T. J. Constant, S. M. Hornett, D. E. Chang, and E. Hendry, “All-optical generation of surface plasmons in graphene,” Nat. Phys. 12, 124–127 (2016).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Erratum: Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature [phys. rev. b 91, 235320 (2015)],” Phys. Rev. B 93, 039904 (2016).

[Crossref]

S. A. Mikhailov, “Quantum theory of the third-order nonlinear electrodynamic effects in graphene,” Phys. Rev. B 93, 085403 (2016).

[Crossref]

S. A. Mikhailov, N. A. Savostianova, and A. S. Moskalenko, “Negative dynamic conductivity of a current-driven array of graphene nanoribbons,” Phys. Rev. B 94, 035439 (2016).

[Crossref]

H. Rostami and M. Polini, “Theory of third-harmonic generation in graphene: A diagrammatic approach,” Phys. Rev. B 93, 161411 (2016).

[Crossref]

J. D. Cox, I. Silviero, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10, 1995–2003 (2016).

[Crossref]
[PubMed]

M. A. Sharif, M. H. M. Ara, B. Ghafary, S. Salmani, and S. Mohajer, “Experimental observation of low threshold optical bistability in exfoliated graphene with low oxidation degree,” Opt. Mater. 53, 80–86 (2016).

[Crossref]

M. Tokman, Y. Wang, I. Oladyshkin, A. R. Kutayiah, and A. Belyanin, “Laser-driven parametric instability and generation of entangled photon-plasmon states in graphene,” Phys. Rev. B 93, 235422 (2016).

[Crossref]

Y. Wang, M. Tokman, and A. Belyanin, “Second-order nonlinear optical response of graphene,” Phys. Rev. B 94, 195442 (2016).

[Crossref]

J. D. Cox and F. J. G. de Abajo, “Plasmon-enhanced nonlinear wave mixing in nanostructured graphene,” ACS Photonics 2, 306–312 (2015).

[Crossref]

N. A. Savostianova and S. A. Mikhailov, “Giant enhancement of the third harmonic in graphene integrated in a layered structure,” Appl. Phys. Lett. 107, 181104 (2015).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature,” Phys. Rev. B 91, 235320 (2015).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Dc current induced second order optical nonlinearity in graphene,” Optics Express 22, 15868–15876 (2014).

[Crossref]
[PubMed]

X. Yao, M. Tokman, and A. Belyanin, “Efficient nonlinear generation of THz plasmons in graphene and topological insulators,” Phys. Rev. Lett. 112, 055501 (2014).

[Crossref]
[PubMed]

D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, “Second-harmonic generation by a graphene nanoparticle,” Phys. Rev. B 90, 035412 (2014).

[Crossref]

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A.-P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Third-harmonic generation in one-dimensional photonic crystal with graphene-based defect,” Phys. Rev. B 89, 165139 (2014).

[Crossref]

J. D. Cox and F. J. G. de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nat. Commun. 5, 5725 (2014).

[Crossref]
[PubMed]

M. M. Glazov and S. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep. 535, 101–138 (2014).

[Crossref]

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25, 322001 (2014).

[Crossref]
[PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).

[Crossref]
[PubMed]

H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, S. A. Maksimenko, and A. Hoffmann, “Multiphoton resonant excitations and high-harmonic generation in bilayer graphene,” Phys. Rev. B 88, 165411 (2013).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38, 3550–3553 (2013).

[Crossref]
[PubMed]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

[Crossref]

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B 85, 121413 (2012).

[Crossref]

S. A. Jafari, “Nonlinear optical response in gapped graphene,” J. Phys. Condens. Matter 24, 205802 (2012).

[Crossref]
[PubMed]

S. A. Mikhailov and D. Beba, “Nonlinear broadening of the plasmon linewidth in a graphene stripe,” New J. Phys. 14, 115024 (2012).

[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

[Crossref]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).

[Crossref]
[PubMed]

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).

[Crossref]

S. A. Mikhailov, “Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems,” Phys. Rev. B 84, 045432 (2011).

[Crossref]

J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B 82, 125411 (2010).

[Crossref]

K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B 82, 201402 (2010).

[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[Crossref]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

E. Hendry, P. J. Hale, J. J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).

[Crossref]
[PubMed]

S. A. Mikhailov, “Non-linear graphene optics for terahertz applications,” Microelectron. J. 40, 712–715 (2009).

[Crossref]

S. A. Mikhailov, “Nonlinear cyclotron resonance of a massless quasiparticle in graphene,” Phys. Rev. B 79, 241309 (2009).

[Crossref]

J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic film,” Appl. Phys. Lett. 95, 261910 (2009).

[Crossref]

S. A. Mikhailov and K. Ziegler, “Non-linear electromagnetic response of graphene: Frequency multiplication and the self-consistent field effects,” J. Phys. Condens. Matter 20, 384204 (2008).

[Crossref]

S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” Europhys. Lett. 79, 27002 (2007).

[Crossref]

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007).

[Crossref]
[PubMed]

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187–8201 (2000).

[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[Crossref]

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

M. A. Sharif, M. H. M. Ara, B. Ghafary, S. Salmani, and S. Mohajer, “Experimental observation of low threshold optical bistability in exfoliated graphene with low oxidation degree,” Opt. Mater. 53, 80–86 (2016).

[Crossref]

H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, S. A. Maksimenko, and A. Hoffmann, “Multiphoton resonant excitations and high-harmonic generation in bilayer graphene,” Phys. Rev. B 88, 165411 (2013).

[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).

[Crossref]
[PubMed]

H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, S. A. Maksimenko, and A. Hoffmann, “Multiphoton resonant excitations and high-harmonic generation in bilayer graphene,” Phys. Rev. B 88, 165411 (2013).

[Crossref]

S. A. Mikhailov and D. Beba, “Nonlinear broadening of the plasmon linewidth in a graphene stripe,” New J. Phys. 14, 115024 (2012).

[Crossref]

M. Tokman, Y. Wang, I. Oladyshkin, A. R. Kutayiah, and A. Belyanin, “Laser-driven parametric instability and generation of entangled photon-plasmon states in graphene,” Phys. Rev. B 93, 235422 (2016).

[Crossref]

Y. Wang, M. Tokman, and A. Belyanin, “Second-order nonlinear optical response of graphene,” Phys. Rev. B 94, 195442 (2016).

[Crossref]

X. Yao, M. Tokman, and A. Belyanin, “Efficient nonlinear generation of THz plasmons in graphene and topological insulators,” Phys. Rev. Lett. 112, 055501 (2014).

[Crossref]
[PubMed]

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A.-P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).

[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

[Crossref]

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), 6th ed.

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B 85, 121413 (2012).

[Crossref]

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

T. J. Constant, S. M. Hornett, D. E. Chang, and E. Hendry, “All-optical generation of surface plasmons in graphene,” Nat. Phys. 12, 124–127 (2016).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Erratum: Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature [phys. rev. b 91, 235320 (2015)],” Phys. Rev. B 93, 039904 (2016).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature,” Phys. Rev. B 91, 235320 (2015).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Dc current induced second order optical nonlinearity in graphene,” Optics Express 22, 15868–15876 (2014).

[Crossref]
[PubMed]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[Crossref]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

T. J. Constant, S. M. Hornett, D. E. Chang, and E. Hendry, “All-optical generation of surface plasmons in graphene,” Nat. Phys. 12, 124–127 (2016).

[Crossref]

J. D. Cox, I. Silviero, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10, 1995–2003 (2016).

[Crossref]
[PubMed]

J. D. Cox and F. J. G. de Abajo, “Plasmon-enhanced nonlinear wave mixing in nanostructured graphene,” ACS Photonics 2, 306–312 (2015).

[Crossref]

J. D. Cox and F. J. G. de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nat. Commun. 5, 5725 (2014).

[Crossref]
[PubMed]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Third-harmonic generation in one-dimensional photonic crystal with graphene-based defect,” Phys. Rev. B 89, 165139 (2014).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38, 3550–3553 (2013).

[Crossref]
[PubMed]

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).

J. D. Cox, I. Silviero, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10, 1995–2003 (2016).

[Crossref]
[PubMed]

J. D. Cox and F. J. G. de Abajo, “Plasmon-enhanced nonlinear wave mixing in nanostructured graphene,” ACS Photonics 2, 306–312 (2015).

[Crossref]

J. D. Cox and F. J. G. de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nat. Commun. 5, 5725 (2014).

[Crossref]
[PubMed]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Third-harmonic generation in one-dimensional photonic crystal with graphene-based defect,” Phys. Rev. B 89, 165139 (2014).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38, 3550–3553 (2013).

[Crossref]
[PubMed]

J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B 82, 125411 (2010).

[Crossref]

J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic film,” Appl. Phys. Lett. 95, 261910 (2009).

[Crossref]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).

[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[Crossref]

M. M. Glazov and S. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep. 535, 101–138 (2014).

[Crossref]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

[Crossref]

M. A. Sharif, M. H. M. Ara, B. Ghafary, S. Salmani, and S. Mohajer, “Experimental observation of low threshold optical bistability in exfoliated graphene with low oxidation degree,” Opt. Mater. 53, 80–86 (2016).

[Crossref]

M. M. Glazov and S. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep. 535, 101–138 (2014).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Third-harmonic generation in one-dimensional photonic crystal with graphene-based defect,” Phys. Rev. B 89, 165139 (2014).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38, 3550–3553 (2013).

[Crossref]
[PubMed]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

E. Hendry, P. J. Hale, J. J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).

[Crossref]
[PubMed]

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25, 322001 (2014).

[Crossref]
[PubMed]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).

[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[Crossref]

T. J. Constant, S. M. Hornett, D. E. Chang, and E. Hendry, “All-optical generation of surface plasmons in graphene,” Nat. Phys. 12, 124–127 (2016).

[Crossref]

E. Hendry, P. J. Hale, J. J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).

[Crossref]
[PubMed]

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187–8201 (2000).

[Crossref]

H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, S. A. Maksimenko, and A. Hoffmann, “Multiphoton resonant excitations and high-harmonic generation in bilayer graphene,” Phys. Rev. B 88, 165411 (2013).

[Crossref]

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).

T. J. Constant, S. M. Hornett, D. E. Chang, and E. Hendry, “All-optical generation of surface plasmons in graphene,” Nat. Phys. 12, 124–127 (2016).

[Crossref]

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B 82, 201402 (2010).

[Crossref]

S. A. Jafari, “Nonlinear optical response in gapped graphene,” J. Phys. Condens. Matter 24, 205802 (2012).

[Crossref]
[PubMed]

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A.-P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).

[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, “Second-harmonic generation by a graphene nanoparticle,” Phys. Rev. B 90, 035412 (2014).

[Crossref]

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25, 322001 (2014).

[Crossref]
[PubMed]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

[Crossref]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

[Crossref]

M. Tokman, Y. Wang, I. Oladyshkin, A. R. Kutayiah, and A. Belyanin, “Laser-driven parametric instability and generation of entangled photon-plasmon states in graphene,” Phys. Rev. B 93, 235422 (2016).

[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).

[Crossref]
[PubMed]

H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, S. A. Maksimenko, and A. Hoffmann, “Multiphoton resonant excitations and high-harmonic generation in bilayer graphene,” Phys. Rev. B 88, 165411 (2013).

[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

S. A. Mikhailov, “Quantum theory of the third-order nonlinear electrodynamic effects in graphene,” Phys. Rev. B 93, 085403 (2016).

[Crossref]

S. A. Mikhailov, N. A. Savostianova, and A. S. Moskalenko, “Negative dynamic conductivity of a current-driven array of graphene nanoribbons,” Phys. Rev. B 94, 035439 (2016).

[Crossref]

N. A. Savostianova and S. A. Mikhailov, “Giant enhancement of the third harmonic in graphene integrated in a layered structure,” Appl. Phys. Lett. 107, 181104 (2015).

[Crossref]

S. A. Mikhailov and D. Beba, “Nonlinear broadening of the plasmon linewidth in a graphene stripe,” New J. Phys. 14, 115024 (2012).

[Crossref]

S. A. Mikhailov, “Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems,” Phys. Rev. B 84, 045432 (2011).

[Crossref]

E. Hendry, P. J. Hale, J. J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).

[Crossref]
[PubMed]

S. A. Mikhailov, “Non-linear graphene optics for terahertz applications,” Microelectron. J. 40, 712–715 (2009).

[Crossref]

S. A. Mikhailov, “Nonlinear cyclotron resonance of a massless quasiparticle in graphene,” Phys. Rev. B 79, 241309 (2009).

[Crossref]

S. A. Mikhailov and K. Ziegler, “Non-linear electromagnetic response of graphene: Frequency multiplication and the self-consistent field effects,” J. Phys. Condens. Matter 20, 384204 (2008).

[Crossref]

S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” Europhys. Lett. 79, 27002 (2007).

[Crossref]

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007).

[Crossref]
[PubMed]

S. A. Mikhailov, “Electromagnetic nonlinearities in graphene,” in “Carbon nanotubes and graphene for photonic applications,” S. Yamashita, Y. Saito, and J. H. Choi, eds. (Woodhead Publishing Limited, 2013), chap. 7, pp. 171–219.

[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, “Second-harmonic generation by a graphene nanoparticle,” Phys. Rev. B 90, 035412 (2014).

[Crossref]

H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, S. A. Maksimenko, and A. Hoffmann, “Multiphoton resonant excitations and high-harmonic generation in bilayer graphene,” Phys. Rev. B 88, 165411 (2013).

[Crossref]

E. Hendry, P. J. Hale, J. J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).

[Crossref]
[PubMed]

M. A. Sharif, M. H. M. Ara, B. Ghafary, S. Salmani, and S. Mohajer, “Experimental observation of low threshold optical bistability in exfoliated graphene with low oxidation degree,” Opt. Mater. 53, 80–86 (2016).

[Crossref]

S. A. Mikhailov, N. A. Savostianova, and A. S. Moskalenko, “Negative dynamic conductivity of a current-driven array of graphene nanoribbons,” Phys. Rev. B 94, 035439 (2016).

[Crossref]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B 85, 121413 (2012).

[Crossref]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B 85, 121413 (2012).

[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

[Crossref]

M. Tokman, Y. Wang, I. Oladyshkin, A. R. Kutayiah, and A. Belyanin, “Laser-driven parametric instability and generation of entangled photon-plasmon states in graphene,” Phys. Rev. B 93, 235422 (2016).

[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

[Crossref]

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A.-P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).

[Crossref]

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

H. Rostami and M. Polini, “Theory of third-harmonic generation in graphene: A diagrammatic approach,” Phys. Rev. B 93, 161411 (2016).

[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).

[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[Crossref]

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25, 322001 (2014).

[Crossref]
[PubMed]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

[Crossref]

H. Rostami and M. Polini, “Theory of third-harmonic generation in graphene: A diagrammatic approach,” Phys. Rev. B 93, 161411 (2016).

[Crossref]

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B 85, 121413 (2012).

[Crossref]

M. A. Sharif, M. H. M. Ara, B. Ghafary, S. Salmani, and S. Mohajer, “Experimental observation of low threshold optical bistability in exfoliated graphene with low oxidation degree,” Opt. Mater. 53, 80–86 (2016).

[Crossref]

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A.-P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).

[Crossref]

E. Hendry, P. J. Hale, J. J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).

[Crossref]
[PubMed]

S. A. Mikhailov, N. A. Savostianova, and A. S. Moskalenko, “Negative dynamic conductivity of a current-driven array of graphene nanoribbons,” Phys. Rev. B 94, 035439 (2016).

[Crossref]

N. A. Savostianova and S. A. Mikhailov, “Giant enhancement of the third harmonic in graphene integrated in a layered structure,” Appl. Phys. Lett. 107, 181104 (2015).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Third-harmonic generation in one-dimensional photonic crystal with graphene-based defect,” Phys. Rev. B 89, 165139 (2014).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38, 3550–3553 (2013).

[Crossref]
[PubMed]

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187–8201 (2000).

[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, “Second-harmonic generation by a graphene nanoparticle,” Phys. Rev. B 90, 035412 (2014).

[Crossref]

M. A. Sharif, M. H. M. Ara, B. Ghafary, S. Salmani, and S. Mohajer, “Experimental observation of low threshold optical bistability in exfoliated graphene with low oxidation degree,” Opt. Mater. 53, 80–86 (2016).

[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

[Crossref]

J. D. Cox, I. Silviero, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10, 1995–2003 (2016).

[Crossref]
[PubMed]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Erratum: Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature [phys. rev. b 91, 235320 (2015)],” Phys. Rev. B 93, 039904 (2016).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature,” Phys. Rev. B 91, 235320 (2015).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Dc current induced second order optical nonlinearity in graphene,” Optics Express 22, 15868–15876 (2014).

[Crossref]
[PubMed]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).

[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

[Crossref]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, “Second-harmonic generation by a graphene nanoparticle,” Phys. Rev. B 90, 035412 (2014).

[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, “Second-harmonic generation by a graphene nanoparticle,” Phys. Rev. B 90, 035412 (2014).

[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).

[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[Crossref]

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187–8201 (2000).

[Crossref]

Y. Wang, M. Tokman, and A. Belyanin, “Second-order nonlinear optical response of graphene,” Phys. Rev. B 94, 195442 (2016).

[Crossref]

M. Tokman, Y. Wang, I. Oladyshkin, A. R. Kutayiah, and A. Belyanin, “Laser-driven parametric instability and generation of entangled photon-plasmon states in graphene,” Phys. Rev. B 93, 235422 (2016).

[Crossref]

X. Yao, M. Tokman, and A. Belyanin, “Efficient nonlinear generation of THz plasmons in graphene and topological insulators,” Phys. Rev. Lett. 112, 055501 (2014).

[Crossref]
[PubMed]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).

[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B 82, 125411 (2010).

[Crossref]

J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic film,” Appl. Phys. Lett. 95, 261910 (2009).

[Crossref]

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A.-P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).

[Crossref]

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Erratum: Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature [phys. rev. b 91, 235320 (2015)],” Phys. Rev. B 93, 039904 (2016).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature,” Phys. Rev. B 91, 235320 (2015).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Dc current induced second order optical nonlinearity in graphene,” Optics Express 22, 15868–15876 (2014).

[Crossref]
[PubMed]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Third-harmonic generation in one-dimensional photonic crystal with graphene-based defect,” Phys. Rev. B 89, 165139 (2014).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38, 3550–3553 (2013).

[Crossref]
[PubMed]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).

[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[Crossref]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

[Crossref]

M. Tokman, Y. Wang, I. Oladyshkin, A. R. Kutayiah, and A. Belyanin, “Laser-driven parametric instability and generation of entangled photon-plasmon states in graphene,” Phys. Rev. B 93, 235422 (2016).

[Crossref]

Y. Wang, M. Tokman, and A. Belyanin, “Second-order nonlinear optical response of graphene,” Phys. Rev. B 94, 195442 (2016).

[Crossref]

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), 6th ed.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

X. Yao, M. Tokman, and A. Belyanin, “Efficient nonlinear generation of THz plasmons in graphene and topological insulators,” Phys. Rev. Lett. 112, 055501 (2014).

[Crossref]
[PubMed]

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

[Crossref]

S. A. Mikhailov and K. Ziegler, “Non-linear electromagnetic response of graphene: Frequency multiplication and the self-consistent field effects,” J. Phys. Condens. Matter 20, 384204 (2008).

[Crossref]

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007).

[Crossref]
[PubMed]

J. D. Cox, I. Silviero, and F. J. G. de Abajo, “Quantum effects in the nonlinear response of graphene plasmons,” ACS Nano 10, 1995–2003 (2016).

[Crossref]
[PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).

[Crossref]
[PubMed]

J. D. Cox and F. J. G. de Abajo, “Plasmon-enhanced nonlinear wave mixing in nanostructured graphene,” ACS Photonics 2, 306–312 (2015).

[Crossref]

N. A. Savostianova and S. A. Mikhailov, “Giant enhancement of the third harmonic in graphene integrated in a layered structure,” Appl. Phys. Lett. 107, 181104 (2015).

[Crossref]

M. Dragoman, D. Neculoiu, G. Deligeorgis, G. Konstantinidis, D. Dragoman, A. Cismaru, A. A. Muller, and R. Plana, “Millimeter-wave generation via frequency multiplication in graphene,” Appl. Phys. Lett. 97, 093101 (2010).

[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[Crossref]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98, 073106 (2011).

[Crossref]

J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic film,” Appl. Phys. Lett. 95, 261910 (2009).

[Crossref]

S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” Europhys. Lett. 79, 27002 (2007).

[Crossref]

S. A. Mikhailov and K. Ziegler, “Non-linear electromagnetic response of graphene: Frequency multiplication and the self-consistent field effects,” J. Phys. Condens. Matter 20, 384204 (2008).

[Crossref]

S. A. Jafari, “Nonlinear optical response in gapped graphene,” J. Phys. Condens. Matter 24, 205802 (2012).

[Crossref]
[PubMed]

S. A. Mikhailov, “Non-linear graphene optics for terahertz applications,” Microelectron. J. 40, 712–715 (2009).

[Crossref]

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25, 322001 (2014).

[Crossref]
[PubMed]

J. D. Cox and F. J. G. de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nat. Commun. 5, 5725 (2014).

[Crossref]
[PubMed]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).

[Crossref]

T. J. Constant, S. M. Hornett, D. E. Chang, and E. Hendry, “All-optical generation of surface plasmons in graphene,” Nat. Phys. 12, 124–127 (2016).

[Crossref]

S. A. Mikhailov and D. Beba, “Nonlinear broadening of the plasmon linewidth in a graphene stripe,” New J. Phys. 14, 115024 (2012).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).

[Crossref]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).

[Crossref]
[PubMed]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38, 3550–3553 (2013).

[Crossref]
[PubMed]

M. A. Sharif, M. H. M. Ara, B. Ghafary, S. Salmani, and S. Mohajer, “Experimental observation of low threshold optical bistability in exfoliated graphene with low oxidation degree,” Opt. Mater. 53, 80–86 (2016).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Dc current induced second order optical nonlinearity in graphene,” Optics Express 22, 15868–15876 (2014).

[Crossref]
[PubMed]

M. M. Glazov and S. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep. 535, 101–138 (2014).

[Crossref]

M. Tokman, Y. Wang, I. Oladyshkin, A. R. Kutayiah, and A. Belyanin, “Laser-driven parametric instability and generation of entangled photon-plasmon states in graphene,” Phys. Rev. B 93, 235422 (2016).

[Crossref]

Y. Wang, M. Tokman, and A. Belyanin, “Second-order nonlinear optical response of graphene,” Phys. Rev. B 94, 195442 (2016).

[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).

[Crossref]

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187–8201 (2000).

[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, “Second-harmonic generation by a graphene nanoparticle,” Phys. Rev. B 90, 035412 (2014).

[Crossref]

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A.-P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).

[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Third-harmonic generation in one-dimensional photonic crystal with graphene-based defect,” Phys. Rev. B 89, 165139 (2014).

[Crossref]

H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, S. A. Maksimenko, and A. Hoffmann, “Multiphoton resonant excitations and high-harmonic generation in bilayer graphene,” Phys. Rev. B 88, 165411 (2013).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature,” Phys. Rev. B 91, 235320 (2015).

[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Erratum: Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature [phys. rev. b 91, 235320 (2015)],” Phys. Rev. B 93, 039904 (2016).

[Crossref]

S. A. Mikhailov, “Quantum theory of the third-order nonlinear electrodynamic effects in graphene,” Phys. Rev. B 93, 085403 (2016).

[Crossref]

S. A. Mikhailov, N. A. Savostianova, and A. S. Moskalenko, “Negative dynamic conductivity of a current-driven array of graphene nanoribbons,” Phys. Rev. B 94, 035439 (2016).

[Crossref]

H. Rostami and M. Polini, “Theory of third-harmonic generation in graphene: A diagrammatic approach,” Phys. Rev. B 93, 161411 (2016).

[Crossref]

S. A. Mikhailov, “Nonlinear cyclotron resonance of a massless quasiparticle in graphene,” Phys. Rev. B 79, 241309 (2009).

[Crossref]

J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B 82, 125411 (2010).

[Crossref]

K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B 82, 201402 (2010).

[Crossref]

S. A. Mikhailov, “Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems,” Phys. Rev. B 84, 045432 (2011).

[Crossref]

A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B 85, 121413 (2012).

[Crossref]

N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B 87, 121406 (2013).

[Crossref]

E. Hendry, P. J. Hale, J. J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).

[Crossref]
[PubMed]

X. Yao, M. Tokman, and A. Belyanin, “Efficient nonlinear generation of THz plasmons in graphene and topological insulators,” Phys. Rev. Lett. 112, 055501 (2014).

[Crossref]
[PubMed]

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007).

[Crossref]
[PubMed]

S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).

G. Hotopan, S. Ver Hoeye, C. Vazquez, R. Camblor, M. Fernández, F. Las Heras, P. Álvarez, and R. Menéndez, “Millimeter wave microstrip mixer based on graphene,” Prog. Electromag. Res. 118, 57–69 (2011).

[Crossref]

S. A. Mikhailov, “Electromagnetic nonlinearities in graphene,” in “Carbon nanotubes and graphene for photonic applications,” S. Yamashita, Y. Saito, and J. H. Choi, eds. (Woodhead Publishing Limited, 2013), chap. 7, pp. 171–219.

[Crossref]

S. A. Mikhailov, “Nonperturbative quasi-classical theory of the nonlinear electrodynamic response of graphene,” http://arXiv:1608.00877 (2016).

A. Marini, J. D. Cox, and F. J. G. de Abajo, “Theory of graphene saturable absorption,” http://arXiv:1605.06499 (2016).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), 6th ed.

H. Rostami, M. I. Katsnelson, and M. Polini, “Theory of plasmonic effects in nonlinear optics: the case of graphene,” http://arXiv:1610.04854 (2016).