Abstract

A tunable microwave photonic duplexer (MPD) for full-duplex radio-over-fiber access is proposed and experimentally demonstrated. The proposed MPD is implemented by two single-bandpass microwave photonic filters (MPFs) to separate the transmit (Tx) and receive (Rx) channels. More specifically, a broadband optical source (BOS) is spectrally sliced by a differential-group-delay interferometer (DGDI) and a Mach–Zehnder interferometer (MZI) to form two tunable single-bandpass MPFs with different central frequencies. The two MPFs are used for the Tx and Rx channels, respectively. By adjusting the free spectral ranges (FSRs) of the DGDI and MZI, the central frequencies of the Tx and Rx channels can be tuned independently in a wide frequency range. In the experiments, tunable ranges from 0 to 6.1 GHz for the Tx channel and from 0 to 17 GHz for the Rx channel are achieved. Meanwhile, a high isolation up to 44 dB between the Tx and Rx channels is also obtained. Based on the proposed MPD, the duplex transmission of a 10-MBaud 16-quadrature-amplitude-modulation (QAM) signal at 2.45 GHz and 2.82 GHz is demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses

Xiaoxiao Xue, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Opt. Express 20(24) 26929-26934 (2012)

Tunable notch microwave photonic filter based on interferometry of a single low-incoherence source

Jun Wen, Difei Shi, Zhiyao Jia, Ming Li, Ninghua Zhu, and Wei Li
Appl. Opt. 58(29) 8039-8045 (2019)

Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source

Long Huang, Dalei Chen, Fangzheng Zhang, Peng Xiang, Tingting Zhang, Peng Wang, Linlin Lu, Tao Pu, and Xiangfei Chen
Opt. Express 23(20) 25539-25552 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Ruby, P. Bradley, J. D. Larson, and Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs),” Electron. Lett. 35(10), 794–795 (1999).
    [Crossref]
  2. R. Ruby, P. Bradley, J. Larson, Y. Oshmyansky, and D. Figueredo, “Ultra-miniature high-Q filters and duplexers using FBAR technology,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2001), pp. 120–121.
    [Crossref]
  3. J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech. 54(7), 2925–2936 (2006).
    [Crossref]
  4. A. Goel, B. Analui, and H. Hashemi, “Tunable duplexer with passive feed-forward cancellation to improve the RX-TX isolation,” IEEE Trans. Circuits Syst. I. 62(2), 536–544 (2015).
  5. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  6. D. Pérez, I. Gasulla, J. Capmany, J. S. Fandiño, P. Muñoz, and H. Alavi, “Figures of merit for self-beating filtered microwave photonic systems,” Opt. Express 24(9), 10087–10102 (2016).
    [Crossref] [PubMed]
  7. L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
    [Crossref]
  8. T. Chen, X. Yi, L. Li, and R. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett. 37(22), 4699–4701 (2012).
    [Crossref] [PubMed]
  9. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
    [Crossref]
  10. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach–Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [Crossref]
  11. J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5, 15882 (2015).
    [Crossref] [PubMed]
  12. H. Wang, J. Y. Zheng, W. Li, L. X. Wang, M. Li, L. Xie, and N. H. Zhu, “Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source,” Opt. Lett. 38(22), 4857–4860 (2013).
    [Crossref] [PubMed]
  13. D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “Idler-free microwave photonic mixer integrated with a widely tunable and highly selective microwave photonic filter,” Opt. Lett. 39(13), 3954–3957 (2014).
    [Crossref] [PubMed]
  14. J. J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
    [Crossref]
  15. Y. P. Wang, J. J. Zhang, and J. P. Yao, “An optoelectronic oscillator for high sensitivity temperature sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
    [Crossref]
  16. H. Fu and K. Zhu, “Radio-over-fiber system with multiple-optical-source-based microwave photonic filter performing as a subcarrier demultiplexer,” IEEE Photonics J. 3(2), 152–157 (2011).
    [Crossref]
  17. C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
    [Crossref]
  18. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009).
    [Crossref] [PubMed]
  19. V. A. Thomas, M. El-Hajjar, and L. Hanzo, “Performance improvement and cost reduction techniques for radio over fiber communications,” IEEE Commun. Surveys Tutor. 17(2), 627–670 (2015).
    [Crossref]
  20. P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “Full-duplex transmission of LTE-A carrier aggregation signal over a bidirectional seamless fiber-millimeter-wave system,” J. Lightwave Technol. 34(2), 691–700 (2016).
    [Crossref]
  21. M. G. Larrode, A. M. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photonics Technol. Lett. 18(1), 241–243 (2006).
    [Crossref]
  22. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
    [Crossref]
  23. Z. Al-Qazwini and H. Kim, “Ultra-narrow spectrum-sliced inherent light source for 10 Gb/s WDM PON,” J. Lightwave Technol. 30(19), 3157–3163 (2012).
    [Crossref]
  24. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses,” Opt. Express 20(24), 26929–26934 (2012).
    [Crossref] [PubMed]

2016 (3)

2015 (4)

V. A. Thomas, M. El-Hajjar, and L. Hanzo, “Performance improvement and cost reduction techniques for radio over fiber communications,” IEEE Commun. Surveys Tutor. 17(2), 627–670 (2015).
[Crossref]

C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
[Crossref]

J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5, 15882 (2015).
[Crossref] [PubMed]

A. Goel, B. Analui, and H. Hashemi, “Tunable duplexer with passive feed-forward cancellation to improve the RX-TX isolation,” IEEE Trans. Circuits Syst. I. 62(2), 536–544 (2015).

2014 (3)

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “Idler-free microwave photonic mixer integrated with a widely tunable and highly selective microwave photonic filter,” Opt. Lett. 39(13), 3954–3957 (2014).
[Crossref] [PubMed]

J. J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

2013 (2)

2012 (3)

2011 (2)

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

H. Fu and K. Zhu, “Radio-over-fiber system with multiple-optical-source-based microwave photonic filter performing as a subcarrier demultiplexer,” IEEE Photonics J. 3(2), 152–157 (2011).
[Crossref]

2009 (1)

2006 (3)

J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach–Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
[Crossref]

J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech. 54(7), 2925–2936 (2006).
[Crossref]

M. G. Larrode, A. M. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photonics Technol. Lett. 18(1), 241–243 (2006).
[Crossref]

1999 (1)

R. Ruby, P. Bradley, J. D. Larson, and Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs),” Electron. Lett. 35(10), 794–795 (1999).
[Crossref]

1993 (1)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

Alavi, H.

Al-Qazwini, Z.

Analui, B.

A. Goel, B. Analui, and H. Hashemi, “Tunable duplexer with passive feed-forward cancellation to improve the RX-TX isolation,” IEEE Trans. Circuits Syst. I. 62(2), 536–544 (2015).

Andres, M. V.

Bolea, M.

Bradley, P.

R. Ruby, P. Bradley, J. D. Larson, and Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs),” Electron. Lett. 35(10), 794–795 (1999).
[Crossref]

R. Ruby, P. Bradley, J. Larson, Y. Oshmyansky, and D. Figueredo, “Ultra-miniature high-Q filters and duplexers using FBAR technology,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2001), pp. 120–121.
[Crossref]

Capmany, J.

Chang, C. H.

C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
[Crossref]

Chang, T. L.

C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
[Crossref]

Chen, T.

Chen, X.

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

Cruz, J. L.

Dat, P. T.

DeJean, G.

J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech. 54(7), 2925–2936 (2006).
[Crossref]

Díez, A.

DiGiovanni, D. J.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

El-Hajjar, M.

V. A. Thomas, M. El-Hajjar, and L. Hanzo, “Performance improvement and cost reduction techniques for radio over fiber communications,” IEEE Commun. Surveys Tutor. 17(2), 627–670 (2015).
[Crossref]

Fandiño, J. S.

Figueredo, D.

R. Ruby, P. Bradley, J. Larson, Y. Oshmyansky, and D. Figueredo, “Ultra-miniature high-Q filters and duplexers using FBAR technology,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2001), pp. 120–121.
[Crossref]

Fok, M. P.

J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5, 15882 (2015).
[Crossref] [PubMed]

Fu, H.

H. Fu and K. Zhu, “Radio-over-fiber system with multiple-optical-source-based microwave photonic filter performing as a subcarrier demultiplexer,” IEEE Photonics J. 3(2), 152–157 (2011).
[Crossref]

Gao, L.

J. J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

Gasulla, I.

Ge, J.

J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5, 15882 (2015).
[Crossref] [PubMed]

Goel, A.

A. Goel, B. Analui, and H. Hashemi, “Tunable duplexer with passive feed-forward cancellation to improve the RX-TX isolation,” IEEE Trans. Circuits Syst. I. 62(2), 536–544 (2015).

Gu, H. W.

C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
[Crossref]

Hanzo, L.

V. A. Thomas, M. El-Hajjar, and L. Hanzo, “Performance improvement and cost reduction techniques for radio over fiber communications,” IEEE Commun. Surveys Tutor. 17(2), 627–670 (2015).
[Crossref]

Hashemi, H.

A. Goel, B. Analui, and H. Hashemi, “Tunable duplexer with passive feed-forward cancellation to improve the RX-TX isolation,” IEEE Trans. Circuits Syst. I. 62(2), 536–544 (2015).

Huang, C. W.

C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
[Crossref]

Kanno, A.

Kawanishi, T.

Kidera, N.

J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech. 54(7), 2925–2936 (2006).
[Crossref]

Kim, H.

Koonen, A. M.

M. G. Larrode, A. M. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photonics Technol. Lett. 18(1), 241–243 (2006).
[Crossref]

Larrode, M. G.

M. G. Larrode, A. M. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photonics Technol. Lett. 18(1), 241–243 (2006).
[Crossref]

Larson, J.

R. Ruby, P. Bradley, J. Larson, Y. Oshmyansky, and D. Figueredo, “Ultra-miniature high-Q filters and duplexers using FBAR technology,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2001), pp. 120–121.
[Crossref]

Larson, J. D.

R. Ruby, P. Bradley, J. D. Larson, and Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs),” Electron. Lett. 35(10), 794–795 (1999).
[Crossref]

Laskar, J.

J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech. 54(7), 2925–2936 (2006).
[Crossref]

Lee, J. H.

J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech. 54(7), 2925–2936 (2006).
[Crossref]

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

Li, L.

Li, M.

Li, S.

Li, W.

Lloret, J.

Lu, H. H.

C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
[Crossref]

Minasian, R.

Minasian, R. A.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Mora, J.

Muñoz, P.

Ng’Oma, A.

M. G. Larrode, A. M. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photonics Technol. Lett. 18(1), 241–243 (2006).
[Crossref]

Olmos, J. J. V.

M. G. Larrode, A. M. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photonics Technol. Lett. 18(1), 241–243 (2006).
[Crossref]

Ortega, B.

Oshmyansky, Y.

R. Ruby, P. Bradley, J. D. Larson, and Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs),” Electron. Lett. 35(10), 794–795 (1999).
[Crossref]

R. Ruby, P. Bradley, J. Larson, Y. Oshmyansky, and D. Figueredo, “Ultra-miniature high-Q filters and duplexers using FBAR technology,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2001), pp. 120–121.
[Crossref]

Pastor, D.

Peng, P. C.

C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
[Crossref]

Pérez, D.

Pinel, S.

J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech. 54(7), 2925–2936 (2006).
[Crossref]

Ruby, R.

R. Ruby, P. Bradley, J. D. Larson, and Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs),” Electron. Lett. 35(10), 794–795 (1999).
[Crossref]

R. Ruby, P. Bradley, J. Larson, Y. Oshmyansky, and D. Figueredo, “Ultra-miniature high-Q filters and duplexers using FBAR technology,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2001), pp. 120–121.
[Crossref]

Sales, S.

Sancho, J.

Tentzeris, M.

J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech. 54(7), 2925–2936 (2006).
[Crossref]

Thomas, V. A.

V. A. Thomas, M. El-Hajjar, and L. Hanzo, “Performance improvement and cost reduction techniques for radio over fiber communications,” IEEE Commun. Surveys Tutor. 17(2), 627–670 (2015).
[Crossref]

Wang, H.

Wang, L. X.

Wang, Y. P.

Y. P. Wang, J. J. Zhang, and J. P. Yao, “An optoelectronic oscillator for high sensitivity temperature sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

Wu, F. K.

C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
[Crossref]

Xie, L.

Xue, X.

Yamamoto, N.

Yao, J.

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

Yao, J. P.

Y. P. Wang, J. J. Zhang, and J. P. Yao, “An optoelectronic oscillator for high sensitivity temperature sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

J. J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

Yi, X.

Zhang, H.

Zhang, J.

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

Zhang, J. J.

Y. P. Wang, J. J. Zhang, and J. P. Yao, “An optoelectronic oscillator for high sensitivity temperature sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

J. J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

Zhang, W.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Zheng, J. Y.

Zheng, X.

Zhou, B.

Zhu, K.

H. Fu and K. Zhu, “Radio-over-fiber system with multiple-optical-source-based microwave photonic filter performing as a subcarrier demultiplexer,” IEEE Photonics J. 3(2), 152–157 (2011).
[Crossref]

Zhu, N. H.

Zou, D.

Electron. Lett. (1)

R. Ruby, P. Bradley, J. D. Larson, and Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs),” Electron. Lett. 35(10), 794–795 (1999).
[Crossref]

IEEE Commun. Surveys Tutor. (1)

V. A. Thomas, M. El-Hajjar, and L. Hanzo, “Performance improvement and cost reduction techniques for radio over fiber communications,” IEEE Commun. Surveys Tutor. 17(2), 627–670 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. H. Chang, H. W. Gu, P. C. Peng, F. K. Wu, T. L. Chang, C. W. Huang, and H. H. Lu, “A distribute feedback laser diode composed microwave photonic bandpass filter for SCM-based optical transport systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 309–314 (2015).
[Crossref]

IEEE Photonics J. (1)

H. Fu and K. Zhu, “Radio-over-fiber system with multiple-optical-source-based microwave photonic filter performing as a subcarrier demultiplexer,” IEEE Photonics J. 3(2), 152–157 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (5)

J. J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

Y. P. Wang, J. J. Zhang, and J. P. Yao, “An optoelectronic oscillator for high sensitivity temperature sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

M. G. Larrode, A. M. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photonics Technol. Lett. 18(1), 241–243 (2006).
[Crossref]

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

IEEE Trans. Circuits Syst. I. (1)

A. Goel, B. Analui, and H. Hashemi, “Tunable duplexer with passive feed-forward cancellation to improve the RX-TX isolation,” IEEE Trans. Circuits Syst. I. 62(2), 536–544 (2015).

IEEE Trans. Microw. Theory Tech. (2)

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microw. Theory Tech. 54(7), 2925–2936 (2006).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (3)

Opt. Lett. (3)

Sci. Rep. (1)

J. Ge and M. P. Fok, “Passband switchable microwave photonic multiband filter,” Sci. Rep. 5, 15882 (2015).
[Crossref] [PubMed]

Other (1)

R. Ruby, P. Bradley, J. Larson, Y. Oshmyansky, and D. Figueredo, “Ultra-miniature high-Q filters and duplexers using FBAR technology,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2001), pp. 120–121.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the proposed tunable microwave photonic duplexer. BOS: broadband optical source; Pol: polarizer; TOBF: tunable optical bandpass filter; PC: polarization controller; DGDI: differential group delay interferometer; DDMZM: dual-drive Mach-Zehnder modulator; OC: optical circulator; DCF: dispersion compensation fiber; PD: photodetector; MZI: Mach-Zehnder interferometer; OVDL: optical variable delay line, EC: electrical circulator..
Fig. 2
Fig. 2 Measured spectral responses of the Tx channel centered at 0.46 GHz (black line), 0.96 GHz (red line), 1.6 GHz (green line) and 2.82 GHz (blue line).
Fig. 3
Fig. 3 Measured optical spectra at the output of Pol2 when the principal axis of Pol2 is aligned at 45 degree (a) and 0 degree (c) with respect to the fast axis of the PMF, and the corresponding spectral responses of Rx channel for 45 degree (b) and 0 degree (d).
Fig. 4
Fig. 4 Measured spectral responses for the demonstrations of 9-GHz Rx channel (a) and 6.1-GHz Tx channel (b).
Fig. 5
Fig. 5 Measured spectral responses of Rx filtering channel with tunable center frequencies (a) and flexible 3-dB bandwidths (b).
Fig. 6
Fig. 6 Measured electrical spectra at the output of PD2 for (a): 2.45-GHz RF signal and (b): 2.82-GHz RF signal. (Inset: constellation diagram of the demodulated 16-QAM signal)
Fig. 7
Fig. 7 Measured electrical spectrum at the output of PD1 for 2.82-GHz RF signal without (a) and with (b) 25-km SMF (b). (Insets: constellation diagram of the demodulated 16-QAM signal)
Fig. 8
Fig. 8 RMS EVMs versus the received optical power for the Tx signal at 2.82 GHz without (black line) and with 25-km SMF (green line), Rx signal at 2.45 GHz (red line) carried by the BOS, and the 2.82-GHz signal carried by the single-wavelength carrier (blue line).
Fig. 9
Fig. 9 Fundamental harmonic (red line) and third-order distortion (blue line) measured under different input RF power levels. Inset: measured noise floor (green line).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E D G D ( t ) [ E f a s t E s l o w ] = [ E B O S ( t ) E B O S ( t Δ τ 1 ) ] ,
H ( Ω ) S ˜ ( β Ω ) + S ˜ [ β ( Ω Δ τ 1 β ) ] + S ˜ [ β ( Ω + Δ τ 1 β ) ] ,
S ˜ ( β Ω ) = + S ( ω ) exp ( j β Ω ω ) d ω ,
Ω 1 = Δ τ 1 β .
E D G D ( t ) [ E f a s t 0 ] = [ E B O S ( t ) 0 ] .
Ω 2 = Δ τ 2 β ,

Metrics