Abstract

A modified Smith-Purcell free-electron-laser based on two tandem cylindrical-gratings is proposed. The preset grating with larger size, operating in the slow-wave condition, is to prebunch the initial continuous electron-beam, and the postpositive grating with smaller size, operating in the fast-wave condition, is used as the main radiator. Compared with traditional Smith-Purcell free-electron-lasers operating at the second harmonic of the bunched-beam, the present scheme operates at much higher harmonics, fifth and sixth harmonics have been achieved, and the radiation frequency is greatly increased consequently. And also the radiation power is enhanced by tens of times. Thus it could be developed as an efficient terahertz source with frequency being over 0.5 THz in practice.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced coherent terahertz Smith-Purcell superradiation excited by two electron-beams

Yaxin Zhang and Liang Dong
Opt. Express 20(20) 22627-22635 (2012)

Characteristic analysis of a Smith–Purcell terahertz source

Xian-Zhu Meng, Ming-Hong Wang, Li-Ming Zhang, and Zhong-Min Ren
Photon. Res. 4(5) 162-167 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. R. Eichholz, H. Richter, M. Wienold, L. Schrot tke, R. Hey, H. T. Grahn, and H.-W. Hbers, “Frequency modulation spectroscopy with a THz quantum-cascade laser,” Opt. Express 21, 32199 (2013)
    [Crossref]
  3. A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
    [Crossref]
  4. Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
    [Crossref] [PubMed]
  5. R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
    [Crossref]
  6. S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
    [Crossref] [PubMed]
  7. M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
    [Crossref] [PubMed]
  8. M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
    [Crossref]
  9. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
    [Crossref]
  10. C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
    [Crossref]
  11. D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
    [Crossref]
  12. L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
    [Crossref]
  13. M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
    [Crossref]
  14. S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
    [Crossref]
  15. K. B. Oganesyan, “On some possibilities of Felwi realization,” Laser Phys. Lett. 13, 056001 (2016).
    [Crossref]
  16. G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
    [Crossref] [PubMed]
  17. J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
    [Crossref]
  18. L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
    [Crossref]
  19. S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
    [Crossref] [PubMed]
  20. B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
    [Crossref]
  21. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
    [Crossref]
  22. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
    [Crossref] [PubMed]
  23. M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
    [Crossref]
  24. J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
    [Crossref]
  25. K. B. Oganesyan, “Smith-Purcell radiation amplifier,” Laser Phys. Lett. 12, 116002 (2015).
    [Crossref]
  26. J. M. Wachtel, “Free-electron lasers using the Smith-Purcell effect,” J. Appl. Phys.,  50, 49 (1979).
    [Crossref]
  27. J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
    [Crossref]
  28. H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
    [Crossref]
  29. Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
    [Crossref]
  30. C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
    [Crossref]
  31. H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
    [Crossref]
  32. J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
    [Crossref]
  33. Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
    [Crossref]
  34. W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
    [Crossref]
  35. D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
    [Crossref]
  36. W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
    [Crossref]
  37. W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
    [Crossref]
  38. W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
    [Crossref]
  39. Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
    [Crossref]
  40. J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).
  41. W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
    [Crossref]
  42. J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
    [Crossref]

2016 (9)

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

K. B. Oganesyan, “On some possibilities of Felwi realization,” Laser Phys. Lett. 13, 056001 (2016).
[Crossref]

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

2015 (5)

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

K. B. Oganesyan, “Smith-Purcell radiation amplifier,” Laser Phys. Lett. 12, 116002 (2015).
[Crossref]

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

2014 (2)

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
[Crossref]

2013 (1)

2012 (7)

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
[Crossref] [PubMed]

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

2011 (1)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

2010 (2)

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
[Crossref]

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

2009 (3)

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

2008 (3)

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2005 (2)

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

2000 (1)

B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
[Crossref]

1998 (1)

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

1993 (1)

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

1979 (1)

J. M. Wachtel, “Free-electron lasers using the Smith-Purcell effect,” J. Appl. Phys.,  50, 49 (1979).
[Crossref]

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
[Crossref]

1946 (1)

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Akram, M. N.

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

André, J.-M.

B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
[Crossref]

Andrews, H. L.

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

Antipov, S.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Asakawa, M. R.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Ban, D.

Banas, A.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Banas, K.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Banducci, M.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Barchfeld, R.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

Barnett, L.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Bielawski, S.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Billa, L. R.

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

Bluem, H. P.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

Booske, J. H.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Bowes, D.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Brau, C. A.

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

Cao, M.

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

Chan, C. W.

Chattopadhyay, G.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Chen, X.

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

Chew, A. B.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Chua, S. J.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Chum, C. C.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Cross, A. W.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Ding, C.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Ding, L.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Dobbs, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Donohue, J. T.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

Dupont, E.

Eichholz, R.

Evain, C.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Fathololoumi, S.

Fedurin, M.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Feng, J.

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Freeman, J. R.

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

Fremlin, J. H.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Gai, W.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Gamzina, D.

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Gao, X.

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Gardelle, J.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

Gent, A. W.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Gill, J.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Glyavin, M. Y.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

Goldstein, M.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Golubiatnikov, G. Y.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

Gong, S.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Gong, Y.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Grahn, H. T.

Guo, G.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Hangyo, M.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Hara, T.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Hbers, H.-W.

He, W.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

He, Z.

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

Hey, R.

Himes, L.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

Hosaka, M.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Hu, Q.

Imasaki, K.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Jabotinski, V.

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

Jackson, R. H.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

Jarvis, J. D.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

Jia, Q.

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

Jiang, X.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Jing, C.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Jirauschek, C.

Joye, C. D.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Kanareykin, A.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Katoh, M.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Keitel, C.

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

Kesar, A. S.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Kim, K.-J.

Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
[Crossref]

Kimmitt, M. F.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Kimura, S.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Korbly, S. E.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Kory, C. L.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Kurizki, G.

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

Kusche, K.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Laframboise, S. R.

Lan, F.

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Lee, C.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Letizia, R.

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Li, D.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Li, H.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

Li, J

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Li, K.

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

Li, N.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Li, W.

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

Li, Y.

Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
[Crossref]

Li, Z.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

Liang, Z.

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Liao, C.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

Lin, M. C.

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

Lin, R.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Liu, D.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

Liu, H. C.

Liu, S.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Liu, W.

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
[Crossref]

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Lu, Y.

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

Luchinin, A. G.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

Luhmann, N. C.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

Luhmann, N.C.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Lves, R. L.

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

Maestrini, A.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Mátyás, A.

Mehdi, I.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Mineo, M.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
[Crossref]

Miram, G.

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

Miyamoto, S.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Mochihashi, A.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Modin, P.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

Mohandas, R. A.

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

Naumov, A.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Neil, G. R.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Oganesyan, K. B.

K. B. Oganesyan, “On some possibilities of Felwi realization,” Laser Phys. Lett. 13, 056001 (2016).
[Crossref]

K. B. Oganesyan, “Smith-Purcell radiation amplifier,” Laser Phys. Lett. 12, 116002 (2015).
[Crossref]

Pan, P.

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Paoloni, C.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
[Crossref]

Pardo, B.

B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
[Crossref]

Park, G.-S.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Park, J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Pearson, J.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Petrie, D. P. R.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Phelps, A. D. R.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Piot, P.

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

Platt, C.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Popovic, B.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

Prokop, C. R.

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
[Crossref]

Read, M. E.

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

Richter, H.

Risbud, S.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Ronald, K.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Rosamond, M. C.

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

Schlecht, E.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Schoessow, P.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Schrot tke, L.

Scully, M. O.

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

Shi, Z.

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Shimada, M.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Siegel, P.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Siles, J. V.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Sirigiri, J. R.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
[Crossref]

Spear, A.G.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Stoltz, P.

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

Szwaj, C.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Takahashi, T.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Takashima, Y.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Tang, X.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Tang, Y.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Tanoto, H.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Temkin, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Teng, J.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Thomas, B.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Todd, A. M. M.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

Tomlin, S. G.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tsunawaki, Y.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Urata, J.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Wachtel, J. M.

J. M. Wachtel, “Free-electron lasers using the Smith-Purcell effect,” J. Appl. Phys.,  50, 49 (1979).
[Crossref]

Wallis, P. J.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Walsh, J. E.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Wang, B.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Wang, L.

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

Wang, W.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Wang, Y.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

Ward, J. S.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Wasilewski, Z. R.

Wei, W.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Wei, Y.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Wienold, M.

Wu, Q. Y.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Xu, J.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Xu, Z.

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
[Crossref]

Yakimenko, V.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Yang, Z.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Yin, H.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Yue, L.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Zhang, L.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Zhang, P.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Zhang, Y.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Zhao, G.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Zhao, J.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Zheng, Y.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Zholents, A.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Zhou, J.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

Zhou, Y.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

AIP adv. (1)

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

Appl. Phys. Lett. (6)

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

IEEE Journal (1)

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

IEEE Trans. Electron Devices (3)

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
[Crossref]

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

IEEE Trans. Nanotechnology (1)

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

IEEE Trans. Plasma Sc. (1)

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

IEEE Trans. Plasma Sci. (2)

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

IEEE Trans. Plasma Science (1)

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

IEEE Trans. THz Sci. Technol. (2)

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

J. Appl. Phys. (5)

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

J. M. Wachtel, “Free-electron lasers using the Smith-Purcell effect,” J. Appl. Phys.,  50, 49 (1979).
[Crossref]

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (1)

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Laser Phys. Lett. (2)

K. B. Oganesyan, “On some possibilities of Felwi realization,” Laser Phys. Lett. 13, 056001 (2016).
[Crossref]

K. B. Oganesyan, “Smith-Purcell radiation amplifier,” Laser Phys. Lett. 12, 116002 (2015).
[Crossref]

Nanotechnology (1)

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Nat. Phys. (1)

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

New J. Phys. (1)

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
[Crossref]

Nucl. Inst. Meth. Phys. Res. A (1)

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
[Crossref]

Phys. Rev. E (1)

B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
[Crossref]

Phys. Rev. Lett. (5)

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the proposed Smith-Purcell free-electron-laser with two tandem cylindrical-gratings.
Fig. 2
Fig. 2 Dispersion curves of (a) the first grating and (b) the second grating. Curves in shaded regions are slow waves, while that in other regions are fast waves.
Fig. 3
Fig. 3 (a) Snapshot of the particle distribution of the bunched-beam in the r-z configuration space. The inset shows the enlarged particle image. (b) Time evolution of the Ez field and its frequency spectrum detected at surface of the first grating. (c) Radiation field above the first grating and its spectrum. (d) Beam current density and its spectrum.
Fig. 4
Fig. 4 (a) Time evolution of the Ez field and its frequency spectrum detected at surface of the second grating. (b) Radiation field above the second grating and its spectrum. (c) Radiation power from the second grating.
Fig. 5
Fig. 5 (a) Dispersion curves of the second grating after changing structure parameters. (b) Time evolution of the Ez field and its frequency spectrum detected at surface of the second grating. (c) Radiation field above the second grating and its spectrum. (d) Radiation power from the second grating.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d L n = + K 1 ( k c n r 0 ) k c n K 0 ( k c n r 0 ) [ sin ( k z n d / 2 ) k z n d / 2 ] 2 = 1 k 0 [ N 0 ( k 0 r c ) J 1 ( k 0 r 0 ) J 0 ( k 0 r c ) N 1 ( k 0 r 0 ) ] [ N 0 ( k 0 r c ) J 0 ( k 0 r 0 ) J 0 ( k 0 r c ) N 0 ( k 0 r 0 ) ] ,
λ = L ( c / v e cos θ ) / | n | ,
P t = P b [ sin ( N b π ω / ω 0 ) sin ( π ω / ω 0 ) ] 2 ,
P b = P 0 [ N e + N e 2 f ( ω ) ] ,
f ( ω ) = f 1 ( ω 0 ) + f 2 ( 2 ω 0 ) + f 3 ( 3 ω 0 ) +

Metrics