Abstract

A red-green-blue plasmonic random laser is achieved in a multilayer structure, which is fabricated by spin-coating three polymer solutions successively on a silica substrate. Under optical pumping, strong amplification of the polymer radiation can be observed due to the localized surface plasmon resonance of silver nanoparticles embedded in the multilayer structure. Red-green-blue random lasing is simultaneously obtained from the sample based on the enhanced scattering strength of silver nanoparticles. These results are useful for designing compact integrated random laser sources.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-thin plasmonic random lasers

Tianrui Zhai, Zhiyang Xu, Xiaofeng Wu, Yimeng Wang, Feifei Liu, and Xinping Zhang
Opt. Express 24(1) 437-442 (2016)

Plasmonic random lasing in polymer fiber

Songtao Li, Li Wang, Tianrui Zhai, Li Chen, Meng Wang, Yimeng Wang, Fei Tong, Yonglu Wang, and Xinping Zhang
Opt. Express 24(12) 12748-12754 (2016)

Red–green–blue laser emissions from dye-doped poly(vinyl alcohol) films

Seong-Shan Yap, Wee-Ong Siew, Teck-Yong Tou, and Seik-Weng Ng
Appl. Opt. 41(9) 1725-1728 (2002)

References

  • View by:
  • |
  • |
  • |

  1. H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  2. D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  3. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
    [Crossref] [PubMed]
  4. T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
    [Crossref]
  5. X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4(9), 2843–2846 (2012).
    [Crossref] [PubMed]
  6. S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
    [Crossref] [PubMed]
  7. X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
    [Crossref] [PubMed]
  8. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
    [Crossref]
  9. Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
    [Crossref] [PubMed]
  10. G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
    [Crossref]
  11. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
    [Crossref]
  12. L. Wang, Y. Wan, L. Shi, H. Zhong, and L. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
    [Crossref] [PubMed]
  13. E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
    [Crossref]
  14. X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
    [Crossref]
  15. D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
    [Crossref] [PubMed]
  16. R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98(16), 161106 (2011).
    [Crossref]
  17. T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
    [Crossref] [PubMed]
  18. S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
    [Crossref]
  19. S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
  20. C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
    [Crossref] [PubMed]
  21. S. Babin, A. El-Taher, P. Harper, E. Podivilov, and S. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
    [Crossref]
  22. Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
    [Crossref] [PubMed]
  23. B. N. Shivakiran Bhaktha, N. Bachelard, X. Noblin, and P. Sebbah, “Optofluidic random laser,” Appl. Phys. Lett. 101(15), 151101 (2012).
    [Crossref]
  24. S. Chen, X. Zhao, Y. Wang, J. Shi, and D. Liu, “White light emission with red-green-blue lasing action in a disordered system of nanoparticles,” Appl. Phys. Lett. 101(12), 123508 (2012).
    [Crossref]
  25. X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
    [Crossref]
  26. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012).
    [Crossref] [PubMed]
  27. P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
    [Crossref]
  28. S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
    [Crossref] [PubMed]
  29. N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
    [Crossref]
  30. T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
    [Crossref] [PubMed]
  31. T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
    [Crossref] [PubMed]
  32. S. Li, L. Wang, T. Zhai, L. Chen, M. Wang, Y. Wang, F. Tong, Y. Wang, and X. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
    [Crossref] [PubMed]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2016 (3)

2015 (2)

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

2014 (3)

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

2013 (4)

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

2012 (5)

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4(9), 2843–2846 (2012).
[Crossref] [PubMed]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012).
[Crossref] [PubMed]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

B. N. Shivakiran Bhaktha, N. Bachelard, X. Noblin, and P. Sebbah, “Optofluidic random laser,” Appl. Phys. Lett. 101(15), 151101 (2012).
[Crossref]

S. Chen, X. Zhao, Y. Wang, J. Shi, and D. Liu, “White light emission with red-green-blue lasing action in a disordered system of nanoparticles,” Appl. Phys. Lett. 101(12), 123508 (2012).
[Crossref]

2011 (3)

S. Babin, A. El-Taher, P. Harper, E. Podivilov, and S. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98(16), 161106 (2011).
[Crossref]

2010 (2)

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

2009 (1)

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

2008 (2)

D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

2007 (2)

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

2006 (1)

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

2005 (2)

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
[Crossref] [PubMed]

2001 (1)

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

1999 (1)

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ania-Castanon, J.

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Babin, S.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

S. Babin, A. El-Taher, P. Harper, E. Podivilov, and S. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Bachelard, N.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

B. N. Shivakiran Bhaktha, N. Bachelard, X. Noblin, and P. Sebbah, “Optofluidic random laser,” Appl. Phys. Lett. 101(15), 151101 (2012).
[Crossref]

Brito-Silva, A. M.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Cao, H.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Cavalieri, S.

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Chang, R.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chen, C.-N.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Chen, C.-P.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Chen, I.-G.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Chen, J.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Chen, L.

S. Li, L. Wang, T. Zhai, L. Chen, M. Wang, Y. Wang, F. Tong, Y. Wang, and X. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
[Crossref] [PubMed]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Chen, S.

S. Chen, X. Zhao, Y. Wang, J. Shi, and D. Liu, “White light emission with red-green-blue lasing action in a disordered system of nanoparticles,” Appl. Phys. Lett. 101(12), 123508 (2012).
[Crossref]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Chen, W.-T.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Chen, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Churkin, D.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Davidov, D.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

de Araújo, C. B.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de Matos, C. J. S.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de S. Menezes, L.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Deng, L.

Dice, G.

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Dong, T.-Y.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

El-Dardiry, R. G. S.

R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98(16), 161106 (2011).
[Crossref]

Elezzabi, A.

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

El-Taher, A.

S. Babin, A. El-Taher, P. Harper, E. Podivilov, and S. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Flehr, R.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Fu, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Fujita, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Gigan, S.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

Gomes, A. S. L.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Harper, P.

S. Babin, A. El-Taher, P. Harper, E. Podivilov, and S. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Heydari, E.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Hng, H. H.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
[Crossref] [PubMed]

Ho, S.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Hu, Z.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Jia, X. H.

Jia, Y.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Jiang, Y.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kablukov, S.

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Kao, T.-H.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Karalekas, V.

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Lagendijk, A.

R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98(16), 161106 (2011).
[Crossref]

Lau, S. P.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
[Crossref] [PubMed]

Leong, E. S. P.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
[Crossref] [PubMed]

Li, B. H.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Li, H.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
[Crossref] [PubMed]

Li, P. Y.

Li, Q.

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Li, S.

Lin, M.-C.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Liu, D.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

S. Chen, X. Zhao, Y. Wang, J. Shi, and D. Liu, “White light emission with red-green-blue lasing action in a disordered system of nanoparticles,” Appl. Phys. Lett. 101(12), 123508 (2012).
[Crossref]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Liu, F.

Liu, H.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Liu, X. Y.

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4(9), 2843–2846 (2012).
[Crossref] [PubMed]

Luo, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Martinez Gámez, M. A.

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Matoba, T.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Meng, X.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Miao, B.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Ming, H.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Mujumdar, S.

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Murai, S.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Nikulin, M.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Noblin, X.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

B. N. Shivakiran Bhaktha, N. Bachelard, X. Noblin, and P. Sebbah, “Optofluidic random laser,” Appl. Phys. Lett. 101(15), 151101 (2012).
[Crossref]

Podivilov, E.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

S. Babin, A. El-Taher, P. Harper, E. Podivilov, and S. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Popov, O.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Qiao, Q.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Rao, Y. J.

Sebbah, P.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

B. N. Shivakiran Bhaktha, N. Bachelard, X. Noblin, and P. Sebbah, “Optofluidic random laser,” Appl. Phys. Lett. 101(15), 151101 (2012).
[Crossref]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

Seelig, E.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Shan, C. X.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4(9), 2843–2846 (2012).
[Crossref] [PubMed]

Shen, D. Z.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4(9), 2843–2846 (2012).
[Crossref] [PubMed]

Shi, J.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

S. Chen, X. Zhao, Y. Wang, J. Shi, and D. Liu, “White light emission with red-green-blue lasing action in a disordered system of nanoparticles,” Appl. Phys. Lett. 101(12), 123508 (2012).
[Crossref]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Shi, L.

Shi, X.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Shivakiran Bhaktha, B. N.

B. N. Shivakiran Bhaktha, N. Bachelard, X. Noblin, and P. Sebbah, “Optofluidic random laser,” Appl. Phys. Lett. 101(15), 151101 (2012).
[Crossref]

Song, J.-M.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Stumpe, J.

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

Sun, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Tanaka, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Tong, F.

Tong, L.

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

Turitsyn, S.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

S. Babin, A. El-Taher, P. Harper, E. Podivilov, and S. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Vanneste, C.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

Vatnik, I.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Wan, Y.

Wang, C.-W.

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Wang, J.

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Wang, L.

Wang, M.

Wang, P.

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Wang, Q.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wang, S. P.

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4(9), 2843–2846 (2012).
[Crossref] [PubMed]

Wang, Y.

S. Li, L. Wang, T. Zhai, L. Chen, M. Wang, Y. Wang, F. Tong, Y. Wang, and X. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
[Crossref] [PubMed]

T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, L. Chen, M. Wang, Y. Wang, F. Tong, Y. Wang, and X. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

S. Chen, X. Zhao, Y. Wang, J. Shi, and D. Liu, “White light emission with red-green-blue lasing action in a disordered system of nanoparticles,” Appl. Phys. Lett. 101(12), 123508 (2012).
[Crossref]

Wang, Z.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Wang, Z. N.

Wei, S.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Wiersma, D.

D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Wiersma, D. S.

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Wu, H.

Wu, X.

Xu, Z.

Yang, H.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
[Crossref] [PubMed]

Yu, S. F.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
[Crossref] [PubMed]

Yuen, C.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
[Crossref] [PubMed]

Zhai, T.

T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, L. Chen, M. Wang, Y. Wang, F. Tong, Y. Wang, and X. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Zhang, D.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Zhang, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, X.

T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, L. Chen, M. Wang, Y. Wang, F. Tong, Y. Wang, and X. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
[Crossref] [PubMed]

S. Li, L. Wang, T. Zhai, Z. Xu, Y. Wang, J. Wang, and X. Zhang, “Plasmonic random laser on the fiber facet,” Opt. Express 23(18), 23985–23991 (2015).
[Crossref] [PubMed]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Zhang, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

Zhang, Z. Z.

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4(9), 2843–2846 (2012).
[Crossref] [PubMed]

Zhao, X.

S. Chen, X. Zhao, Y. Wang, J. Shi, and D. Liu, “White light emission with red-green-blue lasing action in a disordered system of nanoparticles,” Appl. Phys. Lett. 101(12), 123508 (2012).
[Crossref]

Zhao, Y.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zheng, J.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Zhong, H.

Zhou, J.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Zhou, Y.

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

Zhu, H.

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

Zilbershtein, A.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Zong, Y.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Zou, G.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2(1), 88–93 (2014).
[Crossref]

Appl. Phys. Lett. (8)

B. N. Shivakiran Bhaktha, N. Bachelard, X. Noblin, and P. Sebbah, “Optofluidic random laser,” Appl. Phys. Lett. 101(15), 151101 (2012).
[Crossref]

S. Chen, X. Zhao, Y. Wang, J. Shi, and D. Liu, “White light emission with red-green-blue lasing action in a disordered system of nanoparticles,” Appl. Phys. Lett. 101(12), 123508 (2012).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

G. Dice, S. Mujumdar, and A. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

E. Heydari, R. Flehr, and J. Stumpe, “Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing,” Appl. Phys. Lett. 102(13), 133110 (2013).
[Crossref]

X. Shi, Y. Wang, Z. Wang, Y. Sun, D. Liu, Y. Zhang, Q. Li, and J. Shi, “High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires,” Appl. Phys. Lett. 103(2), 023504 (2013).
[Crossref]

R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98(16), 161106 (2011).
[Crossref]

Light Sci. Appl. (1)

P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: a versatile platformfor manipulating light at the nanoscale,” Light Sci. Appl. 2(10), e102 (2013).
[Crossref]

Nano Lett. (1)

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Nanoscale (3)

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Q. Qiao, C. X. Shan, J. Zheng, H. Zhu, S. F. Yu, B. H. Li, Y. Jia, and D. Z. Shen, “Surface plasmon enhanced electrically pumped random lasers,” Nanoscale 5(2), 513–517 (2013).
[Crossref] [PubMed]

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4(9), 2843–2846 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Turitsyn, S. Babin, A. El-Taher, P. Harper, D. Churkin, S. Kablukov, J. Ania-Castanon, V. Karalekas, and E. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).

Nat. Phys. (2)

D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

Nature (1)

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Chem. Chem. Phys. (1)

T.-Y. Dong, W.-T. Chen, C.-W. Wang, C.-P. Chen, C.-N. Chen, M.-C. Lin, J.-M. Song, I.-G. Chen, and T.-H. Kao, “One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films,” Phys. Chem. Chem. Phys. 11(29), 6269–6275 (2009).
[Crossref] [PubMed]

Phys. Rep. (1)

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Phys. Rev. A (2)

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82(2), 023824 (2010).
[Crossref]

S. Babin, A. El-Taher, P. Harper, E. Podivilov, and S. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (4)

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[Crossref] [PubMed]

C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Small (1)

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, “Flexible Ultraviolet Random Lasers Based on Nanoparticles,” Small 1(10), 956–959 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of the RGB plasmonic random laser. The pump is incident from the side of the glass substrate. (b) SEM image of Ag NPs. The scale bar is 1000 nm. (c) SEM image of cross section of the RGB plasmonic random laser. The scale bar represents 500 nm. The inset is the AFM image of the top surface of the laser device. The scale bar is 400 nm.
Fig. 2
Fig. 2 Extinction spectra of (a) MDMO-PPV film, (b) F8BT film, (c) PFO film, and (d) five-layer film with (red/green/blue/purple filled circles) and without (red/green/blue/purple empty circles) Ag NPs. The black lines with filled circles indicate the extinction spectra of Ag NPs on the substrate. The yellow line indicates the wavelength of the pump light. The inset shows the plasmonic enhancement of the Ag NP embedded in the polymer at 400 nm. The black arrow denotes the direction of the incident light. The red arrow indicates the polarization direction of the pump. The scale bar is 50 nm.
Fig. 3
Fig. 3 Normalized PL spectra of of (a) MDMO-PPV film, (b) F8BT film, (c) PFO film, and (d) five-layer film with (red/green/blue/purple filled circles) and without (red/green/blue/purple empty circles) Ag NPs. The insets show the plasmonic enhancement of the Ag NP embedded in the polymer at three lasing wavelengths. The black arrows denote the direction of the incident light. The red arrows indicate the polarization direction of the pump. All scale bars are 50 nm.
Fig. 4
Fig. 4 (a) Measured emission spectra of the RGB plasmonic random laser. The inset demonstrates a typical distribution of the lasing mode in a random system. (b) FWHM and Output of the RGB emission from the random laser as a function of pump fluences, indicating different lasing thresholds as denoted by the arrows.
Fig. 5
Fig. 5 Chromaticity of lasing spectra in Fig. 4(a), showing as nine red dots. The black arrow denotes the evolution of the CIE coordinates with increasing pump fluences.

Metrics