Abstract

We devised a method for the measurement of the phase-matching curve of multiple quasi-phase-matched (QPM) LiNbO3 waveguide under conditions of high-power second-harmonic generation. The data obtained revealed that the phase-matching condition can be preserved due to the high damage resistance of the directly bonded LiNbO3 waveguide. Based on this evaluation, we tried to generate multiple optical carriers using multi-stage frequency mixing in the multiple QPM device. The multiple optical carriers have mutual phase correlation, which is suitable for coherent wavelength division multiplexing (WDM) transmission. We also demonstrated 20 Gb/s quadrature phase shift keying (QPSK) signal generation using multiple optical carriers in order to ensure signal quality.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-transparent flexible waveband conversion of 43 Gb/s RZ-DQPSK signals using multiple-QPM-LN waveguides

Hongbin Song, Osamu Tadanaga, Takeshi Umeki, Isao Tomita, Masaki Asobe, Shuto Yamamoto, Kunihiko Mori, and Kazushige Yonenaga
Opt. Express 18(15) 15332-15337 (2010)

In-line phase-sensitive amplification of QPSK signal using multiple quasi-phase matched LiNbO3 waveguide

Masaki Asobe, Takeshi Umeki, Hirokazu Takenouchi, and Yutaka Miyamoto
Opt. Express 22(22) 26642-26650 (2014)

Tunable all-optical wavelength broadcasting in a PPLN with multiple QPM peaks

Meenu Ahlawat, Amirhossein Tehranchi, Krishnamoorthy Pandiyan, Myoungsik Cha, and Raman Kashyap
Opt. Express 20(24) 27425-27433 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [Crossref]
  2. A. Jechow, D. Skoczowsky, and R. Menzel, “100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal,” Opt. Express 15(11), 6976–6981 (2007).
    [Crossref] [PubMed]
  3. M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288 (2008).
    [Crossref]
  4. M. Asobe, T. Umeki, and O. Tadanaga, “Phase sensitive amplification with noise figure below the 3 dB quantum limit using CW pumped PPLN waveguide,” Opt. Express 20(12), 13164–13172 (2012).
    [Crossref] [PubMed]
  5. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ (2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
    [Crossref]
  6. M. Asobe, T. Umeki, H. Takenouchi, and Y. Miyamoto, “In-line phase-sensitive amplification of QPSK signal using multiple quasi-phase matched LiNbO3 waveguide,” Opt. Express 22(22), 26642–26650 (2014).
    [Crossref] [PubMed]
  7. C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasi-phase-matched wavelength converters,” J. Appl. Phys. 87(7), 3203–3208 (2000).
    [Crossref]
  8. A. D. Ellis and F. C. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
    [Crossref]
  9. J. Kakande, A. Bogris, R. Slavik, F. Parmigiani, D. Syvridis, P. Petropoulos, and D. J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” in Proceedings of the 36th European Conference on Optical Communications (ECOC, 2010), paper PD 3.3.
    [Crossref]
  10. H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
    [Crossref]
  11. T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
    [Crossref]

2014 (1)

2012 (1)

2010 (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

2008 (1)

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288 (2008).
[Crossref]

2007 (2)

A. Jechow, D. Skoczowsky, and R. Menzel, “100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal,” Opt. Express 15(11), 6976–6981 (2007).
[Crossref] [PubMed]

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

2005 (2)

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ (2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[Crossref]

A. D. Ellis and F. C. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

2000 (1)

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasi-phase-matched wavelength converters,” J. Appl. Phys. 87(7), 3203–3208 (2000).
[Crossref]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Asobe, M.

M. Asobe, T. Umeki, H. Takenouchi, and Y. Miyamoto, “In-line phase-sensitive amplification of QPSK signal using multiple quasi-phase matched LiNbO3 waveguide,” Opt. Express 22(22), 26642–26650 (2014).
[Crossref] [PubMed]

M. Asobe, T. Umeki, and O. Tadanaga, “Phase sensitive amplification with noise figure below the 3 dB quantum limit using CW pumped PPLN waveguide,” Opt. Express 20(12), 13164–13172 (2012).
[Crossref] [PubMed]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288 (2008).
[Crossref]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ (2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[Crossref]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Ellis, A. D.

A. D. Ellis and F. C. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Gunning, F. C.

A. D. Ellis and F. C. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

Ishii, H.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Jechow, A.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Kasaya, K.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Menzel, R.

Miyamoto, Y.

Miyazawa, H.

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ (2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[Crossref]

Nishida, Y.

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288 (2008).
[Crossref]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ (2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[Crossref]

Ogawa, Y.

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasi-phase-matched wavelength converters,” J. Appl. Phys. 87(7), 3203–3208 (2000).
[Crossref]

Okamoto, K.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Okayama, H.

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasi-phase-matched wavelength converters,” J. Appl. Phys. 87(7), 3203–3208 (2000).
[Crossref]

Oohashi, H.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Shibata, Y.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Skoczowsky, D.

Suzuki, H.

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288 (2008).
[Crossref]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ (2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[Crossref]

Tadanaga, O.

M. Asobe, T. Umeki, and O. Tadanaga, “Phase sensitive amplification with noise figure below the 3 dB quantum limit using CW pumped PPLN waveguide,” Opt. Express 20(12), 13164–13172 (2012).
[Crossref] [PubMed]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288 (2008).
[Crossref]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ (2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[Crossref]

Takenouchi, H.

Umeki, T.

M. Asobe, T. Umeki, H. Takenouchi, and Y. Miyamoto, “In-line phase-sensitive amplification of QPSK signal using multiple quasi-phase matched LiNbO3 waveguide,” Opt. Express 22(22), 26642–26650 (2014).
[Crossref] [PubMed]

M. Asobe, T. Umeki, and O. Tadanaga, “Phase sensitive amplification with noise figure below the 3 dB quantum limit using CW pumped PPLN waveguide,” Opt. Express 20(12), 13164–13172 (2012).
[Crossref] [PubMed]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288 (2008).
[Crossref]

Xu, C. Q.

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasi-phase-matched wavelength converters,” J. Appl. Phys. 87(7), 3203–3208 (2000).
[Crossref]

Yanagawa, T.

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288 (2008).
[Crossref]

Yasaka, H.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Electron. Lett. (1)

M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288 (2008).
[Crossref]

IEEE J. Quantum Electron. (3)

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ (2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41(12), 1540–1547 (2005).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. D. Ellis and F. C. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photonics Technol. Lett. 17(2), 504–506 (2005).
[Crossref]

J. Appl. Phys. (1)

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasi-phase-matched wavelength converters,” J. Appl. Phys. 87(7), 3203–3208 (2000).
[Crossref]

Opt. Express (3)

Other (1)

J. Kakande, A. Bogris, R. Slavik, F. Parmigiani, D. Syvridis, P. Petropoulos, and D. J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” in Proceedings of the 36th European Conference on Optical Communications (ECOC, 2010), paper PD 3.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Process of multiple optical carrier generation. (a) Two inputs are matched to the QPM wavelength, (b) One input is matched to the QPM peak, and the other is detuned.
Fig. 2
Fig. 2 Phase-matching curve measurement setup in the presence of high-power SH light.
Fig. 3
Fig. 3 Phase-matching curve measured by scanning the amplified TLA. EDFA output power was (a) 23 dBm, (b) 33 dBm. The QPM wavelengths are labeled with arrows.
Fig. 4
Fig. 4 Phase-matching curves measured with LIV: (a) amplitude, (b) phase, and (c) in-phase amplitude with EDFA output power of 30 dBm, (d), (e) in-phase amplitude with EDFA output power of 23 dBm and 33 dBm, respectively. The QPM wavelengths are labeled with arrows.
Fig. 5
Fig. 5 Experimental setup for multiple optical carrier generation.
Fig. 6
Fig. 6 Optical spectra of multiple optical carriers with different input powers. EDFA output power was set to (a), (d) 23 dBm, (b), (e) 27dBm, and (c), (f) 30dBm, respectively.
Fig. 7
Fig. 7 Experimental setup for data transmission.
Fig. 8
Fig. 8 Bit error rate characteristics.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

X=Acosθ,

Metrics