Abstract

In 1954, Dicke predicted that a system of quantum emitters confined to a subwavelength volume would produce a superradiant burst. For such a burst to occur, the emitters must be in the special Dicke state with zero dipole moment. We show that a superradiant burst may also arise for non-Dicke initial states with a nonzero dipole moment. Both for Dicke and non-Dicke initial states, superradiance arises due to a decrease in the dispersion of the quantum phase of the emitter state. For non-Dicke states, the quantum phase is related to the phase of long-period envelopes which modulate the oscillations of the dipole moments. A decrease in the dispersion of the quantum phase causes a decrease in the dispersion of envelope phases that results in constructive interference of the envelopes and the superradiant burst.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superradiance of a subwavelength array of classical nonlinear emitters

N. E. Nefedkin, E. S. Andrianov, A. A. Zyablovsky, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky
Opt. Express 24(4) 3464-3478 (2016)

Dicke superradiance in solids [Invited]

Kankan Cong, Qi Zhang, Yongrui Wang, G. Timothy Noe, Alexey Belyanin, and Junichiro Kono
J. Opt. Soc. Am. B 33(7) C80-C101 (2016)

Detection of multipartite entanglement in the vicinity of symmetric Dicke states

Géza Tóth
J. Opt. Soc. Am. B 24(2) 275-282 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
    [Crossref]
  2. L. Allen and J. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).
  3. A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
    [Crossref]
  4. M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Phys. Rep. 93(5), 301–396 (1982).
    [Crossref]
  5. J. D. Macomber, The Dynamics of Spectroscopic Transitions (Wiley, 1976).
  6. L. I. Men’shikov, “Superradiance and related phenomena,” Phys. Uspekhi 42(2), 107–147 (1999).
    [Crossref]
  7. P. P. Vasil’ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys. 72(7), 076501 (2009).
    [Crossref]
  8. P. P. Vasil’ev, R. V. Penty, and I. H. White, “Superradiant emission in semiconductor diode laser structures,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500210 (2013).
    [Crossref]
  9. B. M. Garraway, “The Dicke model in quantum optics: Dicke model revisited,” Phil. Trans. R. Soc. A 369(1939), 1137–1155 (2011).
    [Crossref]
  10. M. O. Scully and A. A. Svidzinsky, “The effects of the N atom collective Lamb shift on single photon superradiance,” Phys. Lett. A 373(14), 1283–1286 (2009).
    [Crossref]
  11. A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of N atoms,” Phys. Rev. Lett. 100(16), 160504 (2008).
    [Crossref]
  12. A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators,” Phys. Rev. A 81(5), 053821 (2010).
    [Crossref]
  13. N. E. Nefedkin, E. S. Andrianov, A. A. Zyablovsky, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Superradiance of a subwavelength array of classical nonlinear emitters,” Opt. Express 24(4), 3464–3478 (2016).
    [Crossref]
  14. L. A. Vainstein and A. I. Kleev, “Cooperative radiation of electron-oscillators,” Sov. Phys. Dokl. 35, 359–363 (1990).
  15. D. Polder, M. F. H. Schuurmans, and Q. H. F. Vrehen, “Superfluorescence: Quantum-mechanical derivation of Maxwell-Bloch description with fluctuating field source,” Phys. Rev. A 19(3), 1192–1203 (1979).
    [Crossref]
  16. R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: Superfluorescence,” Phys. Rev. A 11(5), 1507–1521 (1975).
    [Crossref]
  17. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
    [Crossref]
  18. R. Schroeder, A. Knigge, M. Zorn, M. Weyers, and B. Ullrich, “Femtosecond excitation cavity studies and superluminescence by two-photon absorption in vertical cavity lasers at 300 K,” Phys. Rev. B 66(24), 245302 (2002).
    [Crossref]
  19. L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
    [Crossref]
  20. M. S. Malcuit, J. J. Maki, D. J. S. Boyd, and W. Robert, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
    [Crossref]
  21. G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A: Gen. Phys. 4(2), 238–243 (1971).
    [Crossref]
  22. H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, 2002).
  23. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48(2), 119–130 (1976).
    [Crossref]
  24. C. K. Law and S. K. Y. Lee, “Dynamic photon-mode selection in Dicke superradiance,” Phys. Rev. A 75(3), 033813 (2007).
    [Crossref]
  25. D. Meiser and M. J. Holland, “Intensity fluctuations in steady-state superradiance,” Phys. Rev. A 81(6), 063827 (2010).
    [Crossref]
  26. E. M. Kessler, S. Yelin, M. D. Lukin, J. I. Cirac, and G. Giedke, “Optical Superradiance from Nuclear Spin Environment of Single-Photon Emitters,” Phys. Rev. Lett. 104(14), 143601 (2010).
    [Crossref]
  27. M. J. A. Schuetz, E. M. Kessler, J. I. Cirac, and G. Giedke, “Superradiance-like electron transport through a quantum dot,” Phys. Rev. B 86(8), 085322 (2012).
    [Crossref]
  28. T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke subradiance from a large cloud of two-level systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
    [Crossref]
  29. Y. Su, D. Bimberg, A. Knorr, and A. Carmele, “Collective light emission revisited: reservoir induced coherence,” Phys. Rev. Lett. 110(11), 113604 (2013).
    [Crossref]
  30. W. Abdussalam and P. Machnikowski, “Superradiance and enhanced luminescence from ensembles of a few self-assembled quantum dots,” Phys. Rev. B 90(12), 125307 (2014).
    [Crossref]
  31. V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
    [Crossref]
  32. J.-P. Gazeau, Coherent States in Quantum Physics (Wiley, 2009).
  33. D. T. Pegg and S. M. Barnett, “Quantum optical phase,” J. Mod. Opt. 44, 225–264 (1997).
  34. V. N. Popov and V. S. Yarunin, “Quantum and quasi-classical states of the photon phase operator,” J. Mod. Opt. 39(7), 1525–1531 (1992).
    [Crossref]
  35. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).
  36. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).
  37. V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
    [Crossref]
  38. I. Tralle and P. Zieba, “Induced N2-cooperative phenomenon in an ensemble of the nonlinear coupled oscillators,” Phys. Lett. A 378(20), 1364–1368 (2014).
    [Crossref]
  39. A. A. Zyablovsky, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Light propagation in photonic crystal with gain: Applicability of the negative loss approximation,” Phot. Nano. Fund. Appl. 9(4), 398–404 (2011).
    [Crossref]
  40. S. Solimeno, B. Crosignani, and P. D. Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, 1968).
  41. A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
    [Crossref]
  42. S. M. Dutra, Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box (Wiley, 2005).
  43. M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117(7), 073002 (2016).
    [Crossref]
  44. R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha, J. W. R. Tabosa, and D. Felinto, “Single-photon superradiance in cold atoms,” Phys. Rev. A 90(2), 023848 (2014).
    [Crossref]
  45. N. S. Ginzburg, Y. V. Novozhilova, and A. S. Sergeev, “Superradiance of ensembles of classical electron-oscillators as a method for generation of ultrashort electromagnetic pulses,” Nucl. Instrum. Methods Phys. Res. 341(1-3), 230–233 (1994).
    [Crossref]
  46. Y. A. Il’inskii and N. S. Maslova, “Classical analog of superradiance in a system of interacting nonlinear oscillators,” Sov. Phys. JETP 67, 96–97 (1988).

2016 (2)

N. E. Nefedkin, E. S. Andrianov, A. A. Zyablovsky, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Superradiance of a subwavelength array of classical nonlinear emitters,” Opt. Express 24(4), 3464–3478 (2016).
[Crossref]

M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117(7), 073002 (2016).
[Crossref]

2014 (3)

R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha, J. W. R. Tabosa, and D. Felinto, “Single-photon superradiance in cold atoms,” Phys. Rev. A 90(2), 023848 (2014).
[Crossref]

W. Abdussalam and P. Machnikowski, “Superradiance and enhanced luminescence from ensembles of a few self-assembled quantum dots,” Phys. Rev. B 90(12), 125307 (2014).
[Crossref]

I. Tralle and P. Zieba, “Induced N2-cooperative phenomenon in an ensemble of the nonlinear coupled oscillators,” Phys. Lett. A 378(20), 1364–1368 (2014).
[Crossref]

2013 (2)

Y. Su, D. Bimberg, A. Knorr, and A. Carmele, “Collective light emission revisited: reservoir induced coherence,” Phys. Rev. Lett. 110(11), 113604 (2013).
[Crossref]

P. P. Vasil’ev, R. V. Penty, and I. H. White, “Superradiant emission in semiconductor diode laser structures,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500210 (2013).
[Crossref]

2012 (3)

M. J. A. Schuetz, E. M. Kessler, J. I. Cirac, and G. Giedke, “Superradiance-like electron transport through a quantum dot,” Phys. Rev. B 86(8), 085322 (2012).
[Crossref]

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke subradiance from a large cloud of two-level systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

2011 (2)

A. A. Zyablovsky, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Light propagation in photonic crystal with gain: Applicability of the negative loss approximation,” Phot. Nano. Fund. Appl. 9(4), 398–404 (2011).
[Crossref]

B. M. Garraway, “The Dicke model in quantum optics: Dicke model revisited,” Phil. Trans. R. Soc. A 369(1939), 1137–1155 (2011).
[Crossref]

2010 (3)

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators,” Phys. Rev. A 81(5), 053821 (2010).
[Crossref]

D. Meiser and M. J. Holland, “Intensity fluctuations in steady-state superradiance,” Phys. Rev. A 81(6), 063827 (2010).
[Crossref]

E. M. Kessler, S. Yelin, M. D. Lukin, J. I. Cirac, and G. Giedke, “Optical Superradiance from Nuclear Spin Environment of Single-Photon Emitters,” Phys. Rev. Lett. 104(14), 143601 (2010).
[Crossref]

2009 (3)

P. P. Vasil’ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys. 72(7), 076501 (2009).
[Crossref]

M. O. Scully and A. A. Svidzinsky, “The effects of the N atom collective Lamb shift on single photon superradiance,” Phys. Lett. A 373(14), 1283–1286 (2009).
[Crossref]

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
[Crossref]

2008 (1)

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of N atoms,” Phys. Rev. Lett. 100(16), 160504 (2008).
[Crossref]

2007 (1)

C. K. Law and S. K. Y. Lee, “Dynamic photon-mode selection in Dicke superradiance,” Phys. Rev. A 75(3), 033813 (2007).
[Crossref]

2005 (1)

V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
[Crossref]

2002 (1)

R. Schroeder, A. Knigge, M. Zorn, M. Weyers, and B. Ullrich, “Femtosecond excitation cavity studies and superluminescence by two-photon absorption in vertical cavity lasers at 300 K,” Phys. Rev. B 66(24), 245302 (2002).
[Crossref]

1999 (1)

L. I. Men’shikov, “Superradiance and related phenomena,” Phys. Uspekhi 42(2), 107–147 (1999).
[Crossref]

1997 (1)

D. T. Pegg and S. M. Barnett, “Quantum optical phase,” J. Mod. Opt. 44, 225–264 (1997).

1994 (1)

N. S. Ginzburg, Y. V. Novozhilova, and A. S. Sergeev, “Superradiance of ensembles of classical electron-oscillators as a method for generation of ultrashort electromagnetic pulses,” Nucl. Instrum. Methods Phys. Res. 341(1-3), 230–233 (1994).
[Crossref]

1992 (1)

V. N. Popov and V. S. Yarunin, “Quantum and quasi-classical states of the photon phase operator,” J. Mod. Opt. 39(7), 1525–1531 (1992).
[Crossref]

1990 (1)

L. A. Vainstein and A. I. Kleev, “Cooperative radiation of electron-oscillators,” Sov. Phys. Dokl. 35, 359–363 (1990).

1988 (2)

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Y. A. Il’inskii and N. S. Maslova, “Classical analog of superradiance in a system of interacting nonlinear oscillators,” Sov. Phys. JETP 67, 96–97 (1988).

1987 (1)

M. S. Malcuit, J. J. Maki, D. J. S. Boyd, and W. Robert, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref]

1982 (1)

M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Phys. Rep. 93(5), 301–396 (1982).
[Crossref]

1980 (1)

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

1979 (1)

D. Polder, M. F. H. Schuurmans, and Q. H. F. Vrehen, “Superfluorescence: Quantum-mechanical derivation of Maxwell-Bloch description with fluctuating field source,” Phys. Rev. A 19(3), 1192–1203 (1979).
[Crossref]

1976 (1)

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48(2), 119–130 (1976).
[Crossref]

1975 (1)

R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: Superfluorescence,” Phys. Rev. A 11(5), 1507–1521 (1975).
[Crossref]

1973 (1)

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[Crossref]

1971 (1)

G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A: Gen. Phys. 4(2), 238–243 (1971).
[Crossref]

1954 (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Abdussalam, W.

W. Abdussalam and P. Machnikowski, “Superradiance and enhanced luminescence from ensembles of a few self-assembled quantum dots,” Phys. Rev. B 90(12), 125307 (2014).
[Crossref]

Allen, L.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[Crossref]

G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A: Gen. Phys. 4(2), 238–243 (1971).
[Crossref]

Alphonse, G. A.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Andreev, A. V.

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

Andrianov, E. S.

Araújo, M. O.

M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117(7), 073002 (2016).
[Crossref]

Barnett, S. M.

D. T. Pegg and S. M. Barnett, “Quantum optical phase,” J. Mod. Opt. 44, 225–264 (1997).

Bienaimé, T.

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke subradiance from a large cloud of two-level systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref]

Bimberg, D.

Y. Su, D. Bimberg, A. Knorr, and A. Carmele, “Collective light emission revisited: reservoir induced coherence,” Phys. Rev. Lett. 110(11), 113604 (2013).
[Crossref]

Bonifacio, R.

R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: Superfluorescence,” Phys. Rev. A 11(5), 1507–1521 (1975).
[Crossref]

Boyd, D. J. S.

M. S. Malcuit, J. J. Maki, D. J. S. Boyd, and W. Robert, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref]

Carmele, A.

Y. Su, D. Bimberg, A. Knorr, and A. Carmele, “Collective light emission revisited: reservoir induced coherence,” Phys. Rev. Lett. 110(11), 113604 (2013).
[Crossref]

Chang, J.-T.

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators,” Phys. Rev. A 81(5), 053821 (2010).
[Crossref]

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of N atoms,” Phys. Rev. Lett. 100(16), 160504 (2008).
[Crossref]

Cirac, J. I.

M. J. A. Schuetz, E. M. Kessler, J. I. Cirac, and G. Giedke, “Superradiance-like electron transport through a quantum dot,” Phys. Rev. B 86(8), 085322 (2012).
[Crossref]

E. M. Kessler, S. Yelin, M. D. Lukin, J. I. Cirac, and G. Giedke, “Optical Superradiance from Nuclear Spin Environment of Single-Photon Emitters,” Phys. Rev. Lett. 104(14), 143601 (2010).
[Crossref]

de Oliveira, R. A.

R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha, J. W. R. Tabosa, and D. Felinto, “Single-photon superradiance in cold atoms,” Phys. Rev. A 90(2), 023848 (2014).
[Crossref]

Dicke, R. H.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Dorofeenko, A. V.

N. E. Nefedkin, E. S. Andrianov, A. A. Zyablovsky, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Superradiance of a subwavelength array of classical nonlinear emitters,” Opt. Express 24(4), 3464–3478 (2016).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

A. A. Zyablovsky, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Light propagation in photonic crystal with gain: Applicability of the negative loss approximation,” Phot. Nano. Fund. Appl. 9(4), 398–404 (2011).
[Crossref]

Emel’yanov, V. I.

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

Ettenberg, M.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Felinto, D.

R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha, J. W. R. Tabosa, and D. Felinto, “Single-photon superradiance in cold atoms,” Phys. Rev. A 90(2), 023848 (2014).
[Crossref]

Garraway, B. M.

B. M. Garraway, “The Dicke model in quantum optics: Dicke model revisited,” Phil. Trans. R. Soc. A 369(1939), 1137–1155 (2011).
[Crossref]

Giedke, G.

M. J. A. Schuetz, E. M. Kessler, J. I. Cirac, and G. Giedke, “Superradiance-like electron transport through a quantum dot,” Phys. Rev. B 86(8), 085322 (2012).
[Crossref]

E. M. Kessler, S. Yelin, M. D. Lukin, J. I. Cirac, and G. Giedke, “Optical Superradiance from Nuclear Spin Environment of Single-Photon Emitters,” Phys. Rev. Lett. 104(14), 143601 (2010).
[Crossref]

Gilbert, D. B.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Ginzburg, N. S.

N. S. Ginzburg, Y. V. Novozhilova, and A. S. Sergeev, “Superradiance of ensembles of classical electron-oscillators as a method for generation of ultrashort electromagnetic pulses,” Nucl. Instrum. Methods Phys. Res. 341(1-3), 230–233 (1994).
[Crossref]

Gross, M.

M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Phys. Rep. 93(5), 301–396 (1982).
[Crossref]

Guerin, W.

M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117(7), 073002 (2016).
[Crossref]

Haroche, S.

M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Phys. Rep. 93(5), 301–396 (1982).
[Crossref]

Harvey, M. G.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Holland, M. J.

D. Meiser and M. J. Holland, “Intensity fluctuations in steady-state superradiance,” Phys. Rev. A 81(6), 063827 (2010).
[Crossref]

Il’inskii, Y. A.

Y. A. Il’inskii and N. S. Maslova, “Classical analog of superradiance in a system of interacting nonlinear oscillators,” Sov. Phys. JETP 67, 96–97 (1988).

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

Kaiser, R.

M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117(7), 073002 (2016).
[Crossref]

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke subradiance from a large cloud of two-level systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref]

Kessler, E. M.

M. J. A. Schuetz, E. M. Kessler, J. I. Cirac, and G. Giedke, “Superradiance-like electron transport through a quantum dot,” Phys. Rev. B 86(8), 085322 (2012).
[Crossref]

E. M. Kessler, S. Yelin, M. D. Lukin, J. I. Cirac, and G. Giedke, “Optical Superradiance from Nuclear Spin Environment of Single-Photon Emitters,” Phys. Rev. Lett. 104(14), 143601 (2010).
[Crossref]

Kleev, A. I.

L. A. Vainstein and A. I. Kleev, “Cooperative radiation of electron-oscillators,” Sov. Phys. Dokl. 35, 359–363 (1990).

Knigge, A.

R. Schroeder, A. Knigge, M. Zorn, M. Weyers, and B. Ullrich, “Femtosecond excitation cavity studies and superluminescence by two-photon absorption in vertical cavity lasers at 300 K,” Phys. Rev. B 66(24), 245302 (2002).
[Crossref]

Knorr, A.

Y. Su, D. Bimberg, A. Knorr, and A. Carmele, “Collective light emission revisited: reservoir induced coherence,” Phys. Rev. Lett. 110(11), 113604 (2013).
[Crossref]

Krešic, I.

M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117(7), 073002 (2016).
[Crossref]

Law, C. K.

C. K. Law and S. K. Y. Lee, “Dynamic photon-mode selection in Dicke superradiance,” Phys. Rev. A 75(3), 033813 (2007).
[Crossref]

Lee, S. K. Y.

C. K. Law and S. K. Y. Lee, “Dynamic photon-mode selection in Dicke superradiance,” Phys. Rev. A 75(3), 033813 (2007).
[Crossref]

Lindblad, G.

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48(2), 119–130 (1976).
[Crossref]

Lisyansky, A. A.

N. E. Nefedkin, E. S. Andrianov, A. A. Zyablovsky, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Superradiance of a subwavelength array of classical nonlinear emitters,” Opt. Express 24(4), 3464–3478 (2016).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

Lugiato, L. A.

R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: Superfluorescence,” Phys. Rev. A 11(5), 1507–1521 (1975).
[Crossref]

Lukin, M. D.

E. M. Kessler, S. Yelin, M. D. Lukin, J. I. Cirac, and G. Giedke, “Optical Superradiance from Nuclear Spin Environment of Single-Photon Emitters,” Phys. Rev. Lett. 104(14), 143601 (2010).
[Crossref]

Machnikowski, P.

W. Abdussalam and P. Machnikowski, “Superradiance and enhanced luminescence from ensembles of a few self-assembled quantum dots,” Phys. Rev. B 90(12), 125307 (2014).
[Crossref]

Maki, J. J.

M. S. Malcuit, J. J. Maki, D. J. S. Boyd, and W. Robert, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref]

Malcuit, M. S.

M. S. Malcuit, J. J. Maki, D. J. S. Boyd, and W. Robert, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref]

Martins, W. S.

R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha, J. W. R. Tabosa, and D. Felinto, “Single-photon superradiance in cold atoms,” Phys. Rev. A 90(2), 023848 (2014).
[Crossref]

Maslova, N. S.

Y. A. Il’inskii and N. S. Maslova, “Classical analog of superradiance in a system of interacting nonlinear oscillators,” Sov. Phys. JETP 67, 96–97 (1988).

Meiser, D.

D. Meiser and M. J. Holland, “Intensity fluctuations in steady-state superradiance,” Phys. Rev. A 81(6), 063827 (2010).
[Crossref]

Men’shikov, L. I.

L. I. Men’shikov, “Superradiance and related phenomena,” Phys. Uspekhi 42(2), 107–147 (1999).
[Crossref]

Mendes, M. S.

R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha, J. W. R. Tabosa, and D. Felinto, “Single-photon superradiance in cold atoms,” Phys. Rev. A 90(2), 023848 (2014).
[Crossref]

Nefedkin, N. E.

Novozhilova, Y. V.

N. S. Ginzburg, Y. V. Novozhilova, and A. S. Sergeev, “Superradiance of ensembles of classical electron-oscillators as a method for generation of ultrashort electromagnetic pulses,” Nucl. Instrum. Methods Phys. Res. 341(1-3), 230–233 (1994).
[Crossref]

Pegg, D. T.

D. T. Pegg and S. M. Barnett, “Quantum optical phase,” J. Mod. Opt. 44, 225–264 (1997).

Penty, R. V.

P. P. Vasil’ev, R. V. Penty, and I. H. White, “Superradiant emission in semiconductor diode laser structures,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500210 (2013).
[Crossref]

Peters, G. I.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[Crossref]

G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A: Gen. Phys. 4(2), 238–243 (1971).
[Crossref]

Piovella, N.

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke subradiance from a large cloud of two-level systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref]

Polder, D.

D. Polder, M. F. H. Schuurmans, and Q. H. F. Vrehen, “Superfluorescence: Quantum-mechanical derivation of Maxwell-Bloch description with fluctuating field source,” Phys. Rev. A 19(3), 1192–1203 (1979).
[Crossref]

Popov, V. N.

V. N. Popov and V. S. Yarunin, “Quantum and quasi-classical states of the photon phase operator,” J. Mod. Opt. 39(7), 1525–1531 (1992).
[Crossref]

Pukhov, A. A.

N. E. Nefedkin, E. S. Andrianov, A. A. Zyablovsky, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Superradiance of a subwavelength array of classical nonlinear emitters,” Opt. Express 24(4), 3464–3478 (2016).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

A. A. Zyablovsky, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Light propagation in photonic crystal with gain: Applicability of the negative loss approximation,” Phot. Nano. Fund. Appl. 9(4), 398–404 (2011).
[Crossref]

Pustovit, V. N.

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
[Crossref]

Robert, W.

M. S. Malcuit, J. J. Maki, D. J. S. Boyd, and W. Robert, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref]

Saldanha, P. L.

R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha, J. W. R. Tabosa, and D. Felinto, “Single-photon superradiance in cold atoms,” Phys. Rev. A 90(2), 023848 (2014).
[Crossref]

Schroeder, R.

R. Schroeder, A. Knigge, M. Zorn, M. Weyers, and B. Ullrich, “Femtosecond excitation cavity studies and superluminescence by two-photon absorption in vertical cavity lasers at 300 K,” Phys. Rev. B 66(24), 245302 (2002).
[Crossref]

Schuetz, M. J. A.

M. J. A. Schuetz, E. M. Kessler, J. I. Cirac, and G. Giedke, “Superradiance-like electron transport through a quantum dot,” Phys. Rev. B 86(8), 085322 (2012).
[Crossref]

Schuurmans, M. F. H.

D. Polder, M. F. H. Schuurmans, and Q. H. F. Vrehen, “Superfluorescence: Quantum-mechanical derivation of Maxwell-Bloch description with fluctuating field source,” Phys. Rev. A 19(3), 1192–1203 (1979).
[Crossref]

Scully, M. O.

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators,” Phys. Rev. A 81(5), 053821 (2010).
[Crossref]

M. O. Scully and A. A. Svidzinsky, “The effects of the N atom collective Lamb shift on single photon superradiance,” Phys. Lett. A 373(14), 1283–1286 (2009).
[Crossref]

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of N atoms,” Phys. Rev. Lett. 100(16), 160504 (2008).
[Crossref]

Sergeev, A. S.

N. S. Ginzburg, Y. V. Novozhilova, and A. S. Sergeev, “Superradiance of ensembles of classical electron-oscillators as a method for generation of ultrashort electromagnetic pulses,” Nucl. Instrum. Methods Phys. Res. 341(1-3), 230–233 (1994).
[Crossref]

Shahbazyan, T. V.

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
[Crossref]

Su, Y.

Y. Su, D. Bimberg, A. Knorr, and A. Carmele, “Collective light emission revisited: reservoir induced coherence,” Phys. Rev. Lett. 110(11), 113604 (2013).
[Crossref]

Svidzinsky, A. A.

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators,” Phys. Rev. A 81(5), 053821 (2010).
[Crossref]

M. O. Scully and A. A. Svidzinsky, “The effects of the N atom collective Lamb shift on single photon superradiance,” Phys. Lett. A 373(14), 1283–1286 (2009).
[Crossref]

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of N atoms,” Phys. Rev. Lett. 100(16), 160504 (2008).
[Crossref]

Tabosa, J. W. R.

R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha, J. W. R. Tabosa, and D. Felinto, “Single-photon superradiance in cold atoms,” Phys. Rev. A 90(2), 023848 (2014).
[Crossref]

Temnov, V. V.

V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
[Crossref]

Tralle, I.

I. Tralle and P. Zieba, “Induced N2-cooperative phenomenon in an ensemble of the nonlinear coupled oscillators,” Phys. Lett. A 378(20), 1364–1368 (2014).
[Crossref]

Ullrich, B.

R. Schroeder, A. Knigge, M. Zorn, M. Weyers, and B. Ullrich, “Femtosecond excitation cavity studies and superluminescence by two-photon absorption in vertical cavity lasers at 300 K,” Phys. Rev. B 66(24), 245302 (2002).
[Crossref]

Vainstein, L. A.

L. A. Vainstein and A. I. Kleev, “Cooperative radiation of electron-oscillators,” Sov. Phys. Dokl. 35, 359–363 (1990).

Vasil’ev, P. P.

P. P. Vasil’ev, R. V. Penty, and I. H. White, “Superradiant emission in semiconductor diode laser structures,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500210 (2013).
[Crossref]

P. P. Vasil’ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys. 72(7), 076501 (2009).
[Crossref]

Vinogradov, A. P.

N. E. Nefedkin, E. S. Andrianov, A. A. Zyablovsky, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Superradiance of a subwavelength array of classical nonlinear emitters,” Opt. Express 24(4), 3464–3478 (2016).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

A. A. Zyablovsky, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Light propagation in photonic crystal with gain: Applicability of the negative loss approximation,” Phot. Nano. Fund. Appl. 9(4), 398–404 (2011).
[Crossref]

Vrehen, Q. H. F.

D. Polder, M. F. H. Schuurmans, and Q. H. F. Vrehen, “Superfluorescence: Quantum-mechanical derivation of Maxwell-Bloch description with fluctuating field source,” Phys. Rev. A 19(3), 1192–1203 (1979).
[Crossref]

Weyers, M.

R. Schroeder, A. Knigge, M. Zorn, M. Weyers, and B. Ullrich, “Femtosecond excitation cavity studies and superluminescence by two-photon absorption in vertical cavity lasers at 300 K,” Phys. Rev. B 66(24), 245302 (2002).
[Crossref]

White, I. H.

P. P. Vasil’ev, R. V. Penty, and I. H. White, “Superradiant emission in semiconductor diode laser structures,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500210 (2013).
[Crossref]

Woggon, U.

V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
[Crossref]

Yarunin, V. S.

V. N. Popov and V. S. Yarunin, “Quantum and quasi-classical states of the photon phase operator,” J. Mod. Opt. 39(7), 1525–1531 (1992).
[Crossref]

Yelin, S.

E. M. Kessler, S. Yelin, M. D. Lukin, J. I. Cirac, and G. Giedke, “Optical Superradiance from Nuclear Spin Environment of Single-Photon Emitters,” Phys. Rev. Lett. 104(14), 143601 (2010).
[Crossref]

Zieba, P.

I. Tralle and P. Zieba, “Induced N2-cooperative phenomenon in an ensemble of the nonlinear coupled oscillators,” Phys. Lett. A 378(20), 1364–1368 (2014).
[Crossref]

Zorn, M.

R. Schroeder, A. Knigge, M. Zorn, M. Weyers, and B. Ullrich, “Femtosecond excitation cavity studies and superluminescence by two-photon absorption in vertical cavity lasers at 300 K,” Phys. Rev. B 66(24), 245302 (2002).
[Crossref]

Zyablovsky, A. A.

N. E. Nefedkin, E. S. Andrianov, A. A. Zyablovsky, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Superradiance of a subwavelength array of classical nonlinear emitters,” Opt. Express 24(4), 3464–3478 (2016).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

A. A. Zyablovsky, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Light propagation in photonic crystal with gain: Applicability of the negative loss approximation,” Phot. Nano. Fund. Appl. 9(4), 398–404 (2011).
[Crossref]

Commun. Math. Phys. (1)

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48(2), 119–130 (1976).
[Crossref]

IEEE J. Quantum Electron. (1)

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. P. Vasil’ev, R. V. Penty, and I. H. White, “Superradiant emission in semiconductor diode laser structures,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500210 (2013).
[Crossref]

J. Mod. Opt. (2)

D. T. Pegg and S. M. Barnett, “Quantum optical phase,” J. Mod. Opt. 44, 225–264 (1997).

V. N. Popov and V. S. Yarunin, “Quantum and quasi-classical states of the photon phase operator,” J. Mod. Opt. 39(7), 1525–1531 (1992).
[Crossref]

J. Phys. A: Gen. Phys. (1)

G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A: Gen. Phys. 4(2), 238–243 (1971).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (1)

N. S. Ginzburg, Y. V. Novozhilova, and A. S. Sergeev, “Superradiance of ensembles of classical electron-oscillators as a method for generation of ultrashort electromagnetic pulses,” Nucl. Instrum. Methods Phys. Res. 341(1-3), 230–233 (1994).
[Crossref]

Opt. Express (1)

Phil. Trans. R. Soc. A (1)

B. M. Garraway, “The Dicke model in quantum optics: Dicke model revisited,” Phil. Trans. R. Soc. A 369(1939), 1137–1155 (2011).
[Crossref]

Phot. Nano. Fund. Appl. (1)

A. A. Zyablovsky, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Pukhov, “Light propagation in photonic crystal with gain: Applicability of the negative loss approximation,” Phot. Nano. Fund. Appl. 9(4), 398–404 (2011).
[Crossref]

Phys. Lett. A (2)

I. Tralle and P. Zieba, “Induced N2-cooperative phenomenon in an ensemble of the nonlinear coupled oscillators,” Phys. Lett. A 378(20), 1364–1368 (2014).
[Crossref]

M. O. Scully and A. A. Svidzinsky, “The effects of the N atom collective Lamb shift on single photon superradiance,” Phys. Lett. A 373(14), 1283–1286 (2009).
[Crossref]

Phys. Rep. (1)

M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Phys. Rep. 93(5), 301–396 (1982).
[Crossref]

Phys. Rev. (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Phys. Rev. A (7)

D. Polder, M. F. H. Schuurmans, and Q. H. F. Vrehen, “Superfluorescence: Quantum-mechanical derivation of Maxwell-Bloch description with fluctuating field source,” Phys. Rev. A 19(3), 1192–1203 (1979).
[Crossref]

R. Bonifacio and L. A. Lugiato, “Cooperative radiation processes in two-level systems: Superfluorescence,” Phys. Rev. A 11(5), 1507–1521 (1975).
[Crossref]

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators,” Phys. Rev. A 81(5), 053821 (2010).
[Crossref]

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8(4), 2031–2047 (1973).
[Crossref]

C. K. Law and S. K. Y. Lee, “Dynamic photon-mode selection in Dicke superradiance,” Phys. Rev. A 75(3), 033813 (2007).
[Crossref]

D. Meiser and M. J. Holland, “Intensity fluctuations in steady-state superradiance,” Phys. Rev. A 81(6), 063827 (2010).
[Crossref]

R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha, J. W. R. Tabosa, and D. Felinto, “Single-photon superradiance in cold atoms,” Phys. Rev. A 90(2), 023848 (2014).
[Crossref]

Phys. Rev. B (3)

W. Abdussalam and P. Machnikowski, “Superradiance and enhanced luminescence from ensembles of a few self-assembled quantum dots,” Phys. Rev. B 90(12), 125307 (2014).
[Crossref]

R. Schroeder, A. Knigge, M. Zorn, M. Weyers, and B. Ullrich, “Femtosecond excitation cavity studies and superluminescence by two-photon absorption in vertical cavity lasers at 300 K,” Phys. Rev. B 66(24), 245302 (2002).
[Crossref]

M. J. A. Schuetz, E. M. Kessler, J. I. Cirac, and G. Giedke, “Superradiance-like electron transport through a quantum dot,” Phys. Rev. B 86(8), 085322 (2012).
[Crossref]

Phys. Rev. Lett. (8)

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke subradiance from a large cloud of two-level systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref]

Y. Su, D. Bimberg, A. Knorr, and A. Carmele, “Collective light emission revisited: reservoir induced coherence,” Phys. Rev. Lett. 110(11), 113604 (2013).
[Crossref]

M. S. Malcuit, J. J. Maki, D. J. S. Boyd, and W. Robert, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref]

E. M. Kessler, S. Yelin, M. D. Lukin, J. I. Cirac, and G. Giedke, “Optical Superradiance from Nuclear Spin Environment of Single-Photon Emitters,” Phys. Rev. Lett. 104(14), 143601 (2010).
[Crossref]

A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of N atoms,” Phys. Rev. Lett. 100(16), 160504 (2008).
[Crossref]

V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
[Crossref]

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
[Crossref]

M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117(7), 073002 (2016).
[Crossref]

Phys. Uspekhi (2)

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

L. I. Men’shikov, “Superradiance and related phenomena,” Phys. Uspekhi 42(2), 107–147 (1999).
[Crossref]

Rep. Prog. Phys. (1)

P. P. Vasil’ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys. 72(7), 076501 (2009).
[Crossref]

Sov. Phys. Dokl. (1)

L. A. Vainstein and A. I. Kleev, “Cooperative radiation of electron-oscillators,” Sov. Phys. Dokl. 35, 359–363 (1990).

Sov. Phys. JETP (1)

Y. A. Il’inskii and N. S. Maslova, “Classical analog of superradiance in a system of interacting nonlinear oscillators,” Sov. Phys. JETP 67, 96–97 (1988).

Sov. Phys. Usp. (1)

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

Other (8)

L. Allen and J. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

J. D. Macomber, The Dynamics of Spectroscopic Transitions (Wiley, 1976).

H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, 2002).

H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

S. M. Dutra, Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box (Wiley, 2005).

S. Solimeno, B. Crosignani, and P. D. Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, 1968).

J.-P. Gazeau, Coherent States in Quantum Physics (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The radiation intensity in the Dicke model as a function of time for a different number of initially excited atoms. n=N (the red line), n=0.75N (the blue line), n=0.5N (the green line), n=0.25N (the orange line), and n=0.01N (the black line).
Fig. 2
Fig. 2 The dependence of Tr( ρ 2 (t) ) on time.
Fig. 3
Fig. 3 The dynamics of the intensity I (the solid red line) and the dispersion of the difference of cosines of dipole moment phases (the dashed blue line) for a non-Dicke initial state with a nonzero dipole moment. At the initial moment, eight emitter phases are uniformly distributed in the interval ( π/5,π/5 ) .
Fig. 4
Fig. 4 The dynamics of phases of eight non-Dicke emitters with nonzero dipole moments. The time evolutions of dipole moment phases and the total dipole moment J ^ are shown by solid and dashed lines, respectively.
Fig. 5
Fig. 5 Solid red and dashed blue lines show dynamics of the dispersions Δ and D ij , respectively. The dispersions are calculated for a non-Dicke initial state with a nonzero dipole moment. At the initial moment, the emitter phases are uniformly distributed in the interval ( π/5,π/5 ) . The results obtained for a random distribution of emitter phases are practically the same as shown in the figure.
Fig. 6
Fig. 6 The dependence of Δt/ t 0 on the number of emitters. Dashed blue and solid red lines correspond to intervals of the initial phase distributions of ( 2π/5,2π/5 ) and ( π/5,π/5 ) , respectively.
Fig. 7
Fig. 7 The dependence of the SR delay time on the average value of the dipole moment per atom.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

| ψ D | N,n = 1 C N n P | e,..,e, n g,..,g, Nn ,
H ^ = k ω k a ^ k + a ^ k +ω J ^ z + k Ω k ( a ^ k + J ^ + J ^ + a ^ k ) ,
d J ^ z dt = γ 0 ( N 2 /4+N/2 1 4 J ^ z 2 + 1 2 J ^ z ).
J ^ z (t) =1( N+1 )tanh( γ 0 ( N+1 )( t t delay )/4 ),
t delay = 2lnN γ 0 ( N+1 ) .
I( t )=d J z (t) /dt= γ 0 ( N+1 2 ) 2 sec h 2 ( γ 0 ( N+1 )( t t delay )/4 ).
T | N,N | N,N/2 = n=N n=N/2 γ ( n ) 1 = 2 γ 0 n=N n=N/2 1 n( Nn+1 ) 2 γ 0 ( N+1 ) n=N n=1 ( 1 n ) 2lnN γ 0 ( N+1 ) .
ρ ˙ = i 2 ω A j=1 N [ σ ^ j z ,ρ ] + γ 0 2 i,j=1 N ( 2 σ ^ i ρ σ ^ j + σ ^ i + σ ^ j ρρ σ ^ i + σ ^ j ) ,
ρ ˙ = γ 0 2 ( 2 J ^ ρ J ^ + J ^ + J ^ ρρ J ^ + J ^ ).
σ ^ =Tr( σ ^ ρ)=Tr[ |ge|( c e |e+ c g |g )( c e * e|+ c g * g| ) ]= c e c g * g| σ ^ |e=α e iφ ,
exp( i Φ ^ )=( m=0 M2 |m m+1 | )+( | M1 0| ).
cos Φ ^ =( 0 1/2 1/2 0 ).
cos Φ ^ i = I ^ 1 ... cos Φ ^ i ... I ^ N .
N,n|cos Φ ^ i cos Φ ^ j |N,n=0.
D ij N,n | ( cos Φ ^ i cos Φ ^ j ) 2 | N,n N,n |cos Φ ^ i cos Φ ^ j | N,n 2 = 1 2 n( Nn ) N(N1) .
ρ i =( k i α i e i φ i α i e i φ i 1 k i ),
σ ^ i =Tr( σ ^ i ρ ^ )=Tr[ ( 0 0 1 0 )( k i α i e i φ i α i e i φ i 1 k i ) ]= α i e i φ i .
cos Φ ^ =Tr( ( k αexp( iφ ) αexp( iφ ) 1k )( 0 1/2 1/2 0 ) )=αcosφ.
cos Φ ^ i cos Φ ^ j = α i cos φ i α j cos φ j .
Δ=( i cos φ i 2 ( i cos φ i ) 2 /N )/(N1),
ρ ˙ = γ 0 2 ( 2 A ^ ρ A ^ + A ^ + A ^ ρρ A ^ + A ^ ),
a ^ ˙ i =Tr( a ^ i ρ ˙ )= γ 0 2 a ^ i + a ^ i a ^ i a ^ i a ^ i + a ^ i + γ 0 2 ( ji a ^ j + ) a ^ i ( ki a ^ k ) a ^ i ( ji a ^ j + )( ki a ^ k ) + γ 0 2 ( ji a ^ j + ) a ^ i a ^ i a ^ i ( ji a ^ j + ) a ^ i + γ 0 2 a ^ i + a ^ i ( ki a ^ k ) a ^ i a ^ i + ( ki a ^ k ) .
γ 0 2 a ^ i + a ^ i a ^ i a ^ i a ^ i + a ^ i = γ 0 2 a ^ i ,
γ 0 2 ( ji a ^ j + ) a ^ i a ^ i a ^ i ( ji a ^ j + ) a ^ i + γ 0 2 a ^ i + a ^ i ( ki a ^ k ) a ^ i a ^ i + ( ki a ^ k ) = γ 0 2 [ a ^ i , a ^ i + ] ki a ^ k .
a ^ ˙ i = γ 0 2 k a ^ k .

Metrics