Abstract

Laser shock micro-forming is a non-thermal laser forming method that uses laser-induced shockwave to modify surface properties and to adjust shapes and geometry of work pieces. The magnitude and spatial distribution of the laser-induced shockwaves depend on the energy profiles of the laser beam focused on sample surfaces. In this paper, we present an adaptive optical technique to engineer spatial profiles of laser beams to control the shapes, sizes, and locations of the laser-induced shockwaves and the resulting forming features. Using a spatial light modulator, this adaptive laser beam forming tool was used to process free-standing MEMS structures in aluminum, which has led to highly uniform forming features. Shockwave simultaneously excited by multiple laser beams generated by the spatial light modulator and its effects on the micro-forming process were also studied. The results presented in this paper show that the adaptive optics laser beam forming is an effective and flexible method to generate shockwave with various shapes and sizes of wavefront and at multiple locations for laser processing at microscales.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, and J. L. Ocaña
Appl. Opt. 48(19) 3671-3680 (2009)

Relaxation dynamics of nanosecond laser superheated material in dielectrics

Stavros G. Demos, Raluca A. Negres, Rajesh N. Raman, Michael D. Feit, Kenneth R. Manes, and Alexander M. Rubenchik
Optica 2(8) 765-772 (2015)

Laser forward transfer using structured light

Raymond C. Y. Auyeung, Heungsoo Kim, Scott Mathews, and Alberto Piqué
Opt. Express 23(1) 422-430 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollertsen, “Mechanisms and models for laser forming,” in Proc. LANE (1994), pp. 345–360.
  2. Y. Wang, Y. Fan, S. Vukelic, and Y. L. Yao, “Energy-level effects on the deformation mechanism in microscale laser peen forming,” J. Manuf. Process. 9(1), 1–12 (2007).
    [Crossref]
  3. H. S. Niehoff and F. Vollertson, “Laser induced shock waves in deformation processing,” Metalurgija 11(3), 183–194 (2005).
  4. S. Q. Jiang, J. Z. Zhou, S. Huang, J. J. Du, Y. Q. Sun, and J. C. Yang, “Numerical analysis on the process of laser continuous peen forming of metal plate,” Key Eng. Mater., Trans. Tech. Publ. 375, 603–607 (2008).
  5. B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminum,” J. Appl. Phys. 43(9), 3893–3895 (1972).
    [Crossref]
  6. A. H. Clauer, J. H. Holbrook, and B. P. Fairand, “Effects of laser induced shock waves on metals,” in Shock Waves and High-Strain-Rate Phenomena in Metals (Springer, 1981).
  7. Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
    [Crossref]
  8. Y. Ye, Y. Feng, Z. Lian, and Y. Hua, “Mold-free fs laser shock micro forming and its plastic deformation mechanism,” Opt. Lasers Eng. 67, 74–82 (2015).
    [Crossref]
  9. Y. X. Ye, Y. Y. Feng, X. J. Hua, and Z. C. Lian, “Experimental research on laser shock forming metal foils with femtosecond laser,” Appl. Surf. Sci. 285, 600–606 (2013).
    [Crossref]
  10. R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).
  11. C. E. Dimas, J. Perreault, S. Cornelissen, H. Dyson, P. Krulevitch, P. Bierden, and T. Bifano, “Large-scale polysilicon surface-micromachined spatial light modulator,” in Micromachining and Microfabrication (ISOP, 2003).
  12. R. Caslaru, “Fabrication and characterization of micro dent array produced by laser shock peening on aluminum surfaces,” Trans. NAMRI/SME 37, 159–166 (2009).
  13. A. H. Clauer, J. H. Holbrook, and B. P. Fairand, “Effects of laser induced shock waves on metals,” in Shock Waves and High-Strain-Rate Phenomena in Metals (Springer US, 1981).
  14. C. S. Montross, “Laser shock processing and its effects on microstructure and properties of metal alloys: a review,” Int. J. Fatigue 24(10), 1021–1036 (2002).
    [Crossref]
  15. C. S. Montross, V. Florea, and M. V. Swain, “The influence of coatings on subsurface mechanical properties of laser peened 2011-T3 aluminum,” J. Mater. Sci. 36(7), 1801–1807 (2001).
    [Crossref]
  16. C. S. Montross, V. Florea, and J. A. Bolger, “Laser-induced shock wave generation and shock wave enhancement in basalt,” Int. J. Rock Mech. Min. Sci. 36(6), 849–855 (1999).
    [Crossref]

2015 (1)

Y. Ye, Y. Feng, Z. Lian, and Y. Hua, “Mold-free fs laser shock micro forming and its plastic deformation mechanism,” Opt. Lasers Eng. 67, 74–82 (2015).
[Crossref]

2013 (2)

Y. X. Ye, Y. Y. Feng, X. J. Hua, and Z. C. Lian, “Experimental research on laser shock forming metal foils with femtosecond laser,” Appl. Surf. Sci. 285, 600–606 (2013).
[Crossref]

Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
[Crossref]

2009 (1)

R. Caslaru, “Fabrication and characterization of micro dent array produced by laser shock peening on aluminum surfaces,” Trans. NAMRI/SME 37, 159–166 (2009).

2008 (1)

S. Q. Jiang, J. Z. Zhou, S. Huang, J. J. Du, Y. Q. Sun, and J. C. Yang, “Numerical analysis on the process of laser continuous peen forming of metal plate,” Key Eng. Mater., Trans. Tech. Publ. 375, 603–607 (2008).

2007 (1)

Y. Wang, Y. Fan, S. Vukelic, and Y. L. Yao, “Energy-level effects on the deformation mechanism in microscale laser peen forming,” J. Manuf. Process. 9(1), 1–12 (2007).
[Crossref]

2005 (1)

H. S. Niehoff and F. Vollertson, “Laser induced shock waves in deformation processing,” Metalurgija 11(3), 183–194 (2005).

2002 (1)

C. S. Montross, “Laser shock processing and its effects on microstructure and properties of metal alloys: a review,” Int. J. Fatigue 24(10), 1021–1036 (2002).
[Crossref]

2001 (1)

C. S. Montross, V. Florea, and M. V. Swain, “The influence of coatings on subsurface mechanical properties of laser peened 2011-T3 aluminum,” J. Mater. Sci. 36(7), 1801–1807 (2001).
[Crossref]

1999 (1)

C. S. Montross, V. Florea, and J. A. Bolger, “Laser-induced shock wave generation and shock wave enhancement in basalt,” Int. J. Rock Mech. Min. Sci. 36(6), 849–855 (1999).
[Crossref]

1972 (2)

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminum,” J. Appl. Phys. 43(9), 3893–3895 (1972).
[Crossref]

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Bolger, J. A.

C. S. Montross, V. Florea, and J. A. Bolger, “Laser-induced shock wave generation and shock wave enhancement in basalt,” Int. J. Rock Mech. Min. Sci. 36(6), 849–855 (1999).
[Crossref]

Caslaru, R.

R. Caslaru, “Fabrication and characterization of micro dent array produced by laser shock peening on aluminum surfaces,” Trans. NAMRI/SME 37, 159–166 (2009).

Du, J. J.

S. Q. Jiang, J. Z. Zhou, S. Huang, J. J. Du, Y. Q. Sun, and J. C. Yang, “Numerical analysis on the process of laser continuous peen forming of metal plate,” Key Eng. Mater., Trans. Tech. Publ. 375, 603–607 (2008).

Fairand, B. P.

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminum,” J. Appl. Phys. 43(9), 3893–3895 (1972).
[Crossref]

Fan, Y.

Y. Wang, Y. Fan, S. Vukelic, and Y. L. Yao, “Energy-level effects on the deformation mechanism in microscale laser peen forming,” J. Manuf. Process. 9(1), 1–12 (2007).
[Crossref]

Feng, Y.

Y. Ye, Y. Feng, Z. Lian, and Y. Hua, “Mold-free fs laser shock micro forming and its plastic deformation mechanism,” Opt. Lasers Eng. 67, 74–82 (2015).
[Crossref]

Feng, Y. Y.

Y. X. Ye, Y. Y. Feng, X. J. Hua, and Z. C. Lian, “Experimental research on laser shock forming metal foils with femtosecond laser,” Appl. Surf. Sci. 285, 600–606 (2013).
[Crossref]

Florea, V.

C. S. Montross, V. Florea, and M. V. Swain, “The influence of coatings on subsurface mechanical properties of laser peened 2011-T3 aluminum,” J. Mater. Sci. 36(7), 1801–1807 (2001).
[Crossref]

C. S. Montross, V. Florea, and J. A. Bolger, “Laser-induced shock wave generation and shock wave enhancement in basalt,” Int. J. Rock Mech. Min. Sci. 36(6), 849–855 (1999).
[Crossref]

Gallagher, W. J.

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminum,” J. Appl. Phys. 43(9), 3893–3895 (1972).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Gu, Y.

Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
[Crossref]

Hua, X. J.

Y. X. Ye, Y. Y. Feng, X. J. Hua, and Z. C. Lian, “Experimental research on laser shock forming metal foils with femtosecond laser,” Appl. Surf. Sci. 285, 600–606 (2013).
[Crossref]

Hua, Y.

Y. Ye, Y. Feng, Z. Lian, and Y. Hua, “Mold-free fs laser shock micro forming and its plastic deformation mechanism,” Opt. Lasers Eng. 67, 74–82 (2015).
[Crossref]

Huang, L.

Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
[Crossref]

Huang, S.

S. Q. Jiang, J. Z. Zhou, S. Huang, J. J. Du, Y. Q. Sun, and J. C. Yang, “Numerical analysis on the process of laser continuous peen forming of metal plate,” Key Eng. Mater., Trans. Tech. Publ. 375, 603–607 (2008).

Huang, Y.

Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
[Crossref]

Jiang, S. Q.

S. Q. Jiang, J. Z. Zhou, S. Huang, J. J. Du, Y. Q. Sun, and J. C. Yang, “Numerical analysis on the process of laser continuous peen forming of metal plate,” Key Eng. Mater., Trans. Tech. Publ. 375, 603–607 (2008).

Jiang, Y.

Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
[Crossref]

Jin, H.

Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
[Crossref]

Lian, Z.

Y. Ye, Y. Feng, Z. Lian, and Y. Hua, “Mold-free fs laser shock micro forming and its plastic deformation mechanism,” Opt. Lasers Eng. 67, 74–82 (2015).
[Crossref]

Lian, Z. C.

Y. X. Ye, Y. Y. Feng, X. J. Hua, and Z. C. Lian, “Experimental research on laser shock forming metal foils with femtosecond laser,” Appl. Surf. Sci. 285, 600–606 (2013).
[Crossref]

Montross, C. S.

C. S. Montross, “Laser shock processing and its effects on microstructure and properties of metal alloys: a review,” Int. J. Fatigue 24(10), 1021–1036 (2002).
[Crossref]

C. S. Montross, V. Florea, and M. V. Swain, “The influence of coatings on subsurface mechanical properties of laser peened 2011-T3 aluminum,” J. Mater. Sci. 36(7), 1801–1807 (2001).
[Crossref]

C. S. Montross, V. Florea, and J. A. Bolger, “Laser-induced shock wave generation and shock wave enhancement in basalt,” Int. J. Rock Mech. Min. Sci. 36(6), 849–855 (1999).
[Crossref]

Niehoff, H. S.

H. S. Niehoff and F. Vollertson, “Laser induced shock waves in deformation processing,” Metalurgija 11(3), 183–194 (2005).

Qian, X.

Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
[Crossref]

Ren, A.

Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
[Crossref]

Sun, Y. Q.

S. Q. Jiang, J. Z. Zhou, S. Huang, J. J. Du, Y. Q. Sun, and J. C. Yang, “Numerical analysis on the process of laser continuous peen forming of metal plate,” Key Eng. Mater., Trans. Tech. Publ. 375, 603–607 (2008).

Swain, M. V.

C. S. Montross, V. Florea, and M. V. Swain, “The influence of coatings on subsurface mechanical properties of laser peened 2011-T3 aluminum,” J. Mater. Sci. 36(7), 1801–1807 (2001).
[Crossref]

Vollertsen, F.

F. Vollertsen, “Mechanisms and models for laser forming,” in Proc. LANE (1994), pp. 345–360.

Vollertson, F.

H. S. Niehoff and F. Vollertson, “Laser induced shock waves in deformation processing,” Metalurgija 11(3), 183–194 (2005).

Vukelic, S.

Y. Wang, Y. Fan, S. Vukelic, and Y. L. Yao, “Energy-level effects on the deformation mechanism in microscale laser peen forming,” J. Manuf. Process. 9(1), 1–12 (2007).
[Crossref]

Wang, Y.

Y. Wang, Y. Fan, S. Vukelic, and Y. L. Yao, “Energy-level effects on the deformation mechanism in microscale laser peen forming,” J. Manuf. Process. 9(1), 1–12 (2007).
[Crossref]

Wilcox, B. A.

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminum,” J. Appl. Phys. 43(9), 3893–3895 (1972).
[Crossref]

Williams, D. N.

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminum,” J. Appl. Phys. 43(9), 3893–3895 (1972).
[Crossref]

Yang, J. C.

S. Q. Jiang, J. Z. Zhou, S. Huang, J. J. Du, Y. Q. Sun, and J. C. Yang, “Numerical analysis on the process of laser continuous peen forming of metal plate,” Key Eng. Mater., Trans. Tech. Publ. 375, 603–607 (2008).

Yao, Y. L.

Y. Wang, Y. Fan, S. Vukelic, and Y. L. Yao, “Energy-level effects on the deformation mechanism in microscale laser peen forming,” J. Manuf. Process. 9(1), 1–12 (2007).
[Crossref]

Ye, Y.

Y. Ye, Y. Feng, Z. Lian, and Y. Hua, “Mold-free fs laser shock micro forming and its plastic deformation mechanism,” Opt. Lasers Eng. 67, 74–82 (2015).
[Crossref]

Ye, Y. X.

Y. X. Ye, Y. Y. Feng, X. J. Hua, and Z. C. Lian, “Experimental research on laser shock forming metal foils with femtosecond laser,” Appl. Surf. Sci. 285, 600–606 (2013).
[Crossref]

Zhou, J. Z.

S. Q. Jiang, J. Z. Zhou, S. Huang, J. J. Du, Y. Q. Sun, and J. C. Yang, “Numerical analysis on the process of laser continuous peen forming of metal plate,” Key Eng. Mater., Trans. Tech. Publ. 375, 603–607 (2008).

Appl. Surf. Sci. (1)

Y. X. Ye, Y. Y. Feng, X. J. Hua, and Z. C. Lian, “Experimental research on laser shock forming metal foils with femtosecond laser,” Appl. Surf. Sci. 285, 600–606 (2013).
[Crossref]

Int. J. Fatigue (1)

C. S. Montross, “Laser shock processing and its effects on microstructure and properties of metal alloys: a review,” Int. J. Fatigue 24(10), 1021–1036 (2002).
[Crossref]

Int. J. Rock Mech. Min. Sci. (1)

C. S. Montross, V. Florea, and J. A. Bolger, “Laser-induced shock wave generation and shock wave enhancement in basalt,” Int. J. Rock Mech. Min. Sci. 36(6), 849–855 (1999).
[Crossref]

J. Appl. Phys. (1)

B. P. Fairand, B. A. Wilcox, W. J. Gallagher, and D. N. Williams, “Laser shock-induced microstructural and mechanical property changes in 7075 aluminum,” J. Appl. Phys. 43(9), 3893–3895 (1972).
[Crossref]

J. Manuf. Process. (1)

Y. Wang, Y. Fan, S. Vukelic, and Y. L. Yao, “Energy-level effects on the deformation mechanism in microscale laser peen forming,” J. Manuf. Process. 9(1), 1–12 (2007).
[Crossref]

J. Mater. Sci. (1)

C. S. Montross, V. Florea, and M. V. Swain, “The influence of coatings on subsurface mechanical properties of laser peened 2011-T3 aluminum,” J. Mater. Sci. 36(7), 1801–1807 (2001).
[Crossref]

Key Eng. Mater., Trans. Tech. Publ. (1)

S. Q. Jiang, J. Z. Zhou, S. Huang, J. J. Du, Y. Q. Sun, and J. C. Yang, “Numerical analysis on the process of laser continuous peen forming of metal plate,” Key Eng. Mater., Trans. Tech. Publ. 375, 603–607 (2008).

Metalurgija (1)

H. S. Niehoff and F. Vollertson, “Laser induced shock waves in deformation processing,” Metalurgija 11(3), 183–194 (2005).

Opt. Laser Technol. (1)

Y. Jiang, Y. Huang, H. Jin, Y. Gu, A. Ren, L. Huang, and X. Qian, “Research on precision control of sheet metal forming by laser shock waves with semi-die,” Opt. Laser Technol. 45, 598–604 (2013).
[Crossref]

Opt. Lasers Eng. (1)

Y. Ye, Y. Feng, Z. Lian, and Y. Hua, “Mold-free fs laser shock micro forming and its plastic deformation mechanism,” Opt. Lasers Eng. 67, 74–82 (2015).
[Crossref]

Optik (Stuttg.) (1)

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Trans. NAMRI/SME (1)

R. Caslaru, “Fabrication and characterization of micro dent array produced by laser shock peening on aluminum surfaces,” Trans. NAMRI/SME 37, 159–166 (2009).

Other (4)

A. H. Clauer, J. H. Holbrook, and B. P. Fairand, “Effects of laser induced shock waves on metals,” in Shock Waves and High-Strain-Rate Phenomena in Metals (Springer US, 1981).

C. E. Dimas, J. Perreault, S. Cornelissen, H. Dyson, P. Krulevitch, P. Bierden, and T. Bifano, “Large-scale polysilicon surface-micromachined spatial light modulator,” in Micromachining and Microfabrication (ISOP, 2003).

A. H. Clauer, J. H. Holbrook, and B. P. Fairand, “Effects of laser induced shock waves on metals,” in Shock Waves and High-Strain-Rate Phenomena in Metals (Springer, 1981).

F. Vollertsen, “Mechanisms and models for laser forming,” in Proc. LANE (1994), pp. 345–360.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Sketch of the proposed adaptive laser system for the LS-µF process. WP: Half-wave plate; PBS: Polarizing beam splitter; A: Aperture; L: Lens; SLM: Spatial light modulator; M: Mirror; BS: Beam splitter; MS: Motion stage; WLS: White light source; CC: CMOS camera.
Fig. 2
Fig. 2 (a) Various laser beam shapes projected on an aluminum surface recorded by the CCD camera, (b) the SLM calibration results between the imaging pixel size and the actual on-target size of the laser projection.
Fig. 3
Fig. 3 (a) Topview of SEM image of the free-standing bridges fabricated by laser ablation, (b) demonstration of different laser beam profiles used in the LS-µF process, (c) schematic of comparative tests between simultaneous and asynchronous LS-µF processes.
Fig. 4
Fig. 4 (a) Birdview SEM images of laser micro-formed free-standing bridge structures by a Gaussian laser beam, (b) the deformation depth vs on-target laser energy using the Gaussian laser beam, (c) the close-up image around laser-impact region, and (d) 3D surface profile plot of the deformed bridge by the Gaussian beam.
Fig. 5
Fig. 5 (a) Birdview SEM images of laser micro-formed free-standing bridge structures by a rectangular-shape laser beam, (b) the deformation depth vs on-target laser energy using the shaped laser beam, (c) the close-up image around laser-impact region, (d) surface profile measurements along the width of the free-standing bridge using a Gaussian Beam and a sharped laser beam. The 3D surface profile plot of the deformed bridge by the shaped laser beam is shown as inset.
Fig. 6
Fig. 6 (a) Relationship of laser-induced deformation FWHM size vs laser pulse energy and (b) Laser-induced deformation depth vs. pulse numbers using 0.4-mJ pulse energy.
Fig. 7
Fig. 7 (a) Surface profile of the free-standing bridge deformed by two laser bars simultaneously. The spacing between two laser bars is 324 μm and (b) 1D surface profile of free-standing bridge deformed by simultaneous two bars and separate two bars.

Metrics