Abstract

In high lumen laser projectors, it is required to use laser diodes coupled to multi-mode fibers (MMFs) to obtain a high power illumination module. In this paper, we have fabricated an electromagnetic micro-scanning mirror (EM-MSM), and we have firstly demonstrated a speckle reduction method by the combination of the EM-MSM and the MMF. With the help of a condenser lens, laser beams modulated and reflected from the EM-MSM are coupled into the MMF within its acceptance angle. Because the fast scanning behavior of the EM-MSM results in the phase modulation and mode coupling among the MMF guided modes, the light intensity field distributions at the exit aperture of the MMF are changing. During the charge-coupled device (CCD) integration time, the random speckle patterns are integrated and homogenized by the CCD camera, and hence speckle is reduced. By driving the EM-MSM in raster scan, the lowest compound speckle contrast ratio at 0.0794 is obtained, where the EM-MSM half scanning angles are 0.4 ° and the optical power loss is lower than 4.5%. The demonstrated technique is compact and can endure the high power of the laser module; thus, it has a promising potential in high lumen laser projector applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle reduction in laser projection using a dynamic deformable mirror

Thi-Kim-Trinh Tran, Xuyuan Chen, Øyvind Svensen, and Muhammad Nadeem Akram
Opt. Express 22(9) 11152-11166 (2014)

Speckle reduction using deformable mirrors with diffusers in a laser pico-projector

Hsuan-An Chen, Jui-Wen Pan, and Zu-Po Yang
Opt. Express 25(15) 18140-18151 (2017)

Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror

M. Nadeem Akram, Zhaomin Tong, Guangmin Ouyang, Xuyuan Chen, and Vladimir Kartashov
Appl. Opt. 49(17) 3297-3304 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Brennesholtz and E. H. Stupp, Projection Displays (John Wiley & Sons Ltd, 2008).
  2. L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
    [Crossref]
  3. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2006).
  4. A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
    [Crossref]
  5. C. Saloma, S. Kawata, and S. Minami, “Speckle reduction by wavelength and space diversity using a semiconductor laser,” Appl. Opt. 29(6), 741–742 (1990).
    [Crossref] [PubMed]
  6. S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).
  7. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
    [Crossref] [PubMed]
  8. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29(1), 11–13 (2004).
    [Crossref] [PubMed]
  9. M. N. Akram, V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35(3), 444–446 (2010).
    [Crossref] [PubMed]
  10. Z. Tong, M. N. Akram, and X. Chen, “Speckle reduction using orthogonal arrays in laser projectors,” Appl. Opt. 49(33), 6425–6429 (2010).
    [Crossref] [PubMed]
  11. Z. Tong and X. Chen, “Principle, design and fabrication of a passive binary micro-mirror array (BMMA) for speckle reduction in Grating Light Valve (GLV) based laser projection display,” Sensor. Actuat. A-Phys. 210, 209–216 (2014).
  12. Z. Tong and X. Chen, “A ferroelectric liquid crystal spatial light modulator encoded with orthogonal arrays and its optimized design for laser speckle reduction,” Opt. Lasers Eng. 90, 173–178 (2017).
    [Crossref]
  13. B. Silverstein, A. Kurtz, J. Bietry, and G. Northhard, “A laser beased digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap.42, 326–329 (2011).
  14. Z. Tong and X. Chen, “Speckle contrast for superposed speckle patterns created by rotating the orientation of laser polarization,” J. Opt. Soc. Am. A 29(10), 2074–2079 (2012).
    [Crossref] [PubMed]
  15. M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49(17), 3297–3304 (2010).
    [Crossref] [PubMed]
  16. Z. Tong, X. Chen, M. N. Akram, and A. Aksnes, “Compound speckle characterization method and reduction by optical design,” J. Disp. Technol. 8(3), 132–137 (2012).
    [Crossref]
  17. W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
    [Crossref]
  18. W. Ha, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction,” Opt. Express 17(20), 17536–17546 (2009).
    [Crossref] [PubMed]
  19. D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
    [Crossref] [PubMed]
  20. Y. Fujimaki and H. Taniguchi, “Reduction of speckle contrast in multimode fibers using piezoelectric vibrator,” Proc. SPIE 8960, 89601S (2014).
    [Crossref]
  21. J. Kinoshita, H. Aizawa, A. Takamori, K. Yamamoto, H. Murata, and K. Tojo, “Angular dependence of screen speckle and fiber speckle of coupled output of nine high-power blue laser diodes through a multi-mode fiber,” Opt. Rev. 23(1), 121–132 (2016).
    [Crossref]
  22. G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
    [Crossref]
  23. J. He, P. Zhou, H. Yu, J. Shen, and J. Si, “Research on large size MEMS scanning mirror driven by electromagnetic,” Acta Phtonica Sin. 46(1), 0123003 (2017).
  24. P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
    [Crossref]
  25. P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern,” J. Mod. Opt. 41(5), 1001–1014 (1994).
    [Crossref]
  26. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc., 2009)
  27. S. Roelandt, Y. Meuret, G. Craggs, G. Verschaffelt, P. Janssens, and H. Thienpont, “Standardized speckle measurement method matched to human speckle perception in laser projection systems,” Opt. Express 20(8), 8770–8783 (2012).
    [Crossref] [PubMed]

2017 (2)

Z. Tong and X. Chen, “A ferroelectric liquid crystal spatial light modulator encoded with orthogonal arrays and its optimized design for laser speckle reduction,” Opt. Lasers Eng. 90, 173–178 (2017).
[Crossref]

J. He, P. Zhou, H. Yu, J. Shen, and J. Si, “Research on large size MEMS scanning mirror driven by electromagnetic,” Acta Phtonica Sin. 46(1), 0123003 (2017).

2016 (2)

J. Kinoshita, H. Aizawa, A. Takamori, K. Yamamoto, H. Murata, and K. Tojo, “Angular dependence of screen speckle and fiber speckle of coupled output of nine high-power blue laser diodes through a multi-mode fiber,” Opt. Rev. 23(1), 121–132 (2016).
[Crossref]

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

2014 (2)

Z. Tong and X. Chen, “Principle, design and fabrication of a passive binary micro-mirror array (BMMA) for speckle reduction in Grating Light Valve (GLV) based laser projection display,” Sensor. Actuat. A-Phys. 210, 209–216 (2014).

Y. Fujimaki and H. Taniguchi, “Reduction of speckle contrast in multimode fibers using piezoelectric vibrator,” Proc. SPIE 8960, 89601S (2014).
[Crossref]

2012 (4)

2010 (4)

2009 (1)

2008 (3)

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

2006 (1)

S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).

2004 (1)

1994 (1)

P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern,” J. Mod. Opt. 41(5), 1001–1014 (1994).
[Crossref]

1992 (1)

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[Crossref]

1990 (1)

Aizawa, H.

J. Kinoshita, H. Aizawa, A. Takamori, K. Yamamoto, H. Murata, and K. Tojo, “Angular dependence of screen speckle and fiber speckle of coupled output of nine high-power blue laser diodes through a multi-mode fiber,” Opt. Rev. 23(1), 121–132 (2016).
[Crossref]

Akram, M. N.

Aksnes, A.

Z. Tong, X. Chen, M. N. Akram, and A. Aksnes, “Compound speckle characterization method and reduction by optical design,” J. Disp. Technol. 8(3), 132–137 (2012).
[Crossref]

Bi, Y.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Bietry, J.

B. Silverstein, A. Kurtz, J. Bietry, and G. Northhard, “A laser beased digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap.42, 326–329 (2011).

Chen, X.

Z. Tong and X. Chen, “A ferroelectric liquid crystal spatial light modulator encoded with orthogonal arrays and its optimized design for laser speckle reduction,” Opt. Lasers Eng. 90, 173–178 (2017).
[Crossref]

Z. Tong and X. Chen, “Principle, design and fabrication of a passive binary micro-mirror array (BMMA) for speckle reduction in Grating Light Valve (GLV) based laser projection display,” Sensor. Actuat. A-Phys. 210, 209–216 (2014).

Z. Tong and X. Chen, “Speckle contrast for superposed speckle patterns created by rotating the orientation of laser polarization,” J. Opt. Soc. Am. A 29(10), 2074–2079 (2012).
[Crossref] [PubMed]

Z. Tong, X. Chen, M. N. Akram, and A. Aksnes, “Compound speckle characterization method and reduction by optical design,” J. Disp. Technol. 8(3), 132–137 (2012).
[Crossref]

M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49(17), 3297–3304 (2010).
[Crossref] [PubMed]

Z. Tong, M. N. Akram, and X. Chen, “Speckle reduction using orthogonal arrays in laser projectors,” Appl. Opt. 49(33), 6425–6429 (2010).
[Crossref] [PubMed]

Cheng, H.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Cheng, Y.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Chu, S. W.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Craggs, G.

Fang, T.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Fuhr, P. L.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[Crossref]

Fujimaki, Y.

Y. Fujimaki and H. Taniguchi, “Reduction of speckle contrast in multimode fibers using piezoelectric vibrator,” Proc. SPIE 8960, 89601S (2014).
[Crossref]

Furukawa, A.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

Goodman, J. W.

Ha, W.

W. Ha, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction,” Opt. Express 17(20), 17536–17546 (2009).
[Crossref] [PubMed]

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

He, J.

J. He, P. Zhou, H. Yu, J. Shen, and J. Si, “Research on large size MEMS scanning mirror driven by electromagnetic,” Acta Phtonica Sin. 46(1), 0123003 (2017).

Hirata, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

Hlubina, P.

P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern,” J. Mod. Opt. 41(5), 1001–1014 (1994).
[Crossref]

Huston, D. R.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[Crossref]

Ikeda, M.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Imanishi, D.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

Ito, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

Janssens, P.

Jia, Z. D.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Jiang, L.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Jung, Y.

W. Ha, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction,” Opt. Express 17(20), 17536–17546 (2009).
[Crossref] [PubMed]

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Kajenski, P. J.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[Crossref]

Kartashov, V.

Kawata, S.

Kim, J.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Kim, J. K.

Kinoshita, J.

J. Kinoshita, H. Aizawa, A. Takamori, K. Yamamoto, H. Murata, and K. Tojo, “Angular dependence of screen speckle and fiber speckle of coupled output of nine high-power blue laser diodes through a multi-mode fiber,” Opt. Rev. 23(1), 121–132 (2016).
[Crossref]

Kubota, S.

Kurtz, A.

B. Silverstein, A. Kurtz, J. Bietry, and G. Northhard, “A laser beased digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap.42, 326–329 (2011).

Kwon, J. W.

S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).

Lee, S.

W. Ha, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction,” Opt. Express 17(20), 17536–17546 (2009).
[Crossref] [PubMed]

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).

Lee, S. Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).

Li, D.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Li, Z.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Liu, J.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Mehta, D. S.

Meuret, Y.

Min, H. T.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Minami, S.

Murata, H.

J. Kinoshita, H. Aizawa, A. Takamori, K. Yamamoto, H. Murata, and K. Tojo, “Angular dependence of screen speckle and fiber speckle of coupled output of nine high-power blue laser diodes through a multi-mode fiber,” Opt. Rev. 23(1), 121–132 (2016).
[Crossref]

Naik, D. N.

Northhard, G.

B. Silverstein, A. Kurtz, J. Bietry, and G. Northhard, “A laser beased digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap.42, 326–329 (2011).

Oh, K.

W. Ha, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction,” Opt. Express 17(20), 17536–17546 (2009).
[Crossref] [PubMed]

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Ohse, N.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

Ouyang, G.

Park, C.

S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).

Park, S.

S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).

Qi, Y.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Roelandt, S.

Saloma, C.

Sato, Y.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

Shen, J.

J. He, P. Zhou, H. Yu, J. Shen, and J. Si, “Research on large size MEMS scanning mirror driven by electromagnetic,” Acta Phtonica Sin. 46(1), 0123003 (2017).

Shin, S. C.

S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).

Si, J.

J. He, P. Zhou, H. Yu, J. Shen, and J. Si, “Research on large size MEMS scanning mirror driven by electromagnetic,” Acta Phtonica Sin. 46(1), 0123003 (2017).

Silverstein, B.

B. Silverstein, A. Kurtz, J. Bietry, and G. Northhard, “A laser beased digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap.42, 326–329 (2011).

Singh, R. K.

Takamori, A.

J. Kinoshita, H. Aizawa, A. Takamori, K. Yamamoto, H. Murata, and K. Tojo, “Angular dependence of screen speckle and fiber speckle of coupled output of nine high-power blue laser diodes through a multi-mode fiber,” Opt. Rev. 23(1), 121–132 (2016).
[Crossref]

Takeda, M.

Tamamura, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

Taniguchi, H.

Y. Fujimaki and H. Taniguchi, “Reduction of speckle contrast in multimode fibers using piezoelectric vibrator,” Proc. SPIE 8960, 89601S (2014).
[Crossref]

Thienpont, H.

Tian, A.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Tojo, K.

J. Kinoshita, H. Aizawa, A. Takamori, K. Yamamoto, H. Murata, and K. Tojo, “Angular dependence of screen speckle and fiber speckle of coupled output of nine high-power blue laser diodes through a multi-mode fiber,” Opt. Rev. 23(1), 121–132 (2016).
[Crossref]

Tong, Z.

Z. Tong and X. Chen, “A ferroelectric liquid crystal spatial light modulator encoded with orthogonal arrays and its optimized design for laser speckle reduction,” Opt. Lasers Eng. 90, 173–178 (2017).
[Crossref]

Z. Tong and X. Chen, “Principle, design and fabrication of a passive binary micro-mirror array (BMMA) for speckle reduction in Grating Light Valve (GLV) based laser projection display,” Sensor. Actuat. A-Phys. 210, 209–216 (2014).

Z. Tong and X. Chen, “Speckle contrast for superposed speckle patterns created by rotating the orientation of laser polarization,” J. Opt. Soc. Am. A 29(10), 2074–2079 (2012).
[Crossref] [PubMed]

Z. Tong, X. Chen, M. N. Akram, and A. Aksnes, “Compound speckle characterization method and reduction by optical design,” J. Disp. Technol. 8(3), 132–137 (2012).
[Crossref]

M. N. Akram, V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35(3), 444–446 (2010).
[Crossref] [PubMed]

M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49(17), 3297–3304 (2010).
[Crossref] [PubMed]

Z. Tong, M. N. Akram, and X. Chen, “Speckle reduction using orthogonal arrays in laser projectors,” Appl. Opt. 49(33), 6425–6429 (2010).
[Crossref] [PubMed]

Trisnadi, J. I.

Verschaffelt, G.

Wakabayashi, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

Wang, B.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Wang, Y.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Wang, Y. W.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Wu, T. J.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Xu, J. K.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Yamamoto, K.

J. Kinoshita, H. Aizawa, A. Takamori, K. Yamamoto, H. Murata, and K. Tojo, “Angular dependence of screen speckle and fiber speckle of coupled output of nine high-power blue laser diodes through a multi-mode fiber,” Opt. Rev. 23(1), 121–132 (2016).
[Crossref]

Yan, B. X.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Yan, S. P.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Yang, H.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Ye, C. W.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Yoo, S. S.

S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).

Yu, H.

J. He, P. Zhou, H. Yu, J. Shen, and J. Si, “Research on large size MEMS scanning mirror driven by electromagnetic,” Acta Phtonica Sin. 46(1), 0123003 (2017).

Zhang, L.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Zhang, S.

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Zheng, G.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

Zhou, P.

J. He, P. Zhou, H. Yu, J. Shen, and J. Si, “Research on large size MEMS scanning mirror driven by electromagnetic,” Acta Phtonica Sin. 46(1), 0123003 (2017).

Acta Phtonica Sin. (1)

J. He, P. Zhou, H. Yu, J. Shen, and J. Si, “Research on large size MEMS scanning mirror driven by electromagnetic,” Acta Phtonica Sin. 46(1), 0123003 (2017).

Appl. Opt. (5)

J. Disp. Technol. (3)

Z. Tong, X. Chen, M. N. Akram, and A. Aksnes, “Compound speckle characterization method and reduction by optical design,” J. Disp. Technol. 8(3), 132–137 (2012).
[Crossref]

S. C. Shin, S. S. Yoo, S. Y. Lee, C. Park, S. Park, J. W. Kwon, and S. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” J. Disp. Technol. 27(3), 91–96 (2006).

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4(3), 314–318 (2008).
[Crossref]

J. Lightwave Technol. (1)

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[Crossref]

J. Mod. Opt. (1)

P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern,” J. Mod. Opt. 41(5), 1001–1014 (1994).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Semicond. (1)

L. Jiang, J. Liu, A. Tian, Y. Cheng, Z. Li, L. Zhang, S. Zhang, D. Li, M. Ikeda, and H. Yang, “GaN-based green laser diodes,” J. Semicond. 37(11), 111001 (2016).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

Z. Tong and X. Chen, “A ferroelectric liquid crystal spatial light modulator encoded with orthogonal arrays and its optimized design for laser speckle reduction,” Opt. Lasers Eng. 90, 173–178 (2017).
[Crossref]

Opt. Lett. (2)

Opt. Rev. (1)

J. Kinoshita, H. Aizawa, A. Takamori, K. Yamamoto, H. Murata, and K. Tojo, “Angular dependence of screen speckle and fiber speckle of coupled output of nine high-power blue laser diodes through a multi-mode fiber,” Opt. Rev. 23(1), 121–132 (2016).
[Crossref]

Proc. SPIE (3)

Y. Fujimaki and H. Taniguchi, “Reduction of speckle contrast in multimode fibers using piezoelectric vibrator,” Proc. SPIE 8960, 89601S (2014).
[Crossref]

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[Crossref]

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Sensor. Actuat. A-Phys. (1)

Z. Tong and X. Chen, “Principle, design and fabrication of a passive binary micro-mirror array (BMMA) for speckle reduction in Grating Light Valve (GLV) based laser projection display,” Sensor. Actuat. A-Phys. 210, 209–216 (2014).

Other (4)

B. Silverstein, A. Kurtz, J. Bietry, and G. Northhard, “A laser beased digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap.42, 326–329 (2011).

M. S. Brennesholtz and E. H. Stupp, Projection Displays (John Wiley & Sons Ltd, 2008).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2006).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc., 2009)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Working principle of the EM-MSM for horizontal scan and (b) the packaged EM-MSM after fabrication.
Fig. 2
Fig. 2 The relationship between the peak to peak driving voltage and the EM-MSM half scanning angle θm.
Fig. 3
Fig. 3 Experimental setup. The collimated laser beam is modulated by the electromagnetic micro scanning mirror: EM-MSM, and with the help of the condenser lens, it is coupled into the multi-mode fiber: MMF. The highly transparent diffuser and the tapered rod integrator together homogenize the optical field. The exit aperture of the tapered rod integrator is projected onto the screen by the projection lens, and the speckle image is captured by the CCD camera mounted with an imaging lens.
Fig. 4
Fig. 4 The relationship between the EM-MSM half scanning angle θm and the optical power loss.
Fig. 5
Fig. 5 Speckle images captured by the CCD camera at different distance between the screen and the CCD camera Zi, F-number of the imaging lens F#i, and EM-MSM half scanning angle θm. (a) Zi = 190 mm, F#i = 2.1, and θm = 0 °, (b) Zi = 190 mm, F#i = 2.1, and θm = 0.4 °, (c) Zi = 900 mm, F#i = 2.1, and θm = 0 °, (d) Zi = 900 mm, F#i = 2.1, and θm = 0.4 °, (e) Zi = 900 mm, F#i = 8, and θm = 0 °, and (f) Zi = 900 mm, F#i = 8, and θm = 0.4 °.
Fig. 6
Fig. 6 Speckle CRs under different EM-MSM half scanning angle θm when the distances between the screen and the CCD camera Zi and the F-number of the imaging lens F#i are changed.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

C = 1 i = 1 n N i .
M = 16 a 2 ( n 1 2 n 2 2 ) λ 2 ,
Δ P k = l = 1 L h k , l ( P k P l ) ,
C f = 1 m Δ τ 0 m Δ τ 2 ( m Δ τ τ ) | γ ( τ ) | d τ ,
θ a = sin 1 ( n 1 2 n 2 2 ) ,
C = T + S ± 1 N o T S ,
S ( Z i F # i D p f i Z p ) 2 .
F # i = π A c c d 1.17 λ 2 ,
f i = D e y e 2 π A c c d 1.17 λ 2 ,

Metrics