

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

C. Saeidi and D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Opt. Express 21(13), 16170–16180 (2013).
[Crossref] [PubMed]

C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
[Crossref]

2012 (1)

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects Using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

2009 (1)

J. Nakabayashi, D. Yamamoto, and S. Kurihara, “Band-selective filter in a zigzag graphene nanoribbon,” Phys. Rev. Lett. 102(6), 066803 (2009).
[Crossref] [PubMed]

2008 (4)

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

A. Alù, M. E. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

A. M. Melo, M. A. Kornberg, P. Kaufmann, M. H. Piazzetta, E. C. Bortolucci, M. B. Zakia, O. H. Bauer, A. Poglitsch, and A. M. P. Alves da Silva, “Metal mesh resonant filters for terahertz frequencies,” Appl. Opt. 47(32), 6064–6069 (2008).
[Crossref] [PubMed]

2007 (5)

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]

A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15(4), 1823–1831 (2007).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
[Crossref] [PubMed]

2006 (1)

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[Crossref]

2005 (2)

D. Park, S. Kim, I. Park, and H. Lim, “Higher order optical resonant filters based on coupled defect resonators in photonic crystals,” J. Lightwave Technol. 23(5), 1923–1928 (2005).
[Crossref]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

2004 (2)

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett. 41(4), 266–269 (2004).
[Crossref]

2003 (2)

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett. 82(21), 3605–3607 (2003).
[Crossref]

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

1995 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

1988 (1)

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

1974 (1)

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25(11), 651–652 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Abbasi, F.

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

Alù, A.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects Using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

A. Alù, M. E. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Alvarez-Melcon, A.

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene-based plasmonic tunable low-pass filters in the terahertz band,” IEEE Trans. NanoTechnol. 13(6), 1145–1153 (2014).
[Crossref]

Alves da Silva, A. M. P.

Bauer, O. H.

Beenakker, C. W. J.

A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

Bortolucci, E. C.

Bossard, J. A.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[Crossref]

Byrt, K. L.

Caglayan, H.

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Castaldi, G.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Chan, C. H.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Chen, Y.

Chen, Y.-L.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]

Cheng, J.

J. Cheng and H. Mosallaei, “Truly achromatic optical metasurfaces: a filter circuit theory-based design,” J. Opt. Soc. Am. B 32(10), 2115–2121 (2015).
[Crossref]

J. Cheng, W. L. Wang, H. Mosallaei, and E. Kaxiras, “Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation,” Nano Lett. 14(1), 50–56 (2014).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Correas-Serrano, D.

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene-based plasmonic tunable low-pass filters in the terahertz band,” IEEE Trans. NanoTechnol. 13(6), 1145–1153 (2014).
[Crossref]

Cwik, T.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Dregely, D.

D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nat. Commun. 5, 4354 (2014).
[Crossref] [PubMed]

Drupp, R. P.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[Crossref]

East, J.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett. 41(4), 266–269 (2004).
[Crossref]

Edwards, B.

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

Elias, S.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Engheta, N.

D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nat. Commun. 5, 4354 (2014).
[Crossref] [PubMed]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

F. Abbasi and N. Engheta, “Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks,” Opt. Express 22(21), 25109–25119 (2014).
[Crossref] [PubMed]

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects Using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

A. Alù, M. E. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Fan, S.

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

Flanders, D. C.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25(11), 651–652 (1974).
[Crossref]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Galdi, V.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Giessen, H.

D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nat. Commun. 5, 4354 (2014).
[Crossref] [PubMed]

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

Gomez-Diaz, J. S.

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene-based plasmonic tunable low-pass filters in the terahertz band,” IEEE Trans. NanoTechnol. 13(6), 1145–1153 (2014).
[Crossref]

Govindaswamy, S.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett. 41(4), 266–269 (2004).
[Crossref]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Guo, G.-C.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]

Haddad, G. I.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett. 41(4), 266–269 (2004).
[Crossref]

Halas, N. J.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Hong, S.-H.

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Jiang, W.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kagan, C. R.

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

Kaufmann, P.

Kaxiras, E.

J. Cheng, W. L. Wang, H. Mosallaei, and E. Kaxiras, “Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation,” Nano Lett. 14(1), 50–56 (2014).
[Crossref] [PubMed]

Kim, S.

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

Kornberg, M. A.

Kurihara, S.

J. Nakabayashi, D. Yamamoto, and S. Kurihara, “Band-selective filter in a zigzag graphene nanoribbon,” Phys. Rev. Lett. 102(6), 066803 (2009).
[Crossref] [PubMed]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Li, L.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[Crossref]

Li, X.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Lim, H.

Lindfors, K.

D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nat. Commun. 5, 4354 (2014).
[Crossref] [PubMed]

Lippitz, M.

D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nat. Commun. 5, 4354 (2014).
[Crossref] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Liu, N.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Macdonald, K. F.

Magnusson, R.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Mayer, T. S.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[Crossref]

Melo, A. M.

Mittra, R.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Monticone, F.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Mosallaei, H.

J. Cheng and H. Mosallaei, “Truly achromatic optical metasurfaces: a filter circuit theory-based design,” J. Opt. Soc. Am. B 32(10), 2115–2121 (2015).
[Crossref]

J. Cheng, W. L. Wang, H. Mosallaei, and E. Kaxiras, “Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation,” Nano Lett. 14(1), 50–56 (2014).
[Crossref] [PubMed]

Nakabayashi, J.

J. Nakabayashi, D. Yamamoto, and S. Kurihara, “Band-selective filter in a zigzag graphene nanoribbon,” Phys. Rev. Lett. 102(6), 066803 (2009).
[Crossref] [PubMed]

Nordlander, P.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

O’Faolain, L.

Ou, J.-Y.

Papasimakis, N.

Park, D.

Park, I.

Perruisseau-Carrier, J.

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene-based plasmonic tunable low-pass filters in the terahertz band,” IEEE Trans. NanoTechnol. 13(6), 1145–1153 (2014).
[Crossref]

Piazzetta, M. H.

Poglitsch, A.

Qiang, Z.

Ratchford, D.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Rebbert, M.

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett. 82(21), 3605–3607 (2003).
[Crossref]

Rooks, M.

Rycerz, A.

A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

Saeidi, C.

C. Saeidi and D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Opt. Express 21(13), 16170–16180 (2013).
[Crossref] [PubMed]

C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
[Crossref]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Schmidt, R. V.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25(11), 651–652 (1974).
[Crossref]

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

Sekaric, L.

Shank, C. V.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25(11), 651–652 (1974).
[Crossref]

Shi, J.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Silva, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Smith, H. A.

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett. 82(21), 3605–3607 (2003).
[Crossref]

Smith, J. A.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[Crossref]

Soref, R. A.

Standley, R. D.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25(11), 651–652 (1974).
[Crossref]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Sternberg, O.

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett. 82(21), 3605–3607 (2003).
[Crossref]

Sullivan, B. T.

Sun, Y.

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

Tang, Y. U.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[Crossref]

Terry, F.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett. 41(4), 266–269 (2004).
[Crossref]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Topsakal, E.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett. 41(4), 266–269 (2004).
[Crossref]

Totzeck, M.

D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nat. Commun. 5, 4354 (2014).
[Crossref] [PubMed]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

Tsarev, A.

Tworzydlo, J.

A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

van der Weide, D.

C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
[Crossref]

C. Saeidi and D. van der Weide, “Nanoparticle array based optical frequency selective surfaces: theory and design,” Opt. Express 21(13), 16170–16180 (2013).
[Crossref] [PubMed]

Vlasov, Y.

Volakis, J. L.

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett. 41(4), 266–269 (2004).
[Crossref]

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Wang, W. L.

J. Cheng, W. L. Wang, H. Mosallaei, and E. Kaxiras, “Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation,” Nano Lett. 14(1), 50–56 (2014).
[Crossref] [PubMed]

Wang, Y.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Wang, Z.

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

Wen, F.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Werner, D. H.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[Crossref]

Wu, Y.

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Xia, F.

Xiao, Y.-F.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]

Yamamoto, D.

J. Nakabayashi, D. Yamamoto, and S. Kurihara, “Band-selective filter in a zigzag graphene nanoribbon,” Phys. Rev. Lett. 102(6), 066803 (2009).
[Crossref] [PubMed]

Young, M. E.

A. Alù, M. E. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

Zakia, M. B.

Zhang, J.

Zhao, Y.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Zheludev, N. I.

Zhou, W.

Zou, X.-B.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25(11), 651–652 (1974).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett. 82(21), 3605–3607 (2003).
[Crossref]

C. Saeidi and D. van der Weide, “Synthesizing frequency selective metasurfaces with nanodisks,” Appl. Phys. Lett. 103(18), 183101 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[Crossref]

IEEE Trans. NanoTechnol. (1)

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene-based plasmonic tunable low-pass filters in the terahertz band,” IEEE Trans. NanoTechnol. 13(6), 1145–1153 (2014).
[Crossref]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

J. Lightwave Technol. (2)

D. Park, S. Kim, I. Park, and H. Lim, “Higher order optical resonant filters based on coupled defect resonators in photonic crystals,” J. Lightwave Technol. 23(5), 1923–1928 (2005).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

S. Govindaswamy, J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, “Frequency-selective surface based bandpass filters in the near-infrared region,” Microw. Opt. Technol. Lett. 41(4), 266–269 (2004).
[Crossref]

Nano Lett. (3)

J. Cheng, W. L. Wang, H. Mosallaei, and E. Kaxiras, “Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation,” Nano Lett. 14(1), 50–56 (2014).
[Crossref] [PubMed]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nat. Commun. 5, 4354 (2014).
[Crossref] [PubMed]

J. Shi, F. Monticone, S. Elias, Y. Wu, D. Ratchford, X. Li, and A. Alù, “Modular assembly of optical nanocircuits,” Nat. Commun. 5, 3896 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

Nat. Phys. (1)

A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nat. Phys. 3(3), 172–175 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (1)

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[Crossref]

Phys. Rev. B (2)

A. Alù, M. E. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

J. Nakabayashi, D. Yamamoto, and S. Kurihara, “Band-selective filter in a zigzag graphene nanoribbon,” Phys. Rev. Lett. 102(6), 066803 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects Using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, “Near-infrared metatronic nanocircuits by design,” Phys. Rev. Lett. 111(7), 073904 (2013).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Proc. IEEE (1)

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Science (2)

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

Other (7)

D. M. Pozar, Microwave and RF Design of Wireless Systems (JohnWiley & Sons, Inc., 2002).

M. David, Pozar, Microwave Engineering, 4th ed. (JohnWiley & Sons, Inc., 2012).

B. A. Munk, Frequency Selective Surfaces: Theory and Design (JohnWiley & Sons, Inc., 2000).

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Inc., 2003).

R. E. Collin, Foundations for Microwave Engineering, 2nd ed. (IEEE Computer Society Press, 2001).

Y. Li and N. Engheta, “Structuring band-pass dispersion with cascaded high- and low-pass optical metatronic metasrufaces,” in URSI Commission B,International Symposium on Electromagnetic Theory (2016).

E. D. PALIK, Handbook of Optical Constants of Solids (Elsevier, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Sketches and associated circuit diagrams of metatronics-inspired first-order filters: (a) Low-pass filter formed by an electrically thin dielectric (nonmagnetic) material slab. (b) High-pass filter formed by an electrically thin plasmonic slab with negative permittivity. (c) Band-pass filter formed by two adjacent dielectric and plasmonic slabs (parallel connection). (d) Band-stop filter formed by an inhomogeneous slab constructed by alternate dielectric and plasmonic strips (series connection).
Fig. 2
Fig. 2 Higher-order low-pass filter designs: Circuit diagrams of (a) 2nd order and (b) 3rd order filters. Equivalent transmission line models for (c) 2nd order and (d) 3rd order filters. Sketches of the geometry of the metatronic implementation of (e) 2nd order and (f) 3rd order filters using thin slabs with a single dielectric material.
Fig. 3
Fig. 3 Filter transformations: circuit diagram of the impedance transformation from a (a) low-pass filter design to (b) high-pass, (c) band-pass, and (d) band-stop filters. Sketch of the metatronic implementation of (a) low-pass, (b) high-pass, (c) band-pass and (d) band-stop filters formed by metasurfaces made of only one dielectric and one plasmonic material.
Fig. 4
Fig. 4 Simulated performance of higher-order metatronic optical filters. Magnitude of the transmission coefficients ( S 21 ) for 1st, 2nd, 3rd order optical filters (a) low-pass, (b) high-pass, (c) band-pass, and (d) band-stop frequency response. The geometry of the filters is reported in Table 1. Bottom right insets depict a sketch of the geometry of the implementation of a 3rd order filter with layered structures.
Fig. 5
Fig. 5 Transmission and reflection coefficients for the 3rd –ordered filter, for different values of the collision frequency of the plasmonic layer, (a) bandpass filter, (b) bandstop filter.
Fig. 6
Fig. 6 Simulated reflection and transmission coefficients of the bandpass filter design with realistic materials, Ag and Silicon Si, for the configuration described in Table 2.

Tables (2)

Tables Icon

Table 1 Tabulated coefficients and dimensions for the physical implementation of different higher-order filters. For values of ε d and ε m for each case, see the text.

Tables Icon

Table 2 Tabulated coefficients and dimensions for the band-pass filters with realistic materials, Ag [45] and Si [46].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

C slab =a ε d ε 0
L slab = 1 a ω 2 ε m ( ω ) ε 0
C n lp = g n / ( Z 0 ω 3dB ) for n=1,3,
L n lp = g n Z 0 / ω 3dB for n=2,4,
L n hp = Z 0 / ( g n ω 3dB )
C n bp = g n / ( Z 0 ω 0 Δ)
L n bp = Z 0 Δ / ( g n ω 0 )
C n bs = g n Δ / ( Z 0 ω 0 )
L n bs = Z 0 / ( g n ω 0 Δ)
a n lp = g n Z 0 ω 3dB ε d ε 0
a n hp = g n Z 0 ω 3dB ε m ( ω 3dB ) ε 0
r n bp = ε d ε d ε m ( ω 0 )
a n bp = g n ε m ( ω 0 ) ε d Δ Z 0 ω 0 ε d ε 0 ε m ( ω 0 )
r n bs = ε m ( ω 0 ) ε m ( ω 0 ) ε d
a n bs = g n Δ Z 0 ω 0 ε 0 ( ε d ε m ( ω 0 ) )

Metrics