Abstract

We present a novel CMOS-compatible fabrication technique for convex micro-nano lens arrays (MNLAs) with high packing density on the wafer scale. By means of conformal chemical vapor deposition (CVD) of hydrogenated amorphous silicon (a-Si:H) following patterning of silicon pillars via electron beam lithography (EBL) and plasma etching, large areas of a close packed silicon lens array with the diameter from a few micrometers down to a few hundred nanometers was fabricated. The resulting structure shows excellent surface roughness and high uniformity. The optical focusing properties of the lenses at infrared wavelengths were verified by experimental measurements and numerical simulation. This approach provides a feasible solution for fabricating silicon MNLAs compatible for next generation large scale, miniaturized optical imaging detectors and related optical devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of microlenses by laser chemical vapor deposition

Miyuki Kubo and Mitsugu Hanabusa
Appl. Opt. 29(18) 2755-2759 (1990)

Polarization-independent infrared micro-lens array based on all-silicon metasurfaces

Mingze Liu, Qingbin Fan, Le Yu, and Ting Xu
Opt. Express 27(8) 10738-10744 (2019)

Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching

Siyu Tong, Hao Bian, Qing Yang, Feng Chen, Zefang Deng, Jinhai Si, and Xun Hou
Opt. Express 22(23) 29283-29291 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
    [Crossref] [PubMed]
  2. B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
    [Crossref] [PubMed]
  3. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
    [Crossref] [PubMed]
  4. G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
    [Crossref]
  5. J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
    [Crossref] [PubMed]
  6. W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6, 33278 (2016).
    [Crossref] [PubMed]
  7. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  8. M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
    [Crossref] [PubMed]
  9. E. K. Kang, Y. M. Song, S. J. Jang, C. Il Yeo, and Y. T. Lee, “Increased light extraction from GaN Light-emitting diodes by SiN x compound eyes,” IEEE Photonics Technol. Lett. 25(12), 1118–1121 (2013).
    [Crossref]
  10. Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
    [Crossref] [PubMed]
  11. J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
    [Crossref]
  12. J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett. 103(20), 203704 (2013).
    [Crossref]
  13. J. Lim, P. Gruner, M. Konrad, and J.-C. Baret, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
    [Crossref] [PubMed]
  14. M. B. Stern, “Binary optics: A VLSI-based microoptics technology,” Microelectron. Eng. 32(1–4), 369–388 (1996).
    [Crossref]
  15. Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
    [Crossref] [PubMed]
  16. H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
    [Crossref] [PubMed]
  17. H. Toshiyoshi, G. D. J Su, J. LaCosse, and M. C Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” J. Lightwave Technol. 21(7), 1700–1708 (2003).
    [Crossref]
  18. Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
    [Crossref] [PubMed]
  19. X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
    [Crossref] [PubMed]
  20. X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
    [PubMed]
  21. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  22. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref] [PubMed]
  23. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
    [Crossref] [PubMed]
  24. H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
    [Crossref] [PubMed]
  25. L. F. Peng, Y. J. Deng, P. Y. Yi, and X. M. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1), 013001 (2014).
    [Crossref]
  26. N. Guo, W. D. Hu, X. S. Chen, C. Meng, Y. Q. Lv, and W. Lu, “Optimization of Microlenses for InSb Infrared Focal-Plane Arrays,” J. Electron. Mater. 40(8), 1647–1650 (2011).
    [Crossref]
  27. IR camera ImageIR 10300 Serie “InfraTec,” http://www.infratec.eu/thermography/infrared-camera/imageirr-10300-series.html .
  28. R. Fontaine, “Innovative technology elements for large and small pixel CIS devices,” Proc. IISW. 1–4 (2013).
  29. E. Markweg, M. Hillenbrand, S. Sinzinger, and M. Hoffmann, “Planar plano-convex microlens in silica using ICP-CVD and DRIE,” Proc. SPIE 8550, 85500T (2012).
    [Crossref]
  30. Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
    [Crossref]
  31. X. Gai, D. Y. Choi, and B. Luther-Davies, “Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 μm for ultra-fast nonlinear signal processing,” Opt. Express 22(8), 9948–9958 (2014).
    [Crossref] [PubMed]
  32. J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22(4), 3797–3810 (2014).
    [Crossref] [PubMed]
  33. O. Graydon, “Silicon photonics: Amorphous alternative,” Nat. Photonics 6(11), 716 (2012).
    [Crossref]
  34. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  35. Y. O. Yan, B. T. Chen, F. H. Tay, and C. Lliescu, “Process analysis and optimization on PECVD amorphous silicon on glass substrate,” J. Phys. Conf. Ser. 34(1), 812–817 (2006).
  36. Lumerical Solutions, Inc., “Innovative Photonic Design Tools,” https://www.lumerical.com/
  37. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
    [Crossref]

2016 (3)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6, 33278 (2016).
[Crossref] [PubMed]

2015 (3)

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (9)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

E. K. Kang, Y. M. Song, S. J. Jang, C. Il Yeo, and Y. T. Lee, “Increased light extraction from GaN Light-emitting diodes by SiN x compound eyes,” IEEE Photonics Technol. Lett. 25(12), 1118–1121 (2013).
[Crossref]

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
[Crossref] [PubMed]

J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett. 103(20), 203704 (2013).
[Crossref]

J. Lim, P. Gruner, M. Konrad, and J.-C. Baret, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

2012 (7)

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

E. Markweg, M. Hillenbrand, S. Sinzinger, and M. Hoffmann, “Planar plano-convex microlens in silica using ICP-CVD and DRIE,” Proc. SPIE 8550, 85500T (2012).
[Crossref]

O. Graydon, “Silicon photonics: Amorphous alternative,” Nat. Photonics 6(11), 716 (2012).
[Crossref]

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

2011 (1)

N. Guo, W. D. Hu, X. S. Chen, C. Meng, Y. Q. Lv, and W. Lu, “Optimization of Microlenses for InSb Infrared Focal-Plane Arrays,” J. Electron. Mater. 40(8), 1647–1650 (2011).
[Crossref]

2010 (2)

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

2006 (1)

Y. O. Yan, B. T. Chen, F. H. Tay, and C. Lliescu, “Process analysis and optimization on PECVD amorphous silicon on glass substrate,” J. Phys. Conf. Ser. 34(1), 812–817 (2006).

2003 (2)

1996 (1)

M. B. Stern, “Binary optics: A VLSI-based microoptics technology,” Microelectron. Eng. 32(1–4), 369–388 (1996).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Agranov, G.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Baret, J. C.

J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett. 103(20), 203704 (2013).
[Crossref]

Baret, J.-C.

J. Lim, P. Gruner, M. Konrad, and J.-C. Baret, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Beausoleil, R. G.

Berezin, V.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

Bian, H.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

Bradley, D. D. C.

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Cao, W.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Cassidy, V.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Chaudhary, S.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
[Crossref] [PubMed]

Chen, B. T.

Y. O. Yan, B. T. Chen, F. H. Tay, and C. Lliescu, “Process analysis and optimization on PECVD amorphous silicon on glass substrate,” J. Phys. Conf. Ser. 34(1), 812–817 (2006).

Chen, F.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X. S.

N. Guo, W. D. Hu, X. S. Chen, C. Meng, Y. Q. Lv, and W. Lu, “Optimization of Microlenses for InSb Infrared Focal-Plane Arrays,” J. Electron. Mater. 40(8), 1647–1650 (2011).
[Crossref]

Chen, Y.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
[Crossref] [PubMed]

Cho, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Choi, D. Y.

Choi, K. J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Choi, W.

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6, 33278 (2016).
[Crossref] [PubMed]

Choi, Y. W.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Courtois, F.

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Deng, Y. J.

L. F. Peng, Y. J. Deng, P. Y. Yi, and X. M. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1), 013001 (2014).
[Crossref]

Deng, Z.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ding, Y.

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

Du, G.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

Dwivedi, P. K.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Elshobaki, M.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
[Crossref] [PubMed]

Eom, S.-H.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Fattal, D. A.

Fischlechner, M.

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Fontaine, R.

R. Fontaine, “Innovative technology elements for large and small pixel CIS devices,” Proc. IISW. 1–4 (2013).

Gai, X.

Gao, H.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Graydon, O.

O. Graydon, “Silicon photonics: Amorphous alternative,” Nat. Photonics 6(11), 716 (2012).
[Crossref]

Gruner, P.

J. Lim, P. Gruner, M. Konrad, and J.-C. Baret, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett. 103(20), 203704 (2013).
[Crossref]

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Guo, N.

N. Guo, W. D. Hu, X. S. Chen, C. Meng, Y. Q. Lv, and W. Lu, “Optimization of Microlenses for InSb Infrared Focal-Plane Arrays,” J. Electron. Mater. 40(8), 1647–1650 (2011).
[Crossref]

Hillenbrand, M.

E. Markweg, M. Hillenbrand, S. Sinzinger, and M. Hoffmann, “Planar plano-convex microlens in silica using ICP-CVD and DRIE,” Proc. SPIE 8550, 85500T (2012).
[Crossref]

Ho, K.-M.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
[Crossref] [PubMed]

Hoffmann, M.

E. Markweg, M. Hillenbrand, S. Sinzinger, and M. Hoffmann, “Planar plano-convex microlens in silica using ICP-CVD and DRIE,” Proc. SPIE 8550, 85500T (2012).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Hou, X.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

Hradil, Z.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref] [PubMed]

Hu, W. D.

N. Guo, W. D. Hu, X. S. Chen, C. Meng, Y. Q. Lv, and W. Lu, “Optimization of Microlenses for InSb Infrared Focal-Plane Arrays,” J. Electron. Mater. 40(8), 1647–1650 (2011).
[Crossref]

Huang, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Hyun, J. K.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Il Yeo, C.

E. K. Kang, Y. M. Song, S. J. Jang, C. Il Yeo, and Y. T. Lee, “Increased light extraction from GaN Light-emitting diodes by SiN x compound eyes,” IEEE Photonics Technol. Lett. 25(12), 1118–1121 (2013).
[Crossref]

Jang, S. J.

E. K. Kang, Y. M. Song, S. J. Jang, C. Il Yeo, and Y. T. Lee, “Increased light extraction from GaN Light-emitting diodes by SiN x compound eyes,” IEEE Photonics Technol. Lett. 25(12), 1118–1121 (2013).
[Crossref]

Javidi, B.

Jeong, K.-H.

H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

Jung, H.

H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Kang, D.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Kang, E. K.

E. K. Kang, Y. M. Song, S. J. Jang, C. Il Yeo, and Y. T. Lee, “Increased light extraction from GaN Light-emitting diodes by SiN x compound eyes,” IEEE Photonics Technol. Lett. 25(12), 1118–1121 (2013).
[Crossref]

Kang, S.

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6, 33278 (2016).
[Crossref] [PubMed]

Karamitros, C. S.

J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett. 103(20), 203704 (2013).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kim, R. H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Kim, S. M.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Konrad, M.

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett. 103(20), 203704 (2013).
[Crossref]

J. Lim, P. Gruner, M. Konrad, and J.-C. Baret, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Kumaresan, Y.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

LaCosse, J.

Lai, X. M.

L. F. Peng, Y. J. Deng, P. Y. Yi, and X. M. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1), 013001 (2014).
[Crossref]

Lauhon, L. J.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Lee, M. H.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Lee, Y. T.

E. K. Kang, Y. M. Song, S. J. Jang, C. Il Yeo, and Y. T. Lee, “Increased light extraction from GaN Light-emitting diodes by SiN x compound eyes,” IEEE Photonics Technol. Lett. 25(12), 1118–1121 (2013).
[Crossref]

Leo, K.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Li, X.

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

Lim, J.

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6, 33278 (2016).
[Crossref] [PubMed]

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett. 103(20), 203704 (2013).
[Crossref]

J. Lim, P. Gruner, M. Konrad, and J.-C. Baret, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Liu, H.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Lliescu, C.

Y. O. Yan, B. T. Chen, F. H. Tay, and C. Lliescu, “Process analysis and optimization on PECVD amorphous silicon on glass substrate,” J. Phys. Conf. Ser. 34(1), 812–817 (2006).

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Lu, W.

N. Guo, W. D. Hu, X. S. Chen, C. Meng, Y. Q. Lv, and W. Lu, “Optimization of Microlenses for InSb Infrared Focal-Plane Arrays,” J. Electron. Mater. 40(8), 1647–1650 (2011).
[Crossref]

Lüssem, B.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Luther-Davies, B.

Lv, Y. Q.

N. Guo, W. D. Hu, X. S. Chen, C. Meng, Y. Q. Lv, and W. Lu, “Optimization of Microlenses for InSb Infrared Focal-Plane Arrays,” J. Electron. Mater. 40(8), 1647–1650 (2011).
[Crossref]

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Markweg, E.

E. Markweg, M. Hillenbrand, S. Sinzinger, and M. Hoffmann, “Planar plano-convex microlens in silica using ICP-CVD and DRIE,” Proc. SPIE 8550, 85500T (2012).
[Crossref]

Martinez-Corral, M.

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Meng, C.

N. Guo, W. D. Hu, X. S. Chen, C. Meng, Y. Q. Lv, and W. Lu, “Optimization of Microlenses for InSb Infrared Focal-Plane Arrays,” J. Electron. Mater. 40(8), 1647–1650 (2011).
[Crossref]

Meng, X.

Motka, L.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref] [PubMed]

Myers, J. D.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Noack, M. A.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
[Crossref] [PubMed]

Odom, T. W.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Pang, C.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Park, J.-M.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
[Crossref] [PubMed]

Pelc, J. S.

Peng, L. F.

L. F. Peng, Y. J. Deng, P. Y. Yi, and X. M. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1), 013001 (2014).
[Crossref]

Peumans, P.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Rammohan, A.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Rehacek, J.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref] [PubMed]

Reineke, S.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Rivoire, K.

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Sánchez-Soto, L. L.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref] [PubMed]

Santori, C.

Schaerli, Y.

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Shan, C.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

Shao, J.

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

Sharma, A.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Shin, R.

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6, 33278 (2016).
[Crossref] [PubMed]

Sinzinger, S.

E. Markweg, M. Hillenbrand, S. Sinzinger, and M. Hoffmann, “Planar plano-convex microlens in silica using ICP-CVD and DRIE,” Proc. SPIE 8550, 85500T (2012).
[Crossref]

Song, Y. M.

E. K. Kang, Y. M. Song, S. J. Jang, C. Il Yeo, and Y. T. Lee, “Increased light extraction from GaN Light-emitting diodes by SiN x compound eyes,” IEEE Photonics Technol. Lett. 25(12), 1118–1121 (2013).
[Crossref]

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Stern, A.

Stern, M. B.

M. B. Stern, “Binary optics: A VLSI-based microoptics technology,” Microelectron. Eng. 32(1–4), 369–388 (1996).
[Crossref]

Stoklasa, B.

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref] [PubMed]

Su, G. D. J

Suh, K. Y.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Tay, F. H.

Y. O. Yan, B. T. Chen, F. H. Tay, and C. Lliescu, “Process analysis and optimization on PECVD amorphous silicon on glass substrate,” J. Phys. Conf. Ser. 34(1), 812–817 (2006).

Theberge, A. B.

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Thomschke, M.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Tian, H.

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

Toshiyoshi, H.

Tsai, R. H.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

Um, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Vo, S.

Vrignon, J.

J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett. 103(20), 203704 (2013).
[Crossref]

Wei, Y.

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Wu, M. C

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Xiao, X.

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Xue, J.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Yakimov, A.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Yan, Y. O.

Y. O. Yan, B. T. Chen, F. H. Tay, and C. Lliescu, “Process analysis and optimization on PECVD amorphous silicon on glass substrate,” J. Phys. Conf. Ser. 34(1), 812–817 (2006).

Yang, J. C.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Yang, L.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Yang, Q.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

Ye, Z.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
[Crossref] [PubMed]

Yi, P. Y.

L. F. Peng, Y. J. Deng, P. Y. Yi, and X. M. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1), 013001 (2014).
[Crossref]

Yong, J.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

You, W.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Zhou, R.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (3)

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, and X. Hou, “Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging,” Adv. Funct. Mater. 26(12), 1995–2001 (2016).
[Crossref]

Adv. Mater. (2)

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett. 103(20), 203704 (2013).
[Crossref]

Energy Environ. Sci. (1)

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, J. Xue, P. Peumans, and A. Yakimov, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5(5), 6900 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. K. Kang, Y. M. Song, S. J. Jang, C. Il Yeo, and Y. T. Lee, “Increased light extraction from GaN Light-emitting diodes by SiN x compound eyes,” IEEE Photonics Technol. Lett. 25(12), 1118–1121 (2013).
[Crossref]

IEEE Trans. Electron Dev. (1)

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

J. Electron. Mater. (1)

N. Guo, W. D. Hu, X. S. Chen, C. Meng, Y. Q. Lv, and W. Lu, “Optimization of Microlenses for InSb Infrared Focal-Plane Arrays,” J. Electron. Mater. 40(8), 1647–1650 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

L. F. Peng, Y. J. Deng, P. Y. Yi, and X. M. Lai, “Micro hot embossing of thermoplastic polymers: a review,” J. Micromech. Microeng. 24(1), 013001 (2014).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

J. Phys. Conf. Ser. (1)

Y. O. Yan, B. T. Chen, F. H. Tay, and C. Lliescu, “Process analysis and optimization on PECVD amorphous silicon on glass substrate,” J. Phys. Conf. Ser. 34(1), 812–817 (2006).

Lab Chip (2)

J. Lim, P. Gruner, M. Konrad, and J.-C. Baret, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

J. Lim, P. Gruner, M. Konrad, J.-C. Baret, A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, and D. D. C. Bradley, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip 13(8), 1472–1475 (2013).
[Crossref] [PubMed]

Microelectron. Eng. (1)

M. B. Stern, “Binary optics: A VLSI-based microoptics technology,” Microelectron. Eng. 32(1–4), 369–388 (1996).
[Crossref]

Nano Lett. (3)

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, and L. L. Sánchez-Soto, “Wavefront sensing reveals optical coherence,” Nat. Commun. 5, 3275 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

O. Graydon, “Silicon photonics: Amorphous alternative,” Nat. Photonics 6(11), 716 (2012).
[Crossref]

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Nature (1)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15(12), 4297–4302 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

E. Markweg, M. Hillenbrand, S. Sinzinger, and M. Hoffmann, “Planar plano-convex microlens in silica using ICP-CVD and DRIE,” Proc. SPIE 8550, 85500T (2012).
[Crossref]

Sci. Rep. (1)

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6, 33278 (2016).
[Crossref] [PubMed]

Science (1)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Other (3)

IR camera ImageIR 10300 Serie “InfraTec,” http://www.infratec.eu/thermography/infrared-camera/imageirr-10300-series.html .

R. Fontaine, “Innovative technology elements for large and small pixel CIS devices,” Proc. IISW. 1–4 (2013).

Lumerical Solutions, Inc., “Innovative Photonic Design Tools,” https://www.lumerical.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The index of refraction and extinction coefficients of a-Si:H film grown by PECVD of 2 µm thickness. For comparison, refractive index of c-Si is added [33].
Fig. 2
Fig. 2 Schematic of microlens fabrication procedure. Inset: (d): SEM image of silicon template, (f): isolated hemispheres. Scale bar: 5 μm.
Fig. 3
Fig. 3 Nano lens array formation. (a) SEM image of nano-pillar template, (b) nano lens array after overgrowth, tilted 45°, Scale bar: 5 μm.
Fig. 4
Fig. 4 Microlens array with different lattice and deposition thickness. (a) Rectangular and (b) hexagonal array with 3µm deposition. (c) Rectangular and (d) hexagonal, 5 µm. Insets shows 45° tilted view from SEM. Scale bar 4 µm.
Fig. 5
Fig. 5 Detailed view of selected MLAs with larger pitch. (a), (d) rectangular lattice, pitch: 8µm; (b), (e) hexagonal lattice, pitch: 8 µm; (c), (f) hexagonal lattice, pitch: 12 µm, (g) top view and cross section by FIB. (a-c) vertical angle, (d-f) tilted 45°. Scale bar: 5 µm.
Fig. 6
Fig. 6 (a) Schematic of optical measurement system. Focal spot array of ASE from EDFA, (b) hexagonal and (c) rectangular array. Scale bar: 8 µm.
Fig. 7
Fig. 7 The FDTD simulation showing the focal property of microlens array at 4µm incidence.

Metrics