Abstract

We present modal content measurements (S2) of two different negative curvature hollow-core photonic crystal fibers: a kagome fiber and an ice cream cone fiber. Their sensitivity towards mode matching, bending and polarization is analyzed. For the kagome fiber, a higher order mode suppression of 17dB under optimal conditions was achieved, and for the ice cream cone fiber there was a suppression of up to 42dB. Polarization turned out to be a critical parameter for good higher order mode suppression in both fibers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modal content in hypocycloid Kagomé hollow core photonic crystal fibers

Thomas D. Bradley, Natalie V. Wheeler, Gregory T. Jasion, David Gray, John Hayes, Marcelo Alonso Gouveia, Seyed R. Sandoghchi, Yong Chen, Francesco Poletti, David Richardson, and Marco Petrovich
Opt. Express 24(14) 15798-15812 (2016)

Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y.Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid
Opt. Express 21(23) 28597-28608 (2013)

Single-mode, low loss hollow-core anti-resonant fiber designs

Md. Selim Habib, J. E. Antonio-Lopez, Christos Markos, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Express 27(4) 3824-3836 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Dumitrache, J. Rath, and A. P. Yalin, “High power spark delivery system using hollow core kagome lattice fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
    [Crossref]
  2. S. Hädrich, J. Rothhardt, S. Demmler, M. Tschernajew, A. Hoffmann, M. Krebs, A. Liem, O. de Vries, M. Plötner, S. Fabian, T. Schreiber, J. Limpert, and A. Tünnermann, “Scalability of components for kW-level average power few-cycle lasers,” Appl. Opt. 55(7), 1636–1640 (2016).
    [Crossref] [PubMed]
  3. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [Crossref] [PubMed]
  4. S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
    [Crossref] [PubMed]
  5. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
    [Crossref] [PubMed]
  6. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref] [PubMed]
  7. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]
  8. J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20(18), 20494–20505 (2012).
    [Crossref] [PubMed]
  9. A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using S2 imaging,” Opt. Lett. 41(14), 3277–3280 (2016).
    [Crossref] [PubMed]
  10. T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24(14), 15798–15812 (2016).
    [Crossref] [PubMed]
  11. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
    [Crossref] [PubMed]
  12. J. Carpenter, B. J. Eggleton, and J. Schröder, “Polarization-resolved cross-correlated C2 imaging of a photonic bandgap fiber,” Opt. Express 24(24), 27785–27790 (2016).
    [Crossref] [PubMed]
  13. F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24(12), 12969–12975 (2016).
    [Crossref] [PubMed]

2016 (7)

S. Hädrich, J. Rothhardt, S. Demmler, M. Tschernajew, A. Hoffmann, M. Krebs, A. Liem, O. de Vries, M. Plötner, S. Fabian, T. Schreiber, J. Limpert, and A. Tünnermann, “Scalability of components for kW-level average power few-cycle lasers,” Appl. Opt. 55(7), 1636–1640 (2016).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
[Crossref] [PubMed]

F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24(12), 12969–12975 (2016).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24(14), 15798–15812 (2016).
[Crossref] [PubMed]

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using S2 imaging,” Opt. Lett. 41(14), 3277–3280 (2016).
[Crossref] [PubMed]

J. Carpenter, B. J. Eggleton, and J. Schröder, “Polarization-resolved cross-correlated C2 imaging of a photonic bandgap fiber,” Opt. Express 24(24), 27785–27790 (2016).
[Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (2)

2008 (1)

Ahmed, G.

Alharbi, M.

Alkeskjold, T. T.

Alvarez-Aguirre, R.

Amezcua-Correa, R.

Anderson, J.

Antonio-Lopez, J. E.

Bang, O.

Benabid, F.

Booth, T.

Bradley, T. D.

Carpenter, J.

Chen, Y.

de Vries, O.

Debord, B.

Demmler, S.

DeSantolo, A.

DiMarcello, F.

Dulashko, Y.

Dumitrache, C.

C. Dumitrache, J. Rath, and A. P. Yalin, “High power spark delivery system using hollow core kagome lattice fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
[Crossref]

Dutin, C. F.

Edavalath, N. N.

Eggleton, B. J.

Eidam, T.

Eznaveh, Z. S.

Fabian, S.

Fini, J. M.

Fourcade-Dutin, C.

Frosz, M. H.

Gérôme, F.

Ghalmi, S.

Gottschall, T.

Gouveia, M. A.

Gray, D.

Günendi, M. C.

Hädrich, S.

Hassan, M.

Hayes, J.

Hoenninger, C.

Hoffmann, A.

Husakou, A.

Jakobsen, C.

Jasion, G. T.

Klenke, A.

Knight, J. C.

Krebs, M.

Lægsgaard, J.

Liem, A.

Limpert, J.

Lopez-Galmiche, G.

Lyngsø, J. K.

Ménard, J.-M.

Meng, L.

Michieletto, M.

Mielke, M.

Monberg, E.

Mottay, E.

Newkirk, A. V.

Nicholson, J. W.

Ortiz, R.

Peng, X.

Petrovich, M.

Plötner, M.

Poletti, F.

Ramachandran, S.

Rath, J.

C. Dumitrache, J. Rath, and A. P. Yalin, “High power spark delivery system using hollow core kagome lattice fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
[Crossref]

Richardson, D.

Rothhardt, J.

Russell, P. S.

Sandoghchi, S. R.

Schreiber, T.

Schröder, J.

Schülzgen, A.

Tschernajew, M.

Tünnermann, A.

Uebel, P.

Vincetti, L.

Wang, Y. Y.

Wheeler, N. V.

Windeler, R. S.

Xu, M.

Yablon, A. D.

Yalin, A. P.

C. Dumitrache, J. Rath, and A. P. Yalin, “High power spark delivery system using hollow core kagome lattice fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
[Crossref]

Yu, F.

Appl. Opt. (1)

Materials (Basel) (1)

C. Dumitrache, J. Rath, and A. P. Yalin, “High power spark delivery system using hollow core kagome lattice fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
[Crossref]

Opt. Express (7)

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24(14), 15798–15812 (2016).
[Crossref] [PubMed]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

J. Carpenter, B. J. Eggleton, and J. Schröder, “Polarization-resolved cross-correlated C2 imaging of a photonic bandgap fiber,” Opt. Express 24(24), 27785–27790 (2016).
[Crossref] [PubMed]

F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24(12), 12969–12975 (2016).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20(18), 20494–20505 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Light of a tunable laser is reflected by two beam steering mirrors (M1, M2), passes a polarizer (POL1) and a half-wave plate (HWP) and is coupled into the fiber under test (FuT) by a lens. The output is analyzed using a polarizer (POL2) and a camera (CCD) inside the S2 measurement system.
Fig. 2
Fig. 2 Microscopic image of the kagome fiber (left) and SEM image of the ice cream cone fiber (right).
Fig. 3
Fig. 3 S2-traces of the kagome fiber for a bending diameter of D = 35cm under various coupling conditions, together with the reconstructed mode patterns.
Fig. 4
Fig. 4 S2 traces of the kagome-type fiber for different bending diameters under optimal coupling conditions.
Fig. 5
Fig. 5 S2-traces of the kagome-type fiber at a bending diameter of D = 35 cm for different coupling polarizations (a,b) together with the reconstructed mode patterns at a delay of 0ps/m (left insets) and of the first HOM peak (right insets). For different excitation and analyzer polarization angles, the mode suppression is calculated (c).
Fig. 6
Fig. 6 a) S2-traces of the ice cream cone fiber for a bending diameter of D = 35cm and various coupling conditions, including the reconstructed mode patterns. b) . S2 traces for different bending diameters under optimal coupling conditions.
Fig. 7
Fig. 7 Mode suppression of the ice cream cone fiber for different excitation and analyzer polarization angles at bending diameter of D = 35 cm.

Tables (1)

Tables Icon

Table 1 Lenses used for different coupling conditions

Metrics