Abstract

Glucose sensitive membrane (GSM) consists of glucose oxidases (GODs) and matrix material (for example, polyacrylamide gel). In this paper, we have investigated the optical property and adsorption isotherms of a GSM based on a terminal reflection optical fiber SPR sensor. Firstly, we reported the fabrication of one kind of GSM which was made of immobilized GODs on SiO2 nanoparticles and PAM gel. Then, we investigated the effects of GSM thickness, GOD content, solution pH and ambient temperature on the reflected spectrum of sensor, and the optimum parameters of the sensor, such as, GSM thickness of 12 times pulling, 4 mg/mL of GOD content in GSM, 7.0 of solution pH and 40 °C of measuring temperature were obtained. Thirdly, we measured the wavelength shifts of the optimized SPR sensor in the solutions with different glucose concentrations. As the glucose concentration increases from 0 to 80 mg/dL, the resonance wavelength decreases approximately linearly and the corresponding sensitivity is about 0.14 nm/(mg/dL). Finally, we investigated the RI of the GSM, the concentration of glucose into GSM and the adsorption isotherm of GSM by the combination of SPR experiment data, theoretical simulation and Gladstone-Dale mixing rule. As the glucose concentration is in the region of [0, 80] mg/dL, the adsorption of GSM for glucose can be explained by the Freundlich isotherm model. As the glucose concentration is in the region of [120, 500] mg/dL, the Langmuir isotherm model is more suitable to describe the adsorption process of GSM for glucose.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of glucose fiber sensor based on immobilized GOD technique for rapid measurement

Ting-Qian Lin, Yin-Lin Lu, and Cheng-Chih Hsu
Opt. Express 18(26) 27560-27566 (2010)

Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Jianfeng Li, and Lin Zhang
Opt. Express 22(25) 30571-30578 (2014)

Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Yong Liu, Mingfu Zhao, and Lin Zhang
Opt. Express 23(25) 32429-32440 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
    [Crossref] [PubMed]
  2. S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
    [Crossref] [PubMed]
  3. M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
    [Crossref] [PubMed]
  4. H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
    [Crossref] [PubMed]
  5. X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
    [Crossref]
  6. A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
    [Crossref] [PubMed]
  7. A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
    [Crossref]
  8. J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
    [Crossref] [PubMed]
  9. C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
    [Crossref] [PubMed]
  10. B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
    [Crossref] [PubMed]
  11. Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
    [Crossref]
  12. G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
    [Crossref] [PubMed]
  13. J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
    [Crossref] [PubMed]
  14. M. J. Chaichi and M. Ehsani, “A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminesence detection system,” Sens. Actuat. B 223, 713–722 (2016).
    [Crossref]
  15. B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
    [Crossref] [PubMed]
  16. A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
    [Crossref] [PubMed]
  17. W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
    [Crossref]
  18. D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
    [Crossref]
  19. S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuat. B 177, 589–595 (2013).
    [Crossref]
  20. H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
    [Crossref]
  21. Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
    [Crossref]
  22. D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
    [Crossref]
  23. Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
    [Crossref]
  24. Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
    [Crossref]
  25. M. Hartmann and D. Jung, “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends,” J. Mater. Chem. 20(5), 844–857 (2010).
    [Crossref]
  26. A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
    [Crossref]
  27. H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
    [Crossref]
  28. M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
    [Crossref] [PubMed]
  29. J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
    [Crossref]
  30. N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
    [Crossref]
  31. J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
    [Crossref]
  32. D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
    [Crossref] [PubMed]
  33. Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
    [Crossref]
  34. S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
    [Crossref] [PubMed]
  35. X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
    [Crossref]
  36. H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
    [Crossref]
  37. R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
    [Crossref]
  38. I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
    [Crossref] [PubMed]
  39. T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
    [Crossref]
  40. Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
    [Crossref]
  41. B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012).
    [Crossref] [PubMed]
  42. T. Sheela and Y. A. Nayaka, “Kinetics and thermodynamics of cadmium and lead ions adsorptionon NiO nanoparticles,” Chem. Eng. J. 191, 123–131 (2012).
    [Crossref]
  43. Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
    [Crossref]
  44. V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
    [Crossref]
  45. H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
    [Crossref]
  46. C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
    [Crossref] [PubMed]
  47. C. Sarici-Ozdemir and Y. Onal, “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon,” Desalination 251(1-3), 146–152 (2010).
    [Crossref]
  48. A. O. Babatunde and Y. Q. Zhao, “Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge,” J. Hazard. Mater. 184(1-3), 746–752 (2010).
    [Crossref] [PubMed]

2016 (5)

N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]

X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]

X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]

Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]

M. J. Chaichi and M. Ehsani, “A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminesence detection system,” Sens. Actuat. B 223, 713–722 (2016).
[Crossref]

2015 (5)

B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
[Crossref] [PubMed]

H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref] [PubMed]

R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

2014 (2)

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]

A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]

2013 (5)

Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]

S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuat. B 177, 589–595 (2013).
[Crossref]

I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref] [PubMed]

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref] [PubMed]

2012 (3)

B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012).
[Crossref] [PubMed]

T. Sheela and Y. A. Nayaka, “Kinetics and thermodynamics of cadmium and lead ions adsorptionon NiO nanoparticles,” Chem. Eng. J. 191, 123–131 (2012).
[Crossref]

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

2011 (5)

J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]

Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]

V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]

M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref] [PubMed]

J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref] [PubMed]

2010 (6)

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref] [PubMed]

C. Sarici-Ozdemir and Y. Onal, “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon,” Desalination 251(1-3), 146–152 (2010).
[Crossref]

A. O. Babatunde and Y. Q. Zhao, “Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge,” J. Hazard. Mater. 184(1-3), 746–752 (2010).
[Crossref] [PubMed]

Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]

H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]

M. Hartmann and D. Jung, “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends,” J. Mater. Chem. 20(5), 844–857 (2010).
[Crossref]

2009 (3)

S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref] [PubMed]

T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]

2008 (6)

A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref] [PubMed]

Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref] [PubMed]

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[Crossref] [PubMed]

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]

Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]

2007 (1)

D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref] [PubMed]

2006 (1)

C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref] [PubMed]

2005 (2)

H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]

W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]

2004 (2)

M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref] [PubMed]

H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]

2002 (1)

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref] [PubMed]

2001 (1)

J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]

Ahmad, S.

A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref] [PubMed]

Aiyer, R. C.

D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref] [PubMed]

Alam, J.

A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref] [PubMed]

Al-Hajry, A.

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]

Babatunde, A. O.

A. O. Babatunde and Y. Q. Zhao, “Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge,” J. Hazard. Mater. 184(1-3), 746–752 (2010).
[Crossref] [PubMed]

Bagal, D. S.

D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref] [PubMed]

Bales, V.

H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]

Balistreri, N.

N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]

Bandyopadhyaya, R.

A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]

Bharadwaj, L. M.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Borisov, S. M.

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[Crossref] [PubMed]

Buchert, J. M.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref] [PubMed]

Chaichi, M. J.

M. J. Chaichi and M. Ehsani, “A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminesence detection system,” Sens. Actuat. B 223, 713–722 (2016).
[Crossref]

Chang, G.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref] [PubMed]

Chen, H. M.

C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref] [PubMed]

Chen, Y.

T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]

Chen, Y. S.

Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]

Chi, Q.

H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]

Chu, L. H.

W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]

Coradin, T.

J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]

Córdoba de Torresi, S. I.

M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref] [PubMed]

Dai, Z.

X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]

Daum, P. H.

Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]

Deep, A.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Delfino, I.

I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref] [PubMed]

Della Ventura, B.

I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref] [PubMed]

Deng, Z.

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]

Ding, L.

J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]

Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]

Du, K.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Duerkop, A.

M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref] [PubMed]

Ehsani, M.

M. J. Chaichi and M. Ehsani, “A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminesence detection system,” Sens. Actuat. B 223, 713–722 (2016).
[Crossref]

Fan, L. H.

Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]

Fan, P.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Fang, L.

B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref] [PubMed]

Ferreira, M.

M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref] [PubMed]

Fiorito, P. A.

M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref] [PubMed]

Gaboriaua, D.

N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]

Gao, Y.

Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]

Ge, W.

Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]

Goto, T.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref] [PubMed]

Guo, C. Y.

H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref] [PubMed]

Guo, X.

B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref] [PubMed]

Guo, Z.

Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]

Gupta, B. D.

S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuat. B 177, 589–595 (2013).
[Crossref]

Gupta, R. K.

H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]

Hahn, Y. B.

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]

Han, Y.

J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]

Hartmann, M.

M. Hartmann and D. Jung, “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends,” J. Mater. Chem. 20(5), 844–857 (2010).
[Crossref]

He, Y.

X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]

Hu, D.

Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]

Hu, Y.

B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref] [PubMed]

Hua, L.

Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]

Huang, H. M.

C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref] [PubMed]

Huang, J.

X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]

J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]

Ikemoto, H.

H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]

Imaishi, H.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref] [PubMed]

Jain, S. C.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Jolivalt, C.

N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]

Jung, D.

M. Hartmann and D. Jung, “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends,” J. Mater. Chem. 20(5), 844–857 (2010).
[Crossref]

Jung, H. Y.

H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]

Kang, J. Y.

Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]

Kapur, P.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Karekar, R. N.

D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref] [PubMed]

Karve, M. S.

D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref] [PubMed]

Kaushik, A.

A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref] [PubMed]

Khan, A. Y.

A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]

Khan, R.

A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref] [PubMed]

Kim, Y. H.

H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]

Kondoh, J.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]

Kong, T.

T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]

Kumar, P.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Lam, W. W.

W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]

Landau, J. I.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref] [PubMed]

Launay, F.

N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]

Lee, S. H.

Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]

Lee, Y. J.

Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]

Legros, J. C.

V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]

Lenza, R. F. S.

R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]

Lepore, M.

I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref] [PubMed]

Li, D.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]

Li, H.

H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref] [PubMed]

Li, M.

Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]

Li, X.

X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]

Liang, B.

B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref] [PubMed]

Liang, G.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Lin, C. Y.

C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref] [PubMed]

Lin, Y.

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]

Liu, F.

X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]

Liu, Y.

B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23(25), 32429–32440 (2015).
[Crossref] [PubMed]

Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]

Liu, Z.

J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref] [PubMed]

Livage, J.

J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]

Luo, B.

Luo, J.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Luo, P.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Luo, Y. L.

Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]

Malchoff, C. D.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref] [PubMed]

Malhotra, B. D.

A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref] [PubMed]

Markos, J.

H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]

Matsui, Y.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]

Mishra, V.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Mita, D. G.

I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref] [PubMed]

Morigaki, K.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref] [PubMed]

Nayaka, Y. A.

T. Sheela and Y. A. Nayaka, “Kinetics and thermodynamics of cadmium and lead ions adsorptionon NiO nanoparticles,” Chem. Eng. J. 191, 123–131 (2012).
[Crossref]

Niu, X.

X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]

Noronha, S. B.

A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]

Nunes, E. H. M.

R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]

Oh, E. O.

H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]

Oliveira, O. N.

M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref] [PubMed]

Onal, Y.

C. Sarici-Ozdemir and Y. Onal, “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon,” Desalination 251(1-3), 146–152 (2010).
[Crossref]

Pal, L.

B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012).
[Crossref] [PubMed]

Pan, F.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Pan, J.

X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]

Pandey, P.

A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref] [PubMed]

Park, S. J.

Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]

Peng, J.

J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref] [PubMed]

Portaccio, M.

I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref] [PubMed]

Qiu, F.

X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]

Rahman, M. M.

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]

Roux, C.

J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]

Sarici-Ozdemir, C.

C. Sarici-Ozdemir and Y. Onal, “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon,” Desalination 251(1-3), 146–152 (2010).
[Crossref]

Sechenyh, V. V.

V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]

Sheela, T.

T. Sheela and Y. A. Nayaka, “Kinetics and thermodynamics of cadmium and lead ions adsorptionon NiO nanoparticles,” Chem. Eng. J. 191, 123–131 (2012).
[Crossref]

Shevtsova, V.

V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]

Shoukri, K.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref] [PubMed]

Singh, B.

B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012).
[Crossref] [PubMed]

Singh, N.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Singh, S.

S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuat. B 177, 589–595 (2013).
[Crossref]

Solanki, P. R.

A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref] [PubMed]

Steiner, M. S.

M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref] [PubMed]

Stokke, B. T.

S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref] [PubMed]

Sugimoto, M.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]

Sun, Y.

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]

Sun, Z.

Suzuki, H.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]

Tatsu, Y.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref] [PubMed]

Tierney, S.

S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref] [PubMed]

Tiwari, U.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Ulstrup, J.

H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]

Umar, A.

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]

Vasconcelos, D. C. L.

R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]

Vasconcelos, W. L.

R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]

Vijayan, A.

D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref] [PubMed]

Volden, S.

S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref] [PubMed]

Wang, H.

J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]

Wang, J.

J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref] [PubMed]

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref] [PubMed]

Wang, L.

Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]

Wang, Q.

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]

Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]

Wang, X.

T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]

Wang, Y.

J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref] [PubMed]

Wang, Z.

T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]

Wei, Q. B.

Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]

Whang, C. M.

H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]

Wolfbeis, O. S.

M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref] [PubMed]

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[Crossref] [PubMed]

Wong, C. L.

W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]

Wu, J.

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

Wu, P.

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

Xie, M.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Xu, B.

Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]

Xu, C. L.

H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref] [PubMed]

Xu, F.

Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]

Xu, K.

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]

Yan, Y.

X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]

Yan, Z.

Yang, D.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]

Yang, G.

B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref] [PubMed]

Yang, J.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

Yang, X.

X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]

Yang, Z.

Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]

Ye, X.

B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref] [PubMed]

Ye, Y.

T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]

Yu, H.

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]

Yuan, Y.

X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]

Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]

Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]

Yun, K. S.

Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]

Zeng, F.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Zhang, C. H.

Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]

Zhang, D.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Zhang, K.

T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]

Zhang, L.

Zhang, Y. T.

W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]

Zhao, B.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Zhao, M.

Zhao, W.

J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]

Zhao, Y.

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]

Zhao, Y. Q.

A. O. Babatunde and Y. Q. Zhao, “Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge,” J. Hazard. Mater. 184(1-3), 746–752 (2010).
[Crossref] [PubMed]

Zheng, Z.

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

Zhou, X.

J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref] [PubMed]

Zhu, R.

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

Znad, H.

H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]

Biochem. Eng. J. (1)

A. Y. Khan, S. B. Noronha, and R. Bandyopadhyaya, “Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor,” Biochem. Eng. J. 91, 78–85 (2014).
[Crossref]

Biosens. Bioelectron. (9)

M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. Córdoba de Torresi, “Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique,” Biosens. Bioelectron. 19(12), 1611–1615 (2004).
[Crossref] [PubMed]

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, “Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD,” Biosens. Bioelectron. 22(12), 3072–3079 (2007).
[Crossref] [PubMed]

H. Li, C. Y. Guo, and C. L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63, 339–346 (2015).
[Crossref] [PubMed]

A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, “Iron oxide nanoparticles-chitosan composite based glucose biosensor,” Biosens. Bioelectron. 24(4), 676–683 (2008).
[Crossref] [PubMed]

J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, and G. Liang, “A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,” Biosens. Bioelectron. 49, 512–518 (2013).
[Crossref] [PubMed]

B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye, “Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene,” Biosens. Bioelectron. 43, 131–136 (2013).
[Crossref] [PubMed]

J. Peng, Y. Wang, J. Wang, X. Zhou, and Z. Liu, “A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer,” Biosens. Bioelectron. 28(1), 414–420 (2011).
[Crossref] [PubMed]

S. Tierney, S. Volden, and B. T. Stokke, “Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform,” Biosens. Bioelectron. 24(7), 2034–2039 (2009).
[Crossref] [PubMed]

Biotechniques (1)

C. Y. Lin, H. M. Huang, and H. M. Chen, “Use of backlit light plate to enhance visualization of imidazole-zinc reverse stained gels,” Biotechniques 41(5), 560–564 (2006).
[Crossref] [PubMed]

Chem. Eng. J. (1)

T. Sheela and Y. A. Nayaka, “Kinetics and thermodynamics of cadmium and lead ions adsorptionon NiO nanoparticles,” Chem. Eng. J. 191, 123–131 (2012).
[Crossref]

Chem. Rev. (2)

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref] [PubMed]

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

M. S. Steiner, A. Duerkop, and O. S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40(9), 4805–4839 (2011).
[Crossref] [PubMed]

Desalination (1)

C. Sarici-Ozdemir and Y. Onal, “Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon,” Desalination 251(1-3), 146–152 (2010).
[Crossref]

Diabetes Care (1)

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care 25(12), 2268–2275 (2002).
[Crossref] [PubMed]

Electrochem. Commun. (1)

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets,” Electrochem. Commun. 11(2), 278–281 (2009).
[Crossref]

J. Aerosol Sci. (1)

Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]

J. Chem. Thermodyn. (1)

V. V. Sechenyh, J. C. Legros, and V. Shevtsova, “Experimental and predicted refractive index properties in ternary mixtures of associated liquids,” J. Chem. Thermodyn. 43(11), 1700–1707 (2011).
[Crossref]

J. Hazard. Mater. (1)

A. O. Babatunde and Y. Q. Zhao, “Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge,” J. Hazard. Mater. 184(1-3), 746–752 (2010).
[Crossref] [PubMed]

J. Mater. Chem. (1)

M. Hartmann and D. Jung, “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends,” J. Mater. Chem. 20(5), 844–857 (2010).
[Crossref]

J. Mech. Behav. Biomed. Mater. (1)

B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012).
[Crossref] [PubMed]

J. Mol. Catal., B Enzym. (1)

N. Balistreri, D. Gaboriaua, C. Jolivalt, and F. Launay, “Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature andorganic solvents,” J. Mol. Catal., B Enzym. 127, 26–33 (2016).
[Crossref]

J. Non-Cryst. Solids (2)

H. Y. Jung, R. K. Gupta, E. O. Oh, Y. H. Kim, and C. M. Whang, “Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs,” J. Non-Cryst. Solids 351(5), 372–379 (2005).
[Crossref]

R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, “Preparation of sol-gel silica samples modified with drying control chemical additives,” J. Non-Cryst. Solids 423, 35–40 (2015).
[Crossref]

J. Phys. Chem. C (1)

H. Ikemoto, Q. Chi, and J. Ulstrup, “Stability and catalytic kinetics of horse radish peroxidase confined in nanoporous SBA-15,” J. Phys. Chem. C 114(39), 1840–1846 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

J. Livage, T. Coradin, and C. Roux, “Encapsulation of biomolecules in silica gels,” J. Phys. Condens. Matter 13(33), R673–R691 (2001).
[Crossref]

Mater. Chem. Phys. (1)

Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, and Q. B. Wei, “Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics,” Mater. Chem. Phys. 120(2-3), 590–597 (2010).
[Crossref]

Mater. Sci. Eng. C (2)

I. Delfino, M. Portaccio, B. Della Ventura, D. G. Mita, and M. Lepore, “Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy,” Mater. Sci. Eng. C 33(1), 304–310 (2013).
[Crossref] [PubMed]

J. Huang, H. Wang, D. Li, W. Zhao, L. Ding, and Y. Han, “A new immobilized glucose oxidase using SiO2 nanoparticles as carrier,” Mater. Sci. Eng. C 31(7), 1374–1378 (2011).
[Crossref]

Opt. Express (1)

Process Biochem. (1)

H. Znad, J. Markos, and V. Bales, “Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions,” Process Biochem. 39(11), 1341–1345 (2004).
[Crossref]

RSC Advances (1)

X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, “Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges,” RSC Advances 6(88), 84893–84905 (2016).
[Crossref]

Sens. Actuat. A (1)

D. Li, D. Yang, J. Yang, Y. Lin, Y. Sun, H. Yu, and K. Xu, “Glucose affinity measurement by surface plasmon resonance with borate polymer binding,” Sens. Actuat. A 222, 58–66 (2015).
[Crossref]

Sens. Actuat. B (11)

S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuat. B 177, 589–595 (2013).
[Crossref]

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuat. B 132(1), 26–33 (2008).
[Crossref]

Y. Yuan, L. Ding, and Z. Guo, “Numerical investigation for SPR-based optical fiber sensor,” Sens. Actuat. B 157(1), 240–245 (2011).
[Crossref]

D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, and K. Xu, “Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer,” Sens. Actuat. B 213, 295–304 (2015).
[Crossref]

Y. Zhao, Z. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sens. Actuat. B 192, 229–233 (2014).
[Crossref]

Y. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sens. Actuat. B 188, 757–760 (2013).
[Crossref]

M. J. Chaichi and M. Ehsani, “A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminesence detection system,” Sens. Actuat. B 223, 713–722 (2016).
[Crossref]

Y. J. Lee, S. J. Park, K. S. Yun, J. Y. Kang, and S. H. Lee, “Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring,” Sens. Actuat. B 222, 425–432 (2016).
[Crossref]

W. W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A surface plasmon resonance system for the measurement of glucose in aqueous solution,” Sens. Actuat. B 105(2), 138–143 (2005).
[Crossref]

T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sens. Actuat. B 138(1), 344–350 (2009).
[Crossref]

X. Yang, Y. Yuan, Z. Dai, F. Liu, and J. Huang, “Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor,” Sens. Actuat. B 237, 150–158 (2016).
[Crossref]

Soft Matter (1)

Q. Wang, Z. Yang, Y. Gao, W. Ge, L. Wang, and B. Xu, “Enzymatic hydrogelation to immobilize an enzyme for high activity and stability,” Soft Matter 4(3), 550–553 (2008).
[Crossref]

Talanta (1)

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 FT-IR spectra of GOD/SiO2/PAM film.
Fig. 2
Fig. 2 Terminal reflection optical fiber SPR sensing system. (1) light source, (2) Y-type optical fiber coupler, (3) spectrometer, (4) a terminal reflection optical fiber tip, (5) a microcomputer.
Fig. 3
Fig. 3 Simulated reflection spectra (a) and resonance wavelength versus RI of GSM (b).
Fig. 4
Fig. 4 Effect of GSM thickness on the resonance wavelength difference.
Fig. 5
Fig. 5 Effect of GOD content in GSM on the resonance wavelength difference.
Fig. 6
Fig. 6 Effect of solution pH on the resonance wavelength difference.
Fig. 7
Fig. 7 Effect of measuring temperature on the wavelength difference.
Fig. 8
Fig. 8 Reflection spectra of optimized probe (a) and resonance wavelength shift versus glucose concentration (b).
Fig. 9
Fig. 9 (a) Selectivity with the interferent concentrations of 80 mg/dL and (b) response time at 675 nm wavelength.
Fig. 10
Fig. 10 Volume fraction of glucose into the GSM versus glucose concentration (a) and Langmuir isotherm (b).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

λ res = λ res [ n f (C)]
S= λ res C = λ res n f n f C
P refl = θ cr π/2 R p 2 N ref (θ) P(θ)dθ θ cr π/2 P(θ)dθ
P(θ)= n 1 2 sinθcosθ (1 n 1 2 cos 2 θ) 2
N ref (θ)= L 2 a 1 tanθ
λ res ( n f )= λ res ( n f0 )+ ξ 1 ( n f n f0 )+ ξ 2 ( n f n f0 ) 2
n f = i=1 nc n i ϕ i
C 6 H 12 O 6 + O 2 + H 2 O GOD C 6 H 10 O 7 (GA)+ H 2 O 2
n f = n f0 ( n f0 n GA )(1+ v H2O2 v GA ) ϕ g (C)
C ϕ g = 1 ϕ gm K L + C ϕ gm
ϕ g = ϕ gm K L C 1+ K L C
ϕ g = K F C 1/ Fr
lg ϕ g =lg K F + 1 Fr lgC
Δ λ res ( n f )= ξ 1 ( n f0 n GA )(1+ v H2O2 v GA ) ϕ g (C)
ϕ g (C)= 1 ξ 1 ( n f0 n GA )(1+ v H2O2 v GA ) Δ λ res (C)
ϕ g = K F C
C ϕ g =387.729+4.3846C

Metrics