N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]
X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]
X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]
Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]
M. J. Chaichi and M. Ehsani, “A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminesence detection system,” Sens. Actuat. B 223, 713–722 (2016).
[Crossref]
B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
[Crossref]
[PubMed]
H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref]
[PubMed]
R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]
D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]
A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]
Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]
S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuat. B 177, 589–595 (2013).
[Crossref]
I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref]
[PubMed]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref]
[PubMed]
B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012).
[Crossref]
[PubMed]
T. Sheela and Y. A. Nayaka, “Kinetics and thermodynamics of cadmium and lead ions adsorptionon NiO nanoparticles,” Chem. Eng. J. 191, 123–131 (2012).
[Crossref]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]
Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]
V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]
M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref]
[PubMed]
J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref]
[PubMed]
G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]
[PubMed]
C. Sarici-Ozdemir and Y. Onal, “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon,” Desalination 251(1-3), 146–152 (2010).
[Crossref]
A. O. Babatunde and Y. Q. Zhao, “Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge,” J. Hazard. Mater. 184(1-3), 746–752 (2010).
[Crossref]
[PubMed]
Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]
H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]
M. Hartmann and D. Jung, “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends,” J. Mater. Chem. 20(5), 844–857 (2010).
[Crossref]
S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref]
[PubMed]
T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]
A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref]
[PubMed]
Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]
J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref]
[PubMed]
S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[Crossref]
[PubMed]
H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]
Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]
D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref]
[PubMed]
C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref]
[PubMed]
H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]
W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]
M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref]
[PubMed]
H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]
C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref]
[PubMed]
J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref]
[PubMed]
D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref]
[PubMed]
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref]
[PubMed]
A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]
A. O. Babatunde and Y. Q. Zhao, “Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge,” J. Hazard. Mater. 184(1-3), 746–752 (2010).
[Crossref]
[PubMed]
D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref]
[PubMed]
H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]
N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]
A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[Crossref]
[PubMed]
C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref]
[PubMed]
M. J. Chaichi and M. Ehsani, “A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminesence detection system,” Sens. Actuat. B 223, 713–722 (2016).
[Crossref]
G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]
[PubMed]
C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref]
[PubMed]
T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]
Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]
H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]
W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]
J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]
M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref]
[PubMed]
X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]
Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref]
[PubMed]
I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref]
[PubMed]
Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]
J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]
Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref]
[PubMed]
M. J. Chaichi and M. Ehsani, “A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminesence detection system,” Sens. Actuat. B 223, 713–722 (2016).
[Crossref]
Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref]
[PubMed]
M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref]
[PubMed]
M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref]
[PubMed]
N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]
Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]
Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]
G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]
[PubMed]
H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref]
[PubMed]
B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref]
[PubMed]
Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]
S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuat. B 177, 589–595 (2013).
[Crossref]
H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]
A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]
J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]
M. Hartmann and D. Jung, “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends,” J. Mater. Chem. 20(5), 844–857 (2010).
[Crossref]
X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]
Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]
B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref]
[PubMed]
Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]
C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref]
[PubMed]
X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]
J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]
H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]
G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]
[PubMed]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]
M. Hartmann and D. Jung, “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends,” J. Mater. Chem. 20(5), 844–857 (2010).
[Crossref]
H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]
Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref]
[PubMed]
D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref]
[PubMed]
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref]
[PubMed]
A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref]
[PubMed]
H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]
H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]
T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]
C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref]
[PubMed]
N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]
Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]
Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]
V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]
R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]
I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref]
[PubMed]
D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]
H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref]
[PubMed]
Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]
X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]
B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref]
[PubMed]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref]
[PubMed]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]
X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]
B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
[Crossref]
[PubMed]
Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]
J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref]
[PubMed]
J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]
C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref]
[PubMed]
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref]
[PubMed]
H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]
H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref]
[PubMed]
G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]
[PubMed]
T. Sheela and Y. A. Nayaka, “Kinetics and thermodynamics of cadmium and lead ions adsorptionon NiO nanoparticles,” Chem. Eng. J. 191, 123–131 (2012).
[Crossref]
X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]
A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]
R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]
H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]
M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref]
[PubMed]
C. Sarici-Ozdemir and Y. Onal, “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon,” Desalination 251(1-3), 146–152 (2010).
[Crossref]
B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012).
[Crossref]
[PubMed]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref]
[PubMed]
Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]
J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref]
[PubMed]
I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref]
[PubMed]
X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]
A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]
J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]
C. Sarici-Ozdemir and Y. Onal, “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon,” Desalination 251(1-3), 146–152 (2010).
[Crossref]
V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]
T. Sheela and Y. A. Nayaka, “Kinetics and thermodynamics of cadmium and lead ions adsorptionon NiO nanoparticles,” Chem. Eng. J. 191, 123–131 (2012).
[Crossref]
V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]
C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref]
[PubMed]
B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012).
[Crossref]
[PubMed]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuat. B 177, 589–595 (2013).
[Crossref]
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref]
[PubMed]
M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref]
[PubMed]
S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref]
[PubMed]
H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]
H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]
G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]
[PubMed]
S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref]
[PubMed]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]
A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]
R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]
R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]
D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref]
[PubMed]
S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref]
[PubMed]
J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]
J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref]
[PubMed]
J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref]
[PubMed]
Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]
Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]
Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]
T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]
J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref]
[PubMed]
T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]
Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]
H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]
M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref]
[PubMed]
S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[Crossref]
[PubMed]
W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]
H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref]
[PubMed]
Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]
X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]
D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]
B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref]
[PubMed]
D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]
Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]
B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref]
[PubMed]
T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]
D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]
X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]
Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]
Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]
Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]
W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]
Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]
A. O. Babatunde and Y. Q. Zhao, “Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge,” J. Hazard. Mater. 184(1-3), 746–752 (2010).
[Crossref]
[PubMed]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref]
[PubMed]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]
A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]
M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref]
[PubMed]
A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref]
[PubMed]
D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref]
[PubMed]
H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref]
[PubMed]
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref]
[PubMed]
J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref]
[PubMed]
B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref]
[PubMed]
J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref]
[PubMed]
S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref]
[PubMed]
C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref]
[PubMed]
T. Sheela and Y. A. Nayaka, “Kinetics and thermodynamics of cadmium and lead ions adsorptionon NiO nanoparticles,” Chem. Eng. J. 191, 123–131 (2012).
[Crossref]
J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref]
[PubMed]
S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[Crossref]
[PubMed]
M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref]
[PubMed]
C. Sarici-Ozdemir and Y. Onal, “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon,” Desalination 251(1-3), 146–152 (2010).
[Crossref]
C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref]
[PubMed]
A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]
Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]
V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]
A. O. Babatunde and Y. Q. Zhao, “Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge,” J. Hazard. Mater. 184(1-3), 746–752 (2010).
[Crossref]
[PubMed]
M. Hartmann and D. Jung, “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends,” J. Mater. Chem. 20(5), 844–857 (2010).
[Crossref]
B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012).
[Crossref]
[PubMed]
N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]
H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]
R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]
H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]
J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]
Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]
I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref]
[PubMed]
J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]
H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]
X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]
D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]
S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuat. B 177, 589–595 (2013).
[Crossref]
H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]
Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]
D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]
Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]
Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]
M. J. Chaichi and M. Ehsani, “A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminesence detection system,” Sens. Actuat. B 223, 713–722 (2016).
[Crossref]
Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]
W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]
T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]
X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]
Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]
G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]
[PubMed]