Abstract

We implement a BOTDR sensor that combines the complementary coding with the fast Fourier transform (FFT) technique for high-performance distributed sensing. The employment of the complementary coding provides an enhanced signal-to-noise ratio of the sensing system, which leads to high accuracy measurement. Meanwhile, FFT technique in BOTDR is combined to reduce the measurement time sharply compared to the classical frequency sweeping technique. In addition, a pre-depletion two-wavelength probe pulse is proposed to suppress the distortion of the coding probe pulse induced by EDFA. Experiments are carried out beyond 10 km single-mode fiber, and the results show the capabilities of the proposed scheme to achieve 2 m spatial resolution with 0.37 MHz frequency uncertainty which corresponds to ∼0.37 °C temperature resolution or ∼7.4 με strain resolution. The measurement time can be more than tens of times faster than traditional frequency sweeping method in theory.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques

Junhui Hu, Lan Xia, Li Yang, Wenwen Quan, and Xuping Zhang
Opt. Express 24(12) 13610-13620 (2016)

Bipolar optical pulse coding for performance enhancement in BOTDA sensors

Marcelo A. Soto, Sébastien Le Floch, and Luc Thévenaz
Opt. Express 21(14) 16390-16397 (2013)

Polarization independent fast BOTDA based on pump frequency modulation and cyclic coding

Hua Zheng, Jingdong Zhang, Tao Zhu, Guolu Yin, Yongzhong Bai, Dingrong Qu, Xianbin Huang, and Feng Qiu
Opt. Express 26(14) 18270-18278 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  2. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
    [Crossref] [PubMed]
  3. D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
    [Crossref] [PubMed]
  4. F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the change of Brillouin frequency shift by using similarity matching method,” J. Lightwave Technol. 33(19), 4101–4108 (2015).
    [Crossref]
  5. Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
    [Crossref]
  6. M. Li, W. Jiao, X. Liuwu, Y. Song, and L. Chang, “A Method for Peak Seeking of BOTDR Based on the Incomplete Brillouin Spectrum,” IEEE Photonics J. 7(5), 7102110 (2015).
    [Crossref]
  7. D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
    [Crossref]
  8. H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
    [Crossref]
  9. H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. 85(4), 945–951 (2002).
  10. K. Komatsu, K. Fujihashi, and M. Okutsu, “Application of optical sensing technology to the civil engineering field with optical fiber strain measurement device (BOTDR),” in International Society for Optics and Photonics (Photonics Asia, 2002), pp. 352–361.
  11. F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
    [Crossref]
  12. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
    [Crossref]
  13. J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
    [Crossref]
  14. Y. Li, J. Wang, and Z. Yang, “A method for improving BOTDR system performance,” in Symposium on Photonics and Optoelectronics (2012), pp. 1–4.
    [Crossref]
  15. Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
    [Crossref] [PubMed]
  16. J. Geng, S. Staines, M. Blake, and S. Jiang, “Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering,” Appl. Opt. 46(23), 5928–5932 (2007).
    [Crossref] [PubMed]
  17. F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
    [Crossref]
  18. G. Tu, X. Zhang, Y. Zhang, Z. Ying, and L. Lv, “Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system,” Electron. Lett. 50(22), 1624–1626 (2014).
    [Crossref]
  19. Y. Yu, L. Luo, B. Li, L. Guo, J. Yan, and K. Soga, “Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method,” Appl. Opt. 54(28), E196–E202 (2015).
    [Crossref] [PubMed]
  20. M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
    [Crossref]
  21. H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
    [Crossref]
  22. Q. Sun, X. Tu, Y. Lu, S. Sun, and Z. Meng, “High-accuracy and long-range Brillouin optical time-domain analysis sensor based on the combination of pulse pre-pump technique and complementary coding,” Opt. Eng. 55(6), 066125 (2016).
    [Crossref]
  23. S. L. Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, 879437 (2013).
    [Crossref]
  24. M. Shin and H. Lee, “A high-speed four-parallel radix-2 4 FFT/IFFT processor for UWB applications,” in IEEE International Symposium on Circuits and Systems (IEEE, 2008), pp. 960–963.

2016 (6)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Q. Sun, X. Tu, Y. Lu, S. Sun, and Z. Meng, “High-accuracy and long-range Brillouin optical time-domain analysis sensor based on the combination of pulse pre-pump technique and complementary coding,” Opt. Eng. 55(6), 066125 (2016).
[Crossref]

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
[Crossref] [PubMed]

Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

G. Tu, X. Zhang, Y. Zhang, Z. Ying, and L. Lv, “Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system,” Electron. Lett. 50(22), 1624–1626 (2014).
[Crossref]

2013 (2)

S. L. Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, 879437 (2013).
[Crossref]

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

2010 (1)

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

2009 (1)

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

2007 (1)

2006 (1)

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

2002 (1)

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. 85(4), 945–951 (2002).

2001 (1)

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[Crossref]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

1989 (1)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Ao, L.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Ba, D.

Bao, X.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Blake, M.

Bolognini, G.

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Chang, H.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Chang, L.

M. Li, W. Jiao, X. Liuwu, Y. Song, and L. Chang, “A Method for Peak Seeking of BOTDR Based on the Incomplete Brillouin Spectrum,” IEEE Photonics J. 7(5), 7102110 (2015).
[Crossref]

Chengyu, Z.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Cho, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Dengwang, Z.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Dexin, B.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Dong, J.

F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
[Crossref]

Dong, Y.

Dou, R.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Fan, Z.

Floch, S. L.

S. L. Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, 879437 (2013).
[Crossref]

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Gao, L.

F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
[Crossref]

Geng, J.

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Guo, L.

He, H.

Hongying, Z.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Hui, L.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Ji, X.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Jia, X.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Jiang, S.

Jiao, W.

M. Li, W. Jiao, X. Liuwu, Y. Song, and L. Chang, “A Method for Peak Seeking of BOTDR Based on the Incomplete Brillouin Spectrum,” IEEE Photonics J. 7(5), 7102110 (2015).
[Crossref]

Kihara, M.

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[Crossref]

Kim, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kurashima, T.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. 85(4), 945–951 (2002).

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kusakabe, Y.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. 85(4), 945–951 (2002).

Lee, D.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Lee, H.

M. Shin and H. Lee, “A high-speed four-parallel radix-2 4 FFT/IFFT processor for UWB applications,” in IEEE International Symposium on Circuits and Systems (IEEE, 2008), pp. 960–963.

Li, B.

Li, H.

Li, M.

M. Li, W. Jiao, X. Liuwu, Y. Song, and L. Chang, “A Method for Peak Seeking of BOTDR Based on the Incomplete Brillouin Spectrum,” IEEE Photonics J. 7(5), 7102110 (2015).
[Crossref]

Li, Y.

Y. Li, J. Wang, and Z. Yang, “A method for improving BOTDR system performance,” in Symposium on Photonics and Optoelectronics (2012), pp. 1–4.
[Crossref]

Li, Z.

Liang, C.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Liang, J.

Liuwu, X.

M. Li, W. Jiao, X. Liuwu, Y. Song, and L. Chang, “A Method for Peak Seeking of BOTDR Based on the Incomplete Brillouin Spectrum,” IEEE Photonics J. 7(5), 7102110 (2015).
[Crossref]

Llera, M.

S. L. Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, 879437 (2013).
[Crossref]

Lu, Y.

Q. Sun, X. Tu, Y. Lu, S. Sun, and Z. Meng, “High-accuracy and long-range Brillouin optical time-domain analysis sensor based on the combination of pulse pre-pump technique and complementary coding,” Opt. Eng. 55(6), 066125 (2016).
[Crossref]

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the change of Brillouin frequency shift by using similarity matching method,” J. Lightwave Technol. 33(19), 4101–4108 (2015).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Lu, Z.

Luo, B.

Luo, L.

Lv, L.

G. Tu, X. Zhang, Y. Zhang, Z. Ying, and L. Lv, “Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system,” Electron. Lett. 50(22), 1624–1626 (2014).
[Crossref]

Meng, Z.

Q. Sun, X. Tu, Y. Lu, S. Sun, and Z. Meng, “High-accuracy and long-range Brillouin optical time-domain analysis sensor based on the combination of pulse pre-pump technique and complementary coding,” Opt. Eng. 55(6), 066125 (2016).
[Crossref]

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Naruse, H.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. 85(4), 945–951 (2002).

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[Crossref]

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Nobiki, A.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. 85(4), 945–951 (2002).

Ohno, H.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. 85(4), 945–951 (2002).

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[Crossref]

Pan, W.

Pan, Y.

F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
[Crossref]

Park, J.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Park, N.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Pasquale, F. D.

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Sauser, F.

S. L. Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, 879437 (2013).
[Crossref]

Shao, L.

Shimada, A.

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[Crossref]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Shin, M.

M. Shin and H. Lee, “A high-speed four-parallel radix-2 4 FFT/IFFT processor for UWB applications,” in IEEE International Symposium on Circuits and Systems (IEEE, 2008), pp. 960–963.

Sischka, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Soga, K.

Song, Y.

M. Li, W. Jiao, X. Liuwu, Y. Song, and L. Chang, “A Method for Peak Seeking of BOTDR Based on the Incomplete Brillouin Spectrum,” IEEE Photonics J. 7(5), 7102110 (2015).
[Crossref]

Soto, M. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
[Crossref] [PubMed]

S. L. Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, 879437 (2013).
[Crossref]

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Staines, S.

Sun, Q.

Q. Sun, X. Tu, Y. Lu, S. Sun, and Z. Meng, “High-accuracy and long-range Brillouin optical time-domain analysis sensor based on the combination of pulse pre-pump technique and complementary coding,” Opt. Eng. 55(6), 066125 (2016).
[Crossref]

Sun, S.

Q. Sun, X. Tu, Y. Lu, S. Sun, and Z. Meng, “High-accuracy and long-range Brillouin optical time-domain analysis sensor based on the combination of pulse pre-pump technique and complementary coding,” Opt. Eng. 55(6), 066125 (2016).
[Crossref]

Sun, Z.

F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
[Crossref]

Taofei, J.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Thévenaz, L.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
[Crossref] [PubMed]

S. L. Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, 879437 (2013).
[Crossref]

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Tu, G.

G. Tu, X. Zhang, Y. Zhang, Z. Ying, and L. Lv, “Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system,” Electron. Lett. 50(22), 1624–1626 (2014).
[Crossref]

Tu, X.

Q. Sun, X. Tu, Y. Lu, S. Sun, and Z. Meng, “High-accuracy and long-range Brillouin optical time-domain analysis sensor based on the combination of pulse pre-pump technique and complementary coding,” Opt. Eng. 55(6), 066125 (2016).
[Crossref]

Uchiyama, Y.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. 85(4), 945–951 (2002).

Wang, B.

Wang, F.

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the change of Brillouin frequency shift by using similarity matching method,” J. Lightwave Technol. 33(19), 4101–4108 (2015).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
[Crossref]

Wang, J.

Y. Li, J. Wang, and Z. Yang, “A method for improving BOTDR system performance,” in Symposium on Photonics and Optoelectronics (2012), pp. 1–4.
[Crossref]

Wang, Z.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Wu, H.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Xiaoyi, B.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Xu, C.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Yan, J.

Yan, L.

Yan, Z.

Yang, Z.

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors,” Opt. Express 24(1), 586–597 (2016).
[Crossref] [PubMed]

Y. Li, J. Wang, and Z. Yang, “A method for improving BOTDR system performance,” in Symposium on Photonics and Optoelectronics (2012), pp. 1–4.
[Crossref]

Yin, M.

Ying, Z.

G. Tu, X. Zhang, Y. Zhang, Z. Ying, and L. Lv, “Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system,” Electron. Lett. 50(22), 1624–1626 (2014).
[Crossref]

Yongkang, D.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Yu, Y.

Zhan, W.

Zhang, W.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Zhang, X.

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the change of Brillouin frequency shift by using similarity matching method,” J. Lightwave Technol. 33(19), 4101–4108 (2015).
[Crossref]

G. Tu, X. Zhang, Y. Zhang, Z. Ying, and L. Lv, “Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system,” Electron. Lett. 50(22), 1624–1626 (2014).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
[Crossref]

Zhang, Y.

Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
[Crossref]

G. Tu, X. Zhang, Y. Zhang, Z. Ying, and L. Lv, “Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system,” Electron. Lett. 50(22), 1624–1626 (2014).
[Crossref]

Zhiwei, L.

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Zhou, D.

Zhu, C.

F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
[Crossref]

Zhu, F.

F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

G. Tu, X. Zhang, Y. Zhang, Z. Ying, and L. Lv, “Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system,” Electron. Lett. 50(22), 1624–1626 (2014).
[Crossref]

IEEE Photonics J. (2)

M. Li, W. Jiao, X. Liuwu, Y. Song, and L. Chang, “A Method for Peak Seeking of BOTDR Based on the Incomplete Brillouin Spectrum,” IEEE Photonics J. 7(5), 7102110 (2015).
[Crossref]

D. Yongkang, B. Dexin, J. Taofei, Z. Dengwang, Z. Hongying, Z. Chengyu, L. Zhiwei, L. Hui, C. Liang, and B. Xiaoyi, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

IEICE Trans. Electron. (1)

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. 85(4), 945–951 (2002).

J. Lightwave Technol. (3)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the change of Brillouin frequency shift by using similarity matching method,” J. Lightwave Technol. 33(19), 4101–4108 (2015).
[Crossref]

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Meas. Sci. Technol. (2)

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Opt. Eng. (1)

Q. Sun, X. Tu, Y. Lu, S. Sun, and Z. Meng, “High-accuracy and long-range Brillouin optical time-domain analysis sensor based on the combination of pulse pre-pump technique and complementary coding,” Opt. Eng. 55(6), 066125 (2016).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol. 7(1), 45–64 (2001).
[Crossref]

Proc. SPIE (1)

S. L. Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, 879437 (2013).
[Crossref]

Other (4)

M. Shin and H. Lee, “A high-speed four-parallel radix-2 4 FFT/IFFT processor for UWB applications,” in IEEE International Symposium on Circuits and Systems (IEEE, 2008), pp. 960–963.

K. Komatsu, K. Fujihashi, and M. Okutsu, “Application of optical sensing technology to the civil engineering field with optical fiber strain measurement device (BOTDR),” in International Society for Optics and Photonics (Photonics Asia, 2002), pp. 352–361.

F. Wang, Z. Sun, F. Zhu, C. Zhu, Y. Pan, J. Dong, X. Zhang, and L. Gao, “Research on the leakage monitoring of oil pipeline using BOTDR,” in Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS, 2016), pp. 4907–4910.
[Crossref]

Y. Li, J. Wang, and Z. Yang, “A method for improving BOTDR system performance,” in Symposium on Photonics and Optoelectronics (2012), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Illustration of the process of signal-processing by the FFT method.
Fig. 2
Fig. 2 Illustration of the power distribution curve for different frequency components.
Fig. 3
Fig. 3 Simulations of Golay sequence (a) before amplified by EDFA, and (b) after amplified by EDFA.
Fig. 4
Fig. 4 (a) Simulation results of the pre-depletion two-wavelength probe pulse (a) before amplified by EDFA, and (b) after amplified by EDFA.
Fig. 5
Fig. 5 (a) Experiment setup of the BOTDR system using FFT and complementary coding. PC: polarization controller; EOIM: electro-optic intensity modulator; AWG: arbitrary waveform generator; PS: polarization scrambler; EDFA: erbium-doped fiber amplifier; CIR: circulator. (b) The layout of the sensing fiber consists of two different SMF’s.
Fig. 6
Fig. 6 Measured results of Golay sequence (a) before amplified by EDFA, and (b) after amplified by EDFA.
Fig. 7
Fig. 7 Measured results of the pre-depletion two-wavelength probe pulse (a) before amplified by EDFA, and (b) after amplified by EDFA.
Fig. 8
Fig. 8 BGS distribution obtained by the proposed BOTDR scheme.
Fig. 9
Fig. 9 (a) The BFS distribution curves obtained by the CPP and single pulse. (b) BFS near the beginning of the heated fiber sections obtained with the proposed scheme.
Fig. 10
Fig. 10 The BFS distribution curve of fiber-II obtained by using 64-bit Golay CPP with and without the pre-depletion pulse

Tables (1)

Tables Icon

Table 1 Parameter Combinations of the Pre-depletion Pulse Obtaining the Flat CPP

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ A 1 ( t )=( 1+A( t ) )/2 A 2 ( t )=( 1A( t ) )/2 , { B 1 ( t )=( 1+B( t ) )/2 B 2 ( t )=( 1B( t ) )/2
S( f,l )=corr [ S A1 ( f,l ) S A2 ( f,l ) ],A( t ) +corr [ S B1 ( f,l ) S B2 ( f,l ) ],B( t )

Metrics