Abstract

A technique for the instantaneous frequency measurement (IFM) of broadband signals is proposed based on stimulated Brillouin scattering (SBS) in a single-mode optical fiber. The instantaneous frequency and amplitude information is obtained by the narrowband filtering of the acoustic-optic interaction in the SBS process. Through sideband management of the optical-modulation, the IFM bandwidth can be far beyond the Brillouin frequency shift (i.e. ~11 GHz in 1550 nm). Proof-of-concept experiments for both the linearly frequency modulated pulse and frequency Costas coded pulse are carried out to verify the feasibility of the IFM.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering

Xin Long, Weiwen Zou, and Jianping Chen
Opt. Express 24(5) 5162-5171 (2016)

Brillouin instantaneous frequency measurement with an arbitrary response for potential real-time implementation

Weiwen Zou, Xin Long, Xing Li, Guangyao Xin, and Jianping Chen
Opt. Lett. 44(8) 2045-2048 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol.in press).
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  5. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
    [Crossref] [PubMed]
  6. L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(9), 1188–1190 (2006).
    [Crossref]
  7. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33(2), 98–100 (2008).
    [Crossref] [PubMed]
  8. J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
    [Crossref]
  9. Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Commun. 21(1), 52–54 (2011).
    [Crossref]
  10. M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
    [Crossref]
  11. D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).
    [Crossref]
  12. J. Niu, S. Fu, K. Xu, J. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
    [Crossref]
  13. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39(8), 2419–2422 (2014).
    [Crossref] [PubMed]
  14. D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
    [Crossref]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  16. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(17), 1552–1554 (2002).
    [Crossref] [PubMed]
  17. B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32(1), 23–25 (2007).
    [Crossref] [PubMed]
  18. D. Marpaung, B. Morrison, M. Pagani, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
    [Crossref]
  19. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
    [Crossref]
  20. H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
    [Crossref]
  21. S. Shakthi, A. Suresh, V. Reddy, and R. Pant, “Wideband instantaneous frequency measurement using stimulated Brillouin scattering,” in Photonics and Fiber Technology Congress (2016), paper AT5C.5.
  22. W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37(2), 166–168 (2012).
    [Crossref] [PubMed]
  23. X. Long, W. Zou, H. Li, and J. Chen, “Critical condition for spectrum distortion of pump–probe-based stimulated Brillouin scattering in an optical fiber,” Appl. Phys. Express 7(8), 082501 (2014).
    [Crossref]
  24. M. C. Li, “A high precision Doppler radar based on optical fiber delay loops,” IEEE Trans. Antenn. Propag. 52(12), 3319–3328 (2004).
    [Crossref]
  25. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
    [Crossref] [PubMed]
  26. W. Zou, Z. He, and K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16(23), 18804–18812 (2008).
    [Crossref] [PubMed]
  27. N. Levanon and E. Mozeson, Radar Signals (Wiley, 2004).

2016 (2)

2015 (3)

2014 (3)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

X. Long, W. Zou, H. Li, and J. Chen, “Critical condition for spectrum distortion of pump–probe-based stimulated Brillouin scattering in an optical fiber,” Appl. Phys. Express 7(8), 082501 (2014).
[Crossref]

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39(8), 2419–2422 (2014).
[Crossref] [PubMed]

2013 (1)

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).
[Crossref]

2012 (1)

2011 (3)

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Commun. 21(1), 52–54 (2011).
[Crossref]

J. Niu, S. Fu, K. Xu, J. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
[Crossref]

2009 (2)

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

2008 (2)

2007 (2)

2006 (1)

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(9), 1188–1190 (2006).
[Crossref]

2004 (1)

M. C. Li, “A high precision Doppler radar based on optical fiber delay loops,” IEEE Trans. Antenn. Propag. 52(12), 3319–3328 (2004).
[Crossref]

2002 (1)

1991 (1)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
[Crossref] [PubMed]

Aalto, T.

Aditya, S.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Boyd, R. W.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
[Crossref] [PubMed]

Buckley, B. W.

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

Bui, L. A.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Casas-Bedoya, A.

Chan, E. H. W.

Chen, J.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

X. Long, W. Zou, H. Li, and J. Chen, “Critical condition for spectrum distortion of pump–probe-based stimulated Brillouin scattering in an optical fiber,” Appl. Phys. Express 7(8), 082501 (2014).
[Crossref]

Chi, H.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Commun. 21(1), 52–54 (2011).
[Crossref]

Choi, D. Y.

Choi, D.-Y.

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Eggleton, B. J.

Emami, H.

Fu, S.

Gaeta, A. L.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
[Crossref] [PubMed]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Harjanne, M.

He, Z.

Hotate, K.

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(9), 1188–1190 (2006).
[Crossref]

Jalali, B.

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

Jiang, H.

Kapulainen, M.

Kikuchi, K.

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lam, D.

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Li, H.

X. Long, W. Zou, H. Li, and J. Chen, “Critical condition for spectrum distortion of pump–probe-based stimulated Brillouin scattering in an optical fiber,” Appl. Phys. Express 7(8), 082501 (2014).
[Crossref]

Li, M.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Commun. 21(1), 52–54 (2011).
[Crossref]

Li, M. C.

M. C. Li, “A high precision Doppler radar based on optical fiber delay loops,” IEEE Trans. Antenn. Propag. 52(12), 3319–3328 (2004).
[Crossref]

Li, W.

Li, Z.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Commun. 21(1), 52–54 (2011).
[Crossref]

Lin, C.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Lin, J. T.

Lonappan, C. K.

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

X. Long, W. Zou, H. Li, and J. Chen, “Critical condition for spectrum distortion of pump–probe-based stimulated Brillouin scattering in an optical fiber,” Appl. Phys. Express 7(8), 082501 (2014).
[Crossref]

Luther-Davies, B.

Madden, S. J.

Madni, A. M.

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Marpaung, D.

Martí, J.

Minasian, R. A.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39(8), 2419–2422 (2014).
[Crossref] [PubMed]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Mitchell, A.

Morrison, B.

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(9), 1188–1190 (2006).
[Crossref]

Nguyen, T. A.

Niu, J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pagani, M.

Pan, S.

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol.in press).

Pant, R.

S. Shakthi, A. Suresh, V. Reddy, and R. Pant, “Wideband instantaneous frequency measurement using stimulated Brillouin scattering,” in Photonics and Fiber Technology Congress (2016), paper AT5C.5.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Piqueras, M. A.

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Reddy, V.

S. Shakthi, A. Suresh, V. Reddy, and R. Pant, “Wideband instantaneous frequency measurement using stimulated Brillouin scattering,” in Photonics and Fiber Technology Congress (2016), paper AT5C.5.

Sarkhosh, N.

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shakthi, S.

S. Shakthi, A. Suresh, V. Reddy, and R. Pant, “Wideband instantaneous frequency measurement using stimulated Brillouin scattering,” in Photonics and Fiber Technology Congress (2016), paper AT5C.5.

Shum, P. P.

Suresh, A.

S. Shakthi, A. Suresh, V. Reddy, and R. Pant, “Wideband instantaneous frequency measurement using stimulated Brillouin scattering,” in Photonics and Fiber Technology Congress (2016), paper AT5C.5.

Takushima, Y.

Tanemura, T.

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Vidal, B.

Vu, K.

Wang, C.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Commun. 21(1), 52–54 (2011).
[Crossref]

Wang, L. X.

Wu, J.

Xu, K.

Yan, L.

Yao, J.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Commun. 21(1), 52–54 (2011).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol.in press).

Zhang, H.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Zhang, S.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Zhang, W.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Zhang, X.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Commun. 21(1), 52–54 (2011).
[Crossref]

Zhang, Y.

Zhou, J.

Zhu, N. H.

Zou, W.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

X. Long, W. Zou, H. Li, and J. Chen, “Critical condition for spectrum distortion of pump–probe-based stimulated Brillouin scattering in an optical fiber,” Appl. Phys. Express 7(8), 082501 (2014).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16(23), 18804–18812 (2008).
[Crossref] [PubMed]

Appl. Phys. Express (1)

X. Long, W. Zou, H. Li, and J. Chen, “Critical condition for spectrum distortion of pump–probe-based stimulated Brillouin scattering in an optical fiber,” Appl. Phys. Express 7(8), 082501 (2014).
[Crossref]

IEEE Instrum. Meas. Mag. (1)

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

IEEE Microw. Wireless Commun. (1)

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Commun. 21(1), 52–54 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (4)

L. V. T. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(9), 1188–1190 (2006).
[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

M. C. Li, “A high precision Doppler radar based on optical fiber delay loops,” IEEE Trans. Antenn. Propag. 52(12), 3319–3328 (2004).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (5)

Optica (3)

Phys. Rev. A (1)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
[Crossref] [PubMed]

Sci. Rep. (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Other (4)

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol.in press).

S. Shakthi, A. Suresh, V. Reddy, and R. Pant, “Wideband instantaneous frequency measurement using stimulated Brillouin scattering,” in Photonics and Fiber Technology Congress (2016), paper AT5C.5.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

N. Levanon and E. Mozeson, Radar Signals (Wiley, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Principle of the broadband IFM based on SBS process. The center of the filtering response is selected by tuning the frequency of the pump lightwave. After the SBS media (such as an optical fiber), the corresponding frequency component of the probe lightwave is scanned and amplified. The combined measurement result reveals the instantaneous frequency and power information of the signal that is modulated on the probe lightwave.
Fig. 2
Fig. 2 Illustration of the spectral and temporal resolution of the SBS based IFM. Through tuning the pump frequency, the Brillouin filters with different frequency center affect the corresponding components along the signal. The spectral resolution is dependent on the BGS linewidth and the temporal resolution is related to the signal’s characterization.
Fig. 3
Fig. 3 Several cases of the sidebands management. (a) Both upper sidebands: signal’s frequency is limited to BMωB. (b) Lower sideband for probe: measurement range can reach BM. When probe frequency is close to ωB, (c) lower sidebands for probe suffer the carrier whereas (d) upper sidebands don’t. The inset (i) schematically shows the relation between pump and probe lightwaves in frequency domain.
Fig. 4
Fig. 4 Experimental setup. DFB-LD: distributed-feedback laser. PC: polarization controller. SSBM: single sideband modulator. EDFA: erbium-doped fiber amplifier. ISO: isolator. PD: photo-detector.
Fig. 5
Fig. 5 Proof-of-concept experimental result for an LFM pulse with 1 μs duration and 1 GHz sweep range (from 4.3 GHz to 5.3 GHz). (a) Short-time Fourier transform result based on direct sampling/processing. (b) Combined probe gain from the SBS based IFM. (c) Comparison between two IFM calculated from (a) and (b). (d) Measured frequency errors.
Fig. 6
Fig. 6 Measurement results for the frequency Costas coded pulses. The frequency step is 200 MHz. The time steps are (a) 5 ns and (b) 50 ns, respectively.
Fig. 7
Fig. 7 Experimental results for an LFM signal with frequency sweeping from 0.5 GHz to 28 GHz. The entire measurement is divided into two parts. One part scanned from 0 to 12 GHz is implemented with (a) upper sideband modulation or (b) lower sideband modulation for the probe lightwave. (c) The entire measurement result. (d) The power spectrum of the signal by searching the peak values of (c) is compared to the spectrum measured by the FSUP.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E Sout ( t+T ) E S0 ( t )L F -1 [ E S0 ( ω ) 1/( 2 τ p )+i( ω ω L + ω B ) ],

Metrics