Abstract

Traditional methods of discrimination for Stokes polarimetric imaging use grayscale images, in which the difference of the polarimetric properties is only reflected by the difference of grayscale. In this paper, we propose a method of colorimetric discrimination and classification for Stokes polarimetric imaging by the composed color polarimetric image, in which the objects with different polarization properties can appear in different colors. We show with real-world experiment that compared with the traditional method for the grayscale Stokes scalar image, the method proposed in this paper has a better performance for distinguishing objects with different polarization properties.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Contrast optimization in broadband passive polarimetric imaging based on color camera

Zijian Guan, François Goudail, Mingxuan Yu, Xiaobo Li, Qun Han, Zhenzhou Cheng, Haofeng Hu, and Tiegen Liu
Opt. Express 27(3) 2444-2454 (2019)

Optimal discrimination of multiple regions with an active polarimetric imager

Guillaume Anna, François Goudail, and Daniel Dolfi
Opt. Express 19(25) 25367-25378 (2011)

Stokes-vector-based polarimetric imaging system for adaptive target/background contrast enhancement

Minjie Wan, Guohua Gu, Weixian Qian, Kan Ren, and Qian Chen
Appl. Opt. 55(21) 5513-5519 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Anna, F. Goudail, and D. Dolfi, “Polarimetric target detection in the presence of spatially fluctuating Mueller matrices,” Opt. Lett. 36(23), 4590–4592 (2011).
    [Crossref] [PubMed]
  2. B. Huang, T. Liu, J. Han, and H. Hu, “Polarimetric target detection under uneven illumination,” Opt. Express 23(18), 23603–23612 (2015).
    [Crossref] [PubMed]
  3. M. Boffety, H. Hu, and F. Goudail, “Contrast optimization in broadband passive polarimetric imaging,” Opt. Lett. 39(23), 6759–6762 (2014).
    [Crossref] [PubMed]
  4. J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Design and optimization of partial mueller matrix polarimeters,” Appl. Opt. 49(12), 2326–2333 (2010).
    [Crossref] [PubMed]
  5. M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7(6), 1327–1340 (1998).
    [Crossref]
  6. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  7. J. Álvarez, C. Serrano, D. Hill, and J. Martínez-Pastor, “Real-time polarimetric optical sensor using macroporous alumina membranes,” Opt. Lett. 38(7), 1058–1060 (2013).
    [Crossref] [PubMed]
  8. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
    [Crossref] [PubMed]
  9. F. Yang, G. Dong, Y. Peng, Y. Yamaguchi, and H. Yamada, “Generalized Optimization of Polarimetric Contrast Enhancement,” IEEE Geosci. Remote Sens. 1(3), 171–174 (2004).
    [Crossref]
  10. M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color CCD,” IEEE Photonics J. 8(5), 6900910 (2016).
    [Crossref]
  11. F. Goudail and A. Bénière, “Optimization of the contrast in polarimetric scalar images,” Opt. Lett. 34(9), 1471–1473 (2009).
    [Crossref] [PubMed]
  12. F. Goudail and M. Boffety, “Performance comparison of fully adaptive and static passive polarimetric imagers in the presence of intensity and polarization contrast,” J. Opt. Soc. Am. A 33(9), 1880–1886 (2016).
    [Crossref] [PubMed]
  13. J. Zallat, S. Ainouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A 8(9), 807–814 (2006).
    [Crossref]
  14. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
    [Crossref] [PubMed]
  15. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43(14), 2824–2832 (2004).
    [Crossref] [PubMed]
  16. G. Anna, F. Goudail, and D. Dolfi, “Optimal discrimination of multiple regions with an active polarimetric imager,” Opt. Express 19(25), 25367–25378 (2011).
    [Crossref] [PubMed]
  17. Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76(3), 501–521 (1993).
    [Crossref]
  18. D. G. Jones, D. H. Goldstein, and J. C. Spaulding, “Reflective and polarimetric characteristics of urban materials,” Proc. SPIE 6240, 62400A (2006).
    [Crossref]
  19. I. J. Vaughn, B. G. Hoover, and J. S. Tyo, “Classification using active polarimetry,” Proc. SPIE 8364, 83640S (2012).
    [Crossref]
  20. B. G. Hoover and J. S. Tyo, “Polarization components analysis for invariant discrimination,” Appl. Opt. 46(34), 8364–8373 (2007).
    [Crossref] [PubMed]
  21. S. Manhas, J. Vizet, S. Deby, J. C. Vanel, P. Boito, M. Verdier, A. De Martino, and D. Pagnoux, “Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications,” Opt. Express 23(3), 3047–3054 (2015).
    [Crossref] [PubMed]
  22. S. Alali, A. Gribble, and I. A. Vitkin, “Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts,” Opt. Lett. 41(5), 1038–1041 (2016).
    [Crossref] [PubMed]

2016 (3)

2015 (2)

2014 (1)

2013 (1)

2012 (1)

I. J. Vaughn, B. G. Hoover, and J. S. Tyo, “Classification using active polarimetry,” Proc. SPIE 8364, 83640S (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

2007 (1)

2006 (3)

J. Zallat, S. Ainouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A 8(9), 807–814 (2006).
[Crossref]

D. G. Jones, D. H. Goldstein, and J. C. Spaulding, “Reflective and polarimetric characteristics of urban materials,” Proc. SPIE 6240, 62400A (2006).
[Crossref]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

2004 (2)

F. Yang, G. Dong, Y. Peng, Y. Yamaguchi, and H. Yamada, “Generalized Optimization of Polarimetric Contrast Enhancement,” IEEE Geosci. Remote Sens. 1(3), 171–174 (2004).
[Crossref]

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43(14), 2824–2832 (2004).
[Crossref] [PubMed]

2000 (1)

1998 (1)

M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7(6), 1327–1340 (1998).
[Crossref]

1993 (1)

Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76(3), 501–521 (1993).
[Crossref]

Ainouz, S.

J. Zallat, S. Ainouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A 8(9), 807–814 (2006).
[Crossref]

Alali, S.

Álvarez, J.

Anna, G.

Antonelli, M.-R.

Benali, A.

Bénière, A.

Boffety, M.

Boito, P.

Cariou, J.

M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7(6), 1327–1340 (1998).
[Crossref]

Chenault, D. B.

De Martino, A.

Deby, S.

Dereniak, E. L.

Descour, M. R.

Dolfi, D.

Dong, G.

F. Yang, G. Dong, Y. Peng, Y. Yamaguchi, and H. Yamada, “Generalized Optimization of Polarimetric Contrast Enhancement,” IEEE Geosci. Remote Sens. 1(3), 171–174 (2004).
[Crossref]

Drévillon, B.

Duan, Q. Y.

Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76(3), 501–521 (1993).
[Crossref]

Floc’h, M.

M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7(6), 1327–1340 (1998).
[Crossref]

Gayet, B.

Goldstein, D. H.

D. G. Jones, D. H. Goldstein, and J. C. Spaulding, “Reflective and polarimetric characteristics of urban materials,” Proc. SPIE 6240, 62400A (2006).
[Crossref]

Goldstein, D. L.

Goudail, F.

Gribble, A.

Gupta, V. K.

Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76(3), 501–521 (1993).
[Crossref]

Han, J.

Hill, D.

Hoover, B. G.

Hu, H.

Huang, B.

M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color CCD,” IEEE Photonics J. 8(5), 6900910 (2016).
[Crossref]

B. Huang, T. Liu, J. Han, and H. Hu, “Polarimetric target detection under uneven illumination,” Opt. Express 23(18), 23603–23612 (2015).
[Crossref] [PubMed]

Huang, H.

M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color CCD,” IEEE Photonics J. 8(5), 6900910 (2016).
[Crossref]

Johnson, S. J.

Jones, D. G.

D. G. Jones, D. H. Goldstein, and J. C. Spaulding, “Reflective and polarimetric characteristics of urban materials,” Proc. SPIE 6240, 62400A (2006).
[Crossref]

Kemme, S. A.

Kieleck, C.

M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7(6), 1327–1340 (1998).
[Crossref]

Laude-Boulesteix, B.

Le Brun, G.

M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7(6), 1327–1340 (1998).
[Crossref]

Liu, T.

M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color CCD,” IEEE Photonics J. 8(5), 6900910 (2016).
[Crossref]

B. Huang, T. Liu, J. Han, and H. Hu, “Polarimetric target detection under uneven illumination,” Opt. Express 23(18), 23603–23612 (2015).
[Crossref] [PubMed]

Lotrian, J.

M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7(6), 1327–1340 (1998).
[Crossref]

Manhas, S.

Martínez-Pastor, J.

Novikova, T.

Pagnoux, D.

Peng, Y.

F. Yang, G. Dong, Y. Peng, Y. Yamaguchi, and H. Yamada, “Generalized Optimization of Polarimetric Contrast Enhancement,” IEEE Geosci. Remote Sens. 1(3), 171–174 (2004).
[Crossref]

Phipps, G. S.

Pierangelo, A.

Sabatke, D. S.

Schwartz, L.

Serrano, C.

Shaw, J. A.

Sorooshian, S.

Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76(3), 501–521 (1993).
[Crossref]

Spaulding, J. C.

D. G. Jones, D. H. Goldstein, and J. C. Spaulding, “Reflective and polarimetric characteristics of urban materials,” Proc. SPIE 6240, 62400A (2006).
[Crossref]

Stoll, M. P.

J. Zallat, S. Ainouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A 8(9), 807–814 (2006).
[Crossref]

Sweatt, W. C.

Tyo, J. S.

Validire, P.

Vanel, J. C.

Vaughn, I. J.

I. J. Vaughn, B. G. Hoover, and J. S. Tyo, “Classification using active polarimetry,” Proc. SPIE 8364, 83640S (2012).
[Crossref]

Verdier, M.

Vitkin, I. A.

Vizet, J.

Wang, Z.

Yamada, H.

F. Yang, G. Dong, Y. Peng, Y. Yamaguchi, and H. Yamada, “Generalized Optimization of Polarimetric Contrast Enhancement,” IEEE Geosci. Remote Sens. 1(3), 171–174 (2004).
[Crossref]

Yamaguchi, Y.

F. Yang, G. Dong, Y. Peng, Y. Yamaguchi, and H. Yamada, “Generalized Optimization of Polarimetric Contrast Enhancement,” IEEE Geosci. Remote Sens. 1(3), 171–174 (2004).
[Crossref]

Yang, F.

F. Yang, G. Dong, Y. Peng, Y. Yamaguchi, and H. Yamada, “Generalized Optimization of Polarimetric Contrast Enhancement,” IEEE Geosci. Remote Sens. 1(3), 171–174 (2004).
[Crossref]

Yu, M.

M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color CCD,” IEEE Photonics J. 8(5), 6900910 (2016).
[Crossref]

Zallat, J.

J. Zallat, S. Ainouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A 8(9), 807–814 (2006).
[Crossref]

Appl. Opt. (4)

IEEE Geosci. Remote Sens. (1)

F. Yang, G. Dong, Y. Peng, Y. Yamaguchi, and H. Yamada, “Generalized Optimization of Polarimetric Contrast Enhancement,” IEEE Geosci. Remote Sens. 1(3), 171–174 (2004).
[Crossref]

IEEE Photonics J. (1)

M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color CCD,” IEEE Photonics J. 8(5), 6900910 (2016).
[Crossref]

J. Opt. A (1)

J. Zallat, S. Ainouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A 8(9), 807–814 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Optim. Theory Appl. (1)

Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76(3), 501–521 (1993).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Proc. SPIE (2)

D. G. Jones, D. H. Goldstein, and J. C. Spaulding, “Reflective and polarimetric characteristics of urban materials,” Proc. SPIE 6240, 62400A (2006).
[Crossref]

I. J. Vaughn, B. G. Hoover, and J. S. Tyo, “Classification using active polarimetry,” Proc. SPIE 8364, 83640S (2012).
[Crossref]

Pure Appl. Opt. (1)

M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7(6), 1327–1340 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic of the coordinates of the three objects and the corresponding triangle in RGB color space.
Fig. 2
Fig. 2 The schematic of the scene.
Fig. 3
Fig. 3 The intensity image of the scene.
Fig. 4
Fig. 4 The polarimetric scalar images at the optimal state of (T)1, (T)2, (T)3) and the corresponding composed polarimetric color image.
Fig. 5
Fig. 5 The point clusters of the trichromatic coordinates corresponding to the pixels inside of the three objects and the corresponding triangle in the RGB color space at the optimal state of (T)1, (T)2, (T)3).
Fig. 6
Fig. 6 Result of colorimetric classification.
Fig. 7
Fig. 7 The optimal polarimetric scalar image which maximizes the parameter D in Eq. (8).
Fig. 8
Fig. 8 Composed polarimetric color image for the scene composed by three linear polarizers with different orientations sticked on the white paper.

Tables (1)

Tables Icon

Table 1 The probability of detection and the probability of false alarm for objects a, b and c

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S = W 1 I ,
T o p t = arg max T ( Δ I ) = arg max T { 1 2 T T ( S 1 S 2 ) } ,
{ I 1 ( x , y ) = 1 2 T 1 T S ( x , y ) I 2 ( x , y ) = 1 2 T 2 T S ( x , y ) I 3 ( x , y ) = 1 2 T 3 T S ( x , y )
P i ( R , G , B ) = ( I 1 i , I 2 i , I 3 i ) , i [ a , b , c ]
R = q ( q L a ) ( q L b ) ( q L c ) ,
( T 1 , T 2 , T 3 ) o p t = arg max T 1 , T 2 , T 3 { R ( T 1 , T 2 , T 3 ) } .
S a ¯ = [ 0.457 0.180 0.308 0.062 ] , S b ¯ = [ 0.493 0.257 0.077 0.206 ] , S c ¯ = [ 0.488 0.411 0.082 0.113 ] .
D = | i a i b | | i b i c | | i c i a | ,

Metrics