Abstract

This paper presents a compact and low-loss photonic integrated device consisting of a Y-branch and a pair of multimode interferometers (MMI) for a ratiometric wavelength monitoring around 1550 nm on silicon-on-insulator (SOI) technique. Two MMIs are designed in terms of width and length to achieve overlapping but opposite slope spectral responses used as two edge filters over a wavelength measurement range from 1500 nm to 1600 nm. The developed integrated photonic ratiometric structure demonstrates a suitable discrimination range for a high-speed passive wavelength measurement, with a high resolution better than 15 pm over a 100 nm wavelength range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring

M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E. Ryckeboer, D. Sanchez, L. Cerutti, J.B. Rodriguez, E. Tournié, W. Bogaerts, M.K. Smit, and G. Roelkens
Opt. Express 22(22) 27300-27308 (2014)

Resolution investigation of a ratiometric wavelength measurement system

Qian Wang, Ginu Rajan, Pengfei Wang, and Gerald Farrell
Appl. Opt. 46(25) 6362-6367 (2007)

Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?

Derek M. Kita, Jérôme Michon, Steven G. Johnson, and Juejun Hu
Optica 5(9) 1046-1054 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” IEEE Photonics Technol. Lett. 15(2), 293–295 (2003).
    [Crossref]
  2. Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21(1), 132–139 (2003).
    [Crossref]
  3. Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31(12), 1785–1787 (2006).
    [Crossref] [PubMed]
  4. A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microw. Opt. Technol. Lett. 50(12), 3036–3039 (2008).
    [Crossref]
  5. A. M. Hatta, G. Rajan, G. Farrell, and Y. Semenova, “Ratiometric wavelength monitor based on X-type spectral response using two edge filters,” Proc. SPIE 7356, 73561N (2009).
    [Crossref]
  6. T. Allos, J. Bingham, R. Birss, and M. Parker, “Novel low-cost ratiometric photometer,” J. Phys. E Sci. Instrum. 11(12), 1195–1199 (1978).
    [Crossref]
  7. Q. Wang, G. Farrell, P. Wang, G. Rajan, and T. Freir, “Design of integrated wavelength monitor based on a Y-branch with an S-bend waveguide,” Sens. Actuators A Phys. 134(2), 405–409 (2007).
    [Crossref]
  8. G. Wang, A. Shen, C. Zhao, L. Yang, T. Dai, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Fano-resonance-based ultra-high-resolution ratio-metric wavelength monitor on silicon,” Opt. Lett. 41(3), 544–547 (2016).
    [Crossref] [PubMed]
  9. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  10. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  11. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
    [Crossref] [PubMed]
  12. Y. Zhang, Z. Li, and B. Li, “Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves,” Opt. Express 14(7), 2679–2689 (2006).
    [Crossref] [PubMed]
  13. Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
    [Crossref]
  14. A. M. Hatta, G. Farrell, Y. Semenova, and H. Fernando, “Ratiometric wavelength monitor using a pair of symmetrical multimode interference structures based on silicon-on-insulator (SOI),” Proc. SPIE 7366, 73660S (2009).
    [Crossref]
  15. P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell, and G. Brambilla, “A ratiometric wavelength measurement based on a silicon-on-insulator directional coupler integrated device,” Sensors (Basel) 15(9), 21280–21293 (2015).
    [Crossref] [PubMed]
  16. Q. Wang, J. Lu, and S. He, “Optimal design method of a low-loss broadband Y branch with a multimode waveguide section,” Appl. Opt. 41(36), 7644–7649 (2002).
    [Crossref] [PubMed]
  17. L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
    [Crossref]
  18. M. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc., Optoelectron. 135(1), 56–63 (1988).
    [Crossref]
  19. P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photonics Technol. Lett. 19(15), 1136–1138 (2007).
    [Crossref]
  20. L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
    [Crossref]
  21. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Sel. Top. Quantum Electron. 27(8), 1971–1974 (1991).
    [Crossref]
  22. P. Wang, G. Farrell, and Y. Semenova, “Generalized design process for fiber-bend-loss-based edge filters for a wavelength measurement system,” Appl. Opt. 48(16), 3055–3061 (2009).
    [Crossref] [PubMed]
  23. Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46(25), 6362–6367 (2007).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell, and G. Brambilla, “A ratiometric wavelength measurement based on a silicon-on-insulator directional coupler integrated device,” Sensors (Basel) 15(9), 21280–21293 (2015).
[Crossref] [PubMed]

2010 (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2009 (3)

A. M. Hatta, G. Rajan, G. Farrell, and Y. Semenova, “Ratiometric wavelength monitor based on X-type spectral response using two edge filters,” Proc. SPIE 7356, 73561N (2009).
[Crossref]

P. Wang, G. Farrell, and Y. Semenova, “Generalized design process for fiber-bend-loss-based edge filters for a wavelength measurement system,” Appl. Opt. 48(16), 3055–3061 (2009).
[Crossref] [PubMed]

A. M. Hatta, G. Farrell, Y. Semenova, and H. Fernando, “Ratiometric wavelength monitor using a pair of symmetrical multimode interference structures based on silicon-on-insulator (SOI),” Proc. SPIE 7366, 73660S (2009).
[Crossref]

2008 (1)

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microw. Opt. Technol. Lett. 50(12), 3036–3039 (2008).
[Crossref]

2007 (4)

Q. Wang, G. Farrell, P. Wang, G. Rajan, and T. Freir, “Design of integrated wavelength monitor based on a Y-branch with an S-bend waveguide,” Sens. Actuators A Phys. 134(2), 405–409 (2007).
[Crossref]

Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46(25), 6362–6367 (2007).
[Crossref] [PubMed]

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photonics Technol. Lett. 19(15), 1136–1138 (2007).
[Crossref]

2006 (4)

2003 (2)

H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” IEEE Photonics Technol. Lett. 15(2), 293–295 (2003).
[Crossref]

Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21(1), 132–139 (2003).
[Crossref]

2002 (1)

1992 (2)

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Sel. Top. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

1988 (1)

M. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc., Optoelectron. 135(1), 56–63 (1988).
[Crossref]

1978 (1)

T. Allos, J. Bingham, R. Birss, and M. Parker, “Novel low-cost ratiometric photometer,” J. Phys. E Sci. Instrum. 11(12), 1195–1199 (1978).
[Crossref]

Allos, T.

T. Allos, J. Bingham, R. Birss, and M. Parker, “Novel low-cost ratiometric photometer,” J. Phys. E Sci. Instrum. 11(12), 1195–1199 (1978).
[Crossref]

Bingham, J.

T. Allos, J. Bingham, R. Birss, and M. Parker, “Novel low-cost ratiometric photometer,” J. Phys. E Sci. Instrum. 11(12), 1195–1199 (1978).
[Crossref]

Birss, R.

T. Allos, J. Bingham, R. Birss, and M. Parker, “Novel low-cost ratiometric photometer,” J. Phys. E Sci. Instrum. 11(12), 1195–1199 (1978).
[Crossref]

Brambilla, G.

P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell, and G. Brambilla, “A ratiometric wavelength measurement based on a silicon-on-insulator directional coupler integrated device,” Sensors (Basel) 15(9), 21280–21293 (2015).
[Crossref] [PubMed]

Dai, D.

Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Dai, T.

Dubost, A. H.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

Farrell, G.

P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell, and G. Brambilla, “A ratiometric wavelength measurement based on a silicon-on-insulator directional coupler integrated device,” Sensors (Basel) 15(9), 21280–21293 (2015).
[Crossref] [PubMed]

A. M. Hatta, G. Farrell, Y. Semenova, and H. Fernando, “Ratiometric wavelength monitor using a pair of symmetrical multimode interference structures based on silicon-on-insulator (SOI),” Proc. SPIE 7366, 73660S (2009).
[Crossref]

A. M. Hatta, G. Rajan, G. Farrell, and Y. Semenova, “Ratiometric wavelength monitor based on X-type spectral response using two edge filters,” Proc. SPIE 7356, 73561N (2009).
[Crossref]

P. Wang, G. Farrell, and Y. Semenova, “Generalized design process for fiber-bend-loss-based edge filters for a wavelength measurement system,” Appl. Opt. 48(16), 3055–3061 (2009).
[Crossref] [PubMed]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microw. Opt. Technol. Lett. 50(12), 3036–3039 (2008).
[Crossref]

Q. Wang, G. Farrell, P. Wang, G. Rajan, and T. Freir, “Design of integrated wavelength monitor based on a Y-branch with an S-bend waveguide,” Sens. Actuators A Phys. 134(2), 405–409 (2007).
[Crossref]

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photonics Technol. Lett. 19(15), 1136–1138 (2007).
[Crossref]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46(25), 6362–6367 (2007).
[Crossref] [PubMed]

Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31(12), 1785–1787 (2006).
[Crossref] [PubMed]

Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
[Crossref] [PubMed]

Fernando, H.

A. M. Hatta, G. Farrell, Y. Semenova, and H. Fernando, “Ratiometric wavelength monitor using a pair of symmetrical multimode interference structures based on silicon-on-insulator (SOI),” Proc. SPIE 7366, 73660S (2009).
[Crossref]

Freir, T.

Q. Wang, G. Farrell, P. Wang, G. Rajan, and T. Freir, “Design of integrated wavelength monitor based on a Y-branch with an S-bend waveguide,” Sens. Actuators A Phys. 134(2), 405–409 (2007).
[Crossref]

Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31(12), 1785–1787 (2006).
[Crossref] [PubMed]

Hatta, A. M.

P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell, and G. Brambilla, “A ratiometric wavelength measurement based on a silicon-on-insulator directional coupler integrated device,” Sensors (Basel) 15(9), 21280–21293 (2015).
[Crossref] [PubMed]

A. M. Hatta, G. Farrell, Y. Semenova, and H. Fernando, “Ratiometric wavelength monitor using a pair of symmetrical multimode interference structures based on silicon-on-insulator (SOI),” Proc. SPIE 7366, 73660S (2009).
[Crossref]

A. M. Hatta, G. Rajan, G. Farrell, and Y. Semenova, “Ratiometric wavelength monitor based on X-type spectral response using two edge filters,” Proc. SPIE 7356, 73561N (2009).
[Crossref]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microw. Opt. Technol. Lett. 50(12), 3036–3039 (2008).
[Crossref]

He, S.

Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Q. Wang, J. Lu, and S. He, “Optimal design method of a low-loss broadband Y branch with a multimode waveguide section,” Appl. Opt. 41(36), 7644–7649 (2002).
[Crossref] [PubMed]

Jiang, X.

Kasukawa, A.

H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” IEEE Photonics Technol. Lett. 15(2), 293–295 (2003).
[Crossref]

Li, B.

Li, Y.

Li, Z.

Lu, J.

Mukaihara, T.

H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” IEEE Photonics Technol. Lett. 15(2), 293–295 (2003).
[Crossref]

Nasu, H.

H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” IEEE Photonics Technol. Lett. 15(2), 293–295 (2003).
[Crossref]

Nomura, T.

H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” IEEE Photonics Technol. Lett. 15(2), 293–295 (2003).
[Crossref]

Oike, M.

H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” IEEE Photonics Technol. Lett. 15(2), 293–295 (2003).
[Crossref]

Parker, M.

T. Allos, J. Bingham, R. Birss, and M. Parker, “Novel low-cost ratiometric photometer,” J. Phys. E Sci. Instrum. 11(12), 1195–1199 (1978).
[Crossref]

Pennings, E.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

Pennings, E. C.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Sel. Top. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Rajan, G.

A. M. Hatta, G. Rajan, G. Farrell, and Y. Semenova, “Ratiometric wavelength monitor based on X-type spectral response using two edge filters,” Proc. SPIE 7356, 73561N (2009).
[Crossref]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microw. Opt. Technol. Lett. 50(12), 3036–3039 (2008).
[Crossref]

Q. Wang, G. Farrell, P. Wang, G. Rajan, and T. Freir, “Design of integrated wavelength monitor based on a Y-branch with an S-bend waveguide,” Sens. Actuators A Phys. 134(2), 405–409 (2007).
[Crossref]

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photonics Technol. Lett. 19(15), 1136–1138 (2007).
[Crossref]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46(25), 6362–6367 (2007).
[Crossref] [PubMed]

Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31(12), 1785–1787 (2006).
[Crossref] [PubMed]

Sano, Y.

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Sel. Top. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Semenova, Y.

A. M. Hatta, G. Farrell, Y. Semenova, and H. Fernando, “Ratiometric wavelength monitor using a pair of symmetrical multimode interference structures based on silicon-on-insulator (SOI),” Proc. SPIE 7366, 73660S (2009).
[Crossref]

A. M. Hatta, G. Rajan, G. Farrell, and Y. Semenova, “Ratiometric wavelength monitor based on X-type spectral response using two edge filters,” Proc. SPIE 7356, 73561N (2009).
[Crossref]

P. Wang, G. Farrell, and Y. Semenova, “Generalized design process for fiber-bend-loss-based edge filters for a wavelength measurement system,” Appl. Opt. 48(16), 3055–3061 (2009).
[Crossref] [PubMed]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microw. Opt. Technol. Lett. 50(12), 3036–3039 (2008).
[Crossref]

Shen, A.

Shi, Y.

Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Smit, M. K.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

Soldano, L. B.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Sel. Top. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Stern, M.

M. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc., Optoelectron. 135(1), 56–63 (1988).
[Crossref]

Takagi, T.

H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” IEEE Photonics Technol. Lett. 15(2), 293–295 (2003).
[Crossref]

Veerman, F. B.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

Verbeek, B. H.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

Wang, G.

Wang, P.

P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell, and G. Brambilla, “A ratiometric wavelength measurement based on a silicon-on-insulator directional coupler integrated device,” Sensors (Basel) 15(9), 21280–21293 (2015).
[Crossref] [PubMed]

P. Wang, G. Farrell, and Y. Semenova, “Generalized design process for fiber-bend-loss-based edge filters for a wavelength measurement system,” Appl. Opt. 48(16), 3055–3061 (2009).
[Crossref] [PubMed]

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microw. Opt. Technol. Lett. 50(12), 3036–3039 (2008).
[Crossref]

Q. Wang, G. Farrell, P. Wang, G. Rajan, and T. Freir, “Design of integrated wavelength monitor based on a Y-branch with an S-bend waveguide,” Sens. Actuators A Phys. 134(2), 405–409 (2007).
[Crossref]

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photonics Technol. Lett. 19(15), 1136–1138 (2007).
[Crossref]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46(25), 6362–6367 (2007).
[Crossref] [PubMed]

Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31(12), 1785–1787 (2006).
[Crossref] [PubMed]

Wang, Q.

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microw. Opt. Technol. Lett. 50(12), 3036–3039 (2008).
[Crossref]

Q. Wang, G. Farrell, P. Wang, G. Rajan, and T. Freir, “Design of integrated wavelength monitor based on a Y-branch with an S-bend waveguide,” Sens. Actuators A Phys. 134(2), 405–409 (2007).
[Crossref]

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photonics Technol. Lett. 19(15), 1136–1138 (2007).
[Crossref]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of a ratiometric wavelength measurement system,” Appl. Opt. 46(25), 6362–6367 (2007).
[Crossref] [PubMed]

Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
[Crossref] [PubMed]

Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31(12), 1785–1787 (2006).
[Crossref] [PubMed]

Q. Wang, J. Lu, and S. He, “Optimal design method of a low-loss broadband Y branch with a multimode waveguide section,” Appl. Opt. 41(36), 7644–7649 (2002).
[Crossref] [PubMed]

Wang, Y.

Yang, J.

Yang, L.

Yoshino, T.

Zhang, Y.

Zhao, C.

Zhao, H.

P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell, and G. Brambilla, “A ratiometric wavelength measurement based on a silicon-on-insulator directional coupler integrated device,” Sensors (Basel) 15(9), 21280–21293 (2015).
[Crossref] [PubMed]

Zheng, J.

P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell, and G. Brambilla, “A ratiometric wavelength measurement based on a silicon-on-insulator directional coupler integrated device,” Sensors (Basel) 15(9), 21280–21293 (2015).
[Crossref] [PubMed]

Appl. Opt. (3)

IEE Proc., Optoelectron. (1)

M. Stern, “Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc., Optoelectron. 135(1), 56–63 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Sel. Top. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” IEEE Photonics Technol. Lett. 15(2), 293–295 (2003).
[Crossref]

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photonics Technol. Lett. 19(15), 1136–1138 (2007).
[Crossref]

J. Lightwave Technol. (3)

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightwave Technol. 21(1), 132–139 (2003).
[Crossref]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[Crossref]

J. Phys. E Sci. Instrum. (1)

T. Allos, J. Bingham, R. Birss, and M. Parker, “Novel low-cost ratiometric photometer,” J. Phys. E Sci. Instrum. 11(12), 1195–1199 (1978).
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang, and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microw. Opt. Technol. Lett. 50(12), 3036–3039 (2008).
[Crossref]

Nat. Photonics (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (2)

A. M. Hatta, G. Farrell, Y. Semenova, and H. Fernando, “Ratiometric wavelength monitor using a pair of symmetrical multimode interference structures based on silicon-on-insulator (SOI),” Proc. SPIE 7366, 73660S (2009).
[Crossref]

A. M. Hatta, G. Rajan, G. Farrell, and Y. Semenova, “Ratiometric wavelength monitor based on X-type spectral response using two edge filters,” Proc. SPIE 7356, 73561N (2009).
[Crossref]

Sens. Actuators A Phys. (1)

Q. Wang, G. Farrell, P. Wang, G. Rajan, and T. Freir, “Design of integrated wavelength monitor based on a Y-branch with an S-bend waveguide,” Sens. Actuators A Phys. 134(2), 405–409 (2007).
[Crossref]

Sensors (Basel) (1)

P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell, and G. Brambilla, “A ratiometric wavelength measurement based on a silicon-on-insulator directional coupler integrated device,” Sensors (Basel) 15(9), 21280–21293 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic configuration of the proposed MMI integrated device; (b) Cross section of SOI rib MMI; (c) Schematic of the proposed MMI ratiometric wavelength monitor.
Fig. 2
Fig. 2 Contour plots of transmission response (T) in dB under different width and length of MMI (a) at the wavelength λ 1 = 1500 nm, (b) λ 2 = 1600 nm. (c) Discrimination between wavelength λ 2 = 1600 and λ 1 = 1500 nm, D = | T ( λ 1 ) T ( λ 2 ) | . L π is set at the wavelength of λ 1 .
Fig. 3
Fig. 3 Distribution of the optical field in the multimode region of the asymmetrical MMIs: (a) MMI1@1500nm; (b) MMI2@1500nm; (c) MMI1@1600nm; and (d) MMI2@1600nm, where MMI1: L1 = 2408.6 μm, W1 = 26μm; MMI2: L2 = 4173.9 μm, W2 = 33 μm.
Fig. 4
Fig. 4 Calculated transmission spectra of the two MMIs.
Fig. 5
Fig. 5 (a) SEM image of one of the MMI arms with a width of 33 μm; (b) SEM snapshot of the two symmetrical SOI MMIs used for the proposed ratiometric wavelength monitoring.
Fig. 6
Fig. 6 Simulated and measured ratio results.
Fig. 7
Fig. 7 Output ratio as the wavelength is tuned from a start wavelength of 1550 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x , y , 0 ) = ν = 0 m 1 c ν φ ν ( x , y )
c v = ψ ( x , y , 0 ) φ ν ( x , y ) d x d y φ ν 2 ( x , y ) d x d y
ψ ( x , y , z ) = ν = 0 m 1 c ν φ ν ( x , y ) e x p [ j ( β ν β 0 ) z ]
T ( z ) = 10 l o g 10 ( | ψ ( x , y , z ) ψ o ( x , y ) d x d y | 2 | ψ ( x , y , z ) | 2 d x d y | ψ o ( x , y ) | 2 d x d y )

Metrics