Abstract

Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Origin of third harmonic generation in plasmonic nanoantennas

Antonino Calà Lesina, Pierre Berini, and Lora Ramunno
Opt. Mater. Express 7(5) 1575-1580 (2017)

Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas

Domenico de Ceglia, Maria Antonietta Vincenti, Costantino De Angelis, Andrea Locatelli, Joseph W. Haus, and Michael Scalora
Opt. Express 23(2) 1715-1729 (2015)

Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials

Priten B. Savaliya, Arun Thomas, Rishi Dua, and Anuj Dhawan
Opt. Express 25(20) 23755-23772 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
    [Crossref]
  4. M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).
  5. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
    [Crossref] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  7. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  8. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [Crossref] [PubMed]
  9. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  10. T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
    [Crossref]
  11. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics 2(11), 1584–1591 (2015).
    [Crossref]
  12. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
    [Crossref] [PubMed]
  13. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref] [PubMed]
  14. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
    [Crossref]
  15. A. Locatelli, C. De Angelis, D. Modotto, S. Boscolo, F. Sacchetto, M. Midrio, A.-D. Capobianco, F. M. Pigozzo, and C. G. Someda, “Modeling of enhanced field confinement and scattering by optical wire antennas,” Opt. Express 17(19), 16792–16800 (2009).
    [Crossref] [PubMed]
  16. N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
    [Crossref] [PubMed]
  17. S. Toroghi, C. Lumdee, and P. G. Kik, “Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement,” Proc. SPIE 8809, 88091M (2013).
    [Crossref]
  18. Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
    [Crossref] [PubMed]
  19. H. Aouani, M. Navarro-Cía, M. Rahmani, and S. A. Maier, “Unveiling the origin of third harmonic generation in hybrid ITO–plasmonic crystals,” Adv. Opt. Mater. 3(8), 1059–1065 (2015).
    [Crossref]
  20. H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
    [Crossref] [PubMed]
  21. B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
    [Crossref] [PubMed]
  22. D. de Ceglia, M. A. Vincenti, and M. Scalora, “On the origin of third harmonic light from hybrid metal-dielectric nanoantennas,” J. Opt. 18(11), 115002 (2016).
    [Crossref]
  23. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  24. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  25. S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
    [Crossref]
  26. M. Scalora, M. A. Vincenti, D. de Ceglia, C. M. Cojocaru, M. Grande, and J. W. Haus, “Nonlinear Duffing oscillator model for third harmonic generation,” J. Opt. Soc. Am. B 32(10), 2129–2138 (2015).
    [Crossref]
  27. S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1–3), 285–293 (2004).
    [Crossref]
  28. N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. i. Kubodera, “Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59(5), 502–503 (1991).
    [Crossref]
  29. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  30. M. A. Vincenti, D. de Ceglia, and M. Scalora, “Absorption of harmonic light in plasmonic nanostructures,” Proc. SPIE 9921, 99212B (2016).
    [Crossref]
  31. D. Q. Yuan and J. T. Xu, “Quantitative analysis of ITO film by laser-induced breakdown spectroscopy,” J. Russ. Laser Res. 31(4), 350–356 (2010).
    [Crossref]
  32. J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31(2), 259–269 (2014).
    [Crossref]

2016 (3)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

M. A. Vincenti, D. de Ceglia, and M. Scalora, “Absorption of harmonic light in plasmonic nanostructures,” Proc. SPIE 9921, 99212B (2016).
[Crossref]

D. de Ceglia, M. A. Vincenti, and M. Scalora, “On the origin of third harmonic light from hybrid metal-dielectric nanoantennas,” J. Opt. 18(11), 115002 (2016).
[Crossref]

2015 (5)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

M. Scalora, M. A. Vincenti, D. de Ceglia, C. M. Cojocaru, M. Grande, and J. W. Haus, “Nonlinear Duffing oscillator model for third harmonic generation,” J. Opt. Soc. Am. B 32(10), 2129–2138 (2015).
[Crossref]

H. Aouani, M. Navarro-Cía, M. Rahmani, and S. A. Maier, “Unveiling the origin of third harmonic generation in hybrid ITO–plasmonic crystals,” Adv. Opt. Mater. 3(8), 1059–1065 (2015).
[Crossref]

2014 (3)

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31(2), 259–269 (2014).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

2013 (3)

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

S. Toroghi, C. Lumdee, and P. G. Kik, “Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement,” Proc. SPIE 8809, 88091M (2013).
[Crossref]

2012 (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

2011 (2)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

2010 (4)

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
[Crossref]

D. Q. Yuan and J. T. Xu, “Quantitative analysis of ITO film by laser-induced breakdown spectroscopy,” J. Russ. Laser Res. 31(4), 350–356 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

2004 (1)

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1–3), 285–293 (2004).
[Crossref]

2002 (1)

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

1998 (1)

1991 (1)

N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. i. Kubodera, “Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59(5), 502–503 (1991).
[Crossref]

Akozbek, N.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Alù, A.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, M. Navarro-Cía, M. Rahmani, and S. A. Maier, “Unveiling the origin of third harmonic generation in hybrid ITO–plasmonic crystals,” Adv. Opt. Mater. 3(8), 1059–1065 (2015).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Bloemer, M. J.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
[Crossref]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Boscolo, S.

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Brewer, S. H.

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1–3), 285–293 (2004).
[Crossref]

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

Buse, K.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Campione, S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Capobianco, A.-D.

Capretti, A.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

Centini, M.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
[Crossref]

Cojocaru, C. M.

Dal Negro, L.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

De Angelis, C.

de Ceglia, D.

D. de Ceglia, M. A. Vincenti, and M. Scalora, “On the origin of third harmonic light from hybrid metal-dielectric nanoantennas,” J. Opt. 18(11), 115002 (2016).
[Crossref]

M. A. Vincenti, D. de Ceglia, and M. Scalora, “Absorption of harmonic light in plasmonic nanostructures,” Proc. SPIE 9921, 99212B (2016).
[Crossref]

M. Scalora, M. A. Vincenti, D. de Ceglia, C. M. Cojocaru, M. Grande, and J. W. Haus, “Nonlinear Duffing oscillator model for third harmonic generation,” J. Opt. Soc. Am. B 32(10), 2129–2138 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31(2), 259–269 (2014).
[Crossref]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
[Crossref]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Djurišic, A. B.

Elazar, J. M.

Engheta, N.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

Franzen, S.

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1–3), 285–293 (2004).
[Crossref]

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

Giessen, H.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Grande, M.

Grange, R.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Halas, N. J.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Haus, J. W.

Hentschel, M.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Hsieh, C.-L.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kawazoe, H.

N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. i. Kubodera, “Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59(5), 502–503 (1991).
[Crossref]

Keeler, G. A.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Kik, P. G.

S. Toroghi, C. Lumdee, and P. G. Kik, “Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement,” Proc. SPIE 8809, 88091M (2013).
[Crossref]

Knabe, B.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Kubodera, K. i.

N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. i. Kubodera, “Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59(5), 502–503 (1991).
[Crossref]

Lippitz, M.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Liu, N.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Liu, S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Locatelli, A.

Luk, T. S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Lumdee, C.

S. Toroghi, C. Lumdee, and P. G. Kik, “Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement,” Proc. SPIE 8809, 88091M (2013).
[Crossref]

Maier, S. A.

H. Aouani, M. Navarro-Cía, M. Rahmani, and S. A. Maier, “Unveiling the origin of third harmonic generation in hybrid ITO–plasmonic crystals,” Adv. Opt. Mater. 3(8), 1059–1065 (2015).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Majewski, M. L.

Metzger, B.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Midrio, M.

Modotto, D.

Murray, C. B.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Navarro-Cía, M.

H. Aouani, M. Navarro-Cía, M. Rahmani, and S. A. Maier, “Unveiling the origin of third harmonic generation in hybrid ITO–plasmonic crystals,” Adv. Opt. Mater. 3(8), 1059–1065 (2015).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Nordlander, P.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Pigozzo, F. M.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Prasankumar, R. P.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Psaltis, D.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Pu, Y.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Rahmani, M.

H. Aouani, M. Navarro-Cía, M. Rahmani, and S. A. Maier, “Unveiling the origin of third harmonic generation in hybrid ITO–plasmonic crystals,” Adv. Opt. Mater. 3(8), 1059–1065 (2015).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Rakic, A. D.

Roppo, V.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
[Crossref]

Sacchetto, F.

Scalora, M.

D. de Ceglia, M. A. Vincenti, and M. Scalora, “On the origin of third harmonic light from hybrid metal-dielectric nanoantennas,” J. Opt. 18(11), 115002 (2016).
[Crossref]

M. A. Vincenti, D. de Ceglia, and M. Scalora, “Absorption of harmonic light in plasmonic nanostructures,” Proc. SPIE 9921, 99212B (2016).
[Crossref]

M. Scalora, M. A. Vincenti, D. de Ceglia, C. M. Cojocaru, M. Grande, and J. W. Haus, “Nonlinear Duffing oscillator model for third harmonic generation,” J. Opt. Soc. Am. B 32(10), 2129–2138 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31(2), 259–269 (2014).
[Crossref]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
[Crossref]

Schumacher, T.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Sinclair, M. B.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Someda, C. G.

Takata, M.

N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. i. Kubodera, “Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59(5), 502–503 (1991).
[Crossref]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Toroghi, S.

S. Toroghi, C. Lumdee, and P. G. Kik, “Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement,” Proc. SPIE 8809, 88091M (2013).
[Crossref]

Ueda, N.

N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. i. Kubodera, “Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59(5), 502–503 (1991).
[Crossref]

Vincenti, M. A.

D. de Ceglia, M. A. Vincenti, and M. Scalora, “On the origin of third harmonic light from hybrid metal-dielectric nanoantennas,” J. Opt. 18(11), 115002 (2016).
[Crossref]

M. A. Vincenti, D. de Ceglia, and M. Scalora, “Absorption of harmonic light in plasmonic nanostructures,” Proc. SPIE 9921, 99212B (2016).
[Crossref]

M. Scalora, M. A. Vincenti, D. de Ceglia, C. M. Cojocaru, M. Grande, and J. W. Haus, “Nonlinear Duffing oscillator model for third harmonic generation,” J. Opt. Soc. Am. B 32(10), 2129–2138 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31(2), 259–269 (2014).
[Crossref]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
[Crossref]

Wang, Y.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Watanabe, Y.

N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. i. Kubodera, “Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59(5), 502–503 (1991).
[Crossref]

Wen, F.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

Xu, J. T.

D. Q. Yuan and J. T. Xu, “Quantitative analysis of ITO film by laser-induced breakdown spectroscopy,” J. Russ. Laser Res. 31(4), 350–356 (2010).
[Crossref]

Yamane, M.

N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. i. Kubodera, “Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59(5), 502–503 (1991).
[Crossref]

Ye, X.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Yuan, D. Q.

D. Q. Yuan and J. T. Xu, “Quantitative analysis of ITO film by laser-induced breakdown spectroscopy,” J. Russ. Laser Res. 31(4), 350–356 (2010).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhao, Y.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

H. Aouani, M. Navarro-Cía, M. Rahmani, and S. A. Maier, “Unveiling the origin of third harmonic generation in hybrid ITO–plasmonic crystals,” Adv. Opt. Mater. 3(8), 1059–1065 (2015).
[Crossref]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. Ueda, H. Kawazoe, Y. Watanabe, M. Takata, M. Yamane, and K. i. Kubodera, “Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films,” Appl. Phys. Lett. 59(5), 502–503 (1991).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Chem. Phys. (1)

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1–3), 285–293 (2004).
[Crossref]

J. Opt. (1)

D. de Ceglia, M. A. Vincenti, and M. Scalora, “On the origin of third harmonic light from hybrid metal-dielectric nanoantennas,” J. Opt. 18(11), 115002 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

J. Russ. Laser Res. (1)

D. Q. Yuan and J. T. Xu, “Quantitative analysis of ITO film by laser-induced breakdown spectroscopy,” J. Russ. Laser Res. 31(4), 350–356 (2010).
[Crossref]

Nano Lett. (2)

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Alù, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13(1), 142–147 (2013).
[Crossref] [PubMed]

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82(4), 043828 (2010).
[Crossref]

Phys. Rev. Lett. (2)

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref] [PubMed]

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Proc. SPIE (2)

S. Toroghi, C. Lumdee, and P. G. Kik, “Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement,” Proc. SPIE 8809, 88091M (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, and M. Scalora, “Absorption of harmonic light in plasmonic nanostructures,” Proc. SPIE 9921, 99212B (2016).
[Crossref]

Science (2)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Gap field enhancement vs. wavelength evaluated with the nanocircuit model (solid lines) in the gap of a nanoantenna under plane wave illumination (top-left inset), for four cases: (i) vacuum gap (black); (ii) gap filled with a dielectric of permittivity 2.89 (red); ITO-filled gap (green); gap with an ITO nanowire in vacuum (blue). Dashed curves refer to full-wave predictions. The blue, dashed-dotted curve is the full-wave field-enhancement averaged inside the ITO nanowire. E 0 = E 0 y ^ and k 0 = k 0 x ^ are input electric field and wavevector, respectively. The gold strips (yellow domains) are separated by a gap d. Top right: the distribution of the electric-field y-component for a plane-wave tuned at 1.45 μm.
Fig. 2
Fig. 2 (a) A periodic array of dipole nanoantennas consisting of two 275nm-long gold arms and a square gap with side length of 10 nm: the gap is partially filled with an ITO square nanoparticle with side length of 6 nm. The pulsed pump signal (red arrow) excites the array at normal incidence and it is polarized along the antennas’ long axis. SH and TH scattered signals are represented with green and blue symbols, respectively. (b) The black curve is the linear extinction spectrum (reflection plus absorption) of the periodic array of dipole nanoantennas sketched in (a); the dashed red line is the same quantity evaluated for an empty gap.
Fig. 3
Fig. 3 (a) SH and (b) TH absorption (α) and emission (η) efficiencies for incident pulses with peak intensity 4 MW/cm2 for an ITO-loaded array (solid curves) and the same array with empty gap (dashed curves). Absorption and emission efficiencies are defined as the energies absorbed and emitted (transmitted plus reflected) at the harmonic wavelengths normalized by the incident pump pulse energy. The efficiencies are plotted on a log-scale. Nonlinear SH and TH absorption and emission of the loaded structure display broadband enhancement near and above the ITO resonance region compared to the bare nanoantenna array.
Fig. 4
Fig. 4 TH absorption and conversion efficiencies for incident peak intensity of 4MW/cm2 for an ITO-loaded nano-antenna array, with (solid curves) and without (dashed curves) the inclusion of the SH signal in the calculation.
Fig. 5
Fig. 5 Left: Gold-ITO nanoantenna under plane wave illumination. E 0 = E 0 y ^ and k 0 = k 0 x ^ are input electric field and wavevector, respectively. The gold strips (yellow domains) are separated by a gap d. An ITO nanoparticle of square cross section (green) is centered in the gap region. Right: the Thévenin equivalent circuit of the structure. Field enhancement in the gap region is given by |Vgap/(E0d)|.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P ω =3 ε 0 χ (3) | E ω | 2 E ω + P ω vol + P ω surf ,
P 2ω = P 2ω vol + P 2ω surf ,
P 3ω = ε 0 χ (3) ( E ω E ω ) E ω + P 3ω vol + P 3ω surf ,
F E C =| L eff d Z gap Z gap + Z ant |,
P ¨ f + γ f P ˙ f = n 0f e 2 m 0 * E 1 n 0f e [ ( P ˙ f ) P ˙ f +( P ˙ f ) P ˙ f ] e m 0 * E( P f ) + μ 0 e m 0 * P ˙ f ×H+ 5 3 E F m 0 * ( P f ) 10 9 E F m 0 * 1 n 0f e ( P f )( P f )
P ¨ b + γ b P ˙ b + ω 0 2 P b b b ( P b P b ) P b = n 0b e 2 m b * E+ μ 0 e m b * P ˙ b ×H,

Metrics