Abstract

The capacity of communication networks may be significantly improved by simply enhancing the optical amplifier bandwidth. This paper presents a numerical investigation of an ultra-broadband, low-ripple, two-pump-optical parametric amplifier (2P-OPA) that employs a tellurite glass buried-channel type nano-waveguide as nonlinear medium. The nano-waveguide was designed as a 25-cm-long Archimedean spiral that occupies a footprint of only ~2.5 mm2, with a ~0.7 μm2 effective cross section. Its zero-dispersion wavelength is ~1550 nm, the nonlinear coefficient is ~3000 W−1 km−1, and the attenuation coefficient is ~0.5 dB/m (1100 to 1900 nm). Simulations suggest a 2P-OPA based on such waveguide will be able to amplify 243 QPSK input channels modulated at 56 Gbps over 102 nm bandwidth, over metropolitan area network scales.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally flat and broadband double-pumped fiber optical parametric amplifiers

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito
Opt. Express 15(9) 5288-5309 (2007)

Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths

Tong Hoang Tuan, Tonglei Cheng, Koji Asano, Zhongchao Duan, Weiqing Gao, Dinghuan Deng, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 21(17) 20303-20312 (2013)

Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, I. Cestier, and G. Eisenstein
Opt. Express 21(9) 10440-10453 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
    [Crossref] [PubMed]
  2. A. D. Ellis, N. M. Suibhne, D. Saad, and D. N. Payne, “Communication networks beyond the capacity crunch,” Phil. Trans. R. Soc. A 374(2062), 20150191 (2016).
    [Crossref] [PubMed]
  3. J. X. Cai, Y. Sun, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. G. Foursa, and A. Pilipetskii, “49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA,” J. Lightwave Technol. 33(15), 2724–2734 (2015).
    [Crossref]
  4. R. J. Essiambre and R. W. Tkach, “Capacity trend and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
    [Crossref]
  5. R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transmission in optically-routed fiber networks,” Bell Labs Tech. J. 14(4), 149–162 (2010).
    [Crossref]
  6. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  7. J. Berthold, A. A. M. Saleh, L. Blair, and J. M. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol. 26(9), 1104–1118 (2008).
    [Crossref]
  8. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
    [Crossref]
  9. D. C. Kilper and H. Rastegarfar, “Energy challenges in optical access and aggregation networks,” Phil. Trans. R. Soc. A 374(2062), 20140435 (2016).
    [Crossref] [PubMed]
  10. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  11. J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core x 3 mode) heterogeneous few-mode multicore fiber,” J. Lightwave Technol. 34(1), 93–103 (2016).
    [Crossref]
  12. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5–6), 315–340 (2013).
  13. J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
    [Crossref]
  14. J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
    [Crossref] [PubMed]
  15. L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre,” J. Opt. 18(5), 055502 (2016).
    [Crossref]
  16. P. S. Maji and P. R. Chaudhuri, “Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength,” Appl. Opt. 54(11), 3263–3272 (2015).
    [Crossref] [PubMed]
  17. D. Bigourd, P. B. d’Augerès, J. Dubertrand, E. Hugonnot, and A. Mussot, “Ultra-broadband fiber optical parametric amplifier pumped by chirped pulses,” Opt. Lett. 39(13), 3782–3785 (2014).
    [Crossref] [PubMed]
  18. S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Two-octave spanning single pump parametric amplification at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: influence of multi-order dispersion engineering,” Opt. Commun. 332, 244–256 (2014).
    [Crossref]
  19. M. W. Lee, T. Sylvestre, M. Delqué, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, and H. Maillotte, “Demonstration of an all-fiber broadband optical parametric amplifier at 1 μm,” J. Lightwave Technol. 28(15), 2173–2178 (2010).
    [Crossref]
  20. J. M. Chavez Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
    [Crossref]
  21. T. Toroundinis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
    [Crossref]
  22. H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric amplification, wavelength conversion, and phase conjugation of a 2048-Tbit/;s WDM PDM 16-QAM signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
    [Crossref]
  23. N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron. 18(2), 950–957 (2012).
    [Crossref]
  24. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
  25. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [Crossref] [PubMed]
  26. A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18(8), 7634–7641 (2010).
    [Crossref] [PubMed]
  27. J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
    [Crossref]
  28. K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
    [Crossref]
  29. S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
    [Crossref]
  30. A. Jha, Inorganic Glasses for Photonics (John Wiley & Sons, 2016), Chap. 7.
  31. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators, and Related Devices (Cambridge University, 2007), Ch. 3.
  32. X. Guan, Y. Ding, and L. H. Frandsen, “Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics,” Opt. Lett. 40(16), 3893–3896 (2015).
    [Crossref] [PubMed]
  33. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near- infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
    [Crossref]
  34. C. Schulze, D. Flamm, S. Unger, S. Schröter, and M. Duparré, “Measurement of higher-order mode propagation losses in effectively single mode fibers,” Opt. Lett. 38(23), 4958–4961 (2013).
    [Crossref] [PubMed]
  35. Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34(15), 2369–2371 (2009).
    [Crossref] [PubMed]
  36. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
    [Crossref] [PubMed]
  37. N. Bhatia, K. C. Rustagi, and J. John, “Single LP(0,n) mode excitation in multimode fibers,” Opt. Express 22(14), 16847–16862 (2014).
    [Crossref] [PubMed]
  38. F. Dubois, P. Emplit, and O. Hugon, “Selective mode excitation in graded-index multimode fiber by a computer-generated optical mask,” Opt. Lett. 19(7), 433–435 (1994).
    [Crossref] [PubMed]
  39. J. Wilde, C. Schulze, R. Brüning, M. Duparré, and S. Schröter, “Selective higher order fiber mode excitation using a monolithic setup of a phase plate at fiber facet,” Proc. SPIE 9343, 2078993 (2015).
  40. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  41. M. Baas, G. Li, and E. Van Stryland, Handbook of Optics Vol. IV (Mc Graw Hill, 2010), Ch. 3.
  42. I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
    [Crossref]
  43. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  44. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends,” Opt. Express 14(23), 11128–11141 (2006).
    [Crossref] [PubMed]
  45. K.-Y. Yang, Y.-F. Chau, Y.-W. Huang, H.-Y. Yeh, and D. Ping Tsai, “Design of high birefringence and low confinement loss photonics crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding,” J. Appl. Phys. 109(9), 093103 (2011).
    [Crossref]
  46. V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core silica holey fibers: nonlinearity and confinement loss trade-offs,” J. Opt. Soc. Am. B 20(7), 1427 (2003).
    [Crossref]
  47. G. P. Agrawal, Fiber Optic Communication Systems (John Wiley & Sons, 2002), Ch. 2.
  48. K. Okamoto, Fundamental of Optical Waveguides (Academic, 2006), Ch. 4.
  49. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 2007), Ch. 8.
  50. S. F. Mansour, E. Sayed Yousef, M. Y. Hassaan, and A. M. Emara, “The influence of oxides on the optical properties of tellurite glass,” Phys. Scr. 89(11), 115812 (2014).
    [Crossref]
  51. V. Mishra, S. Pratap, R. haldar, and S. K. Varshney, “Sub-wavelength dual capillaries-assisted chalcogenide optical fibers: unusual modal properties in mid-IR (2-5 mm) spectral range,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4401906 (2016).
    [Crossref]
  52. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
    [Crossref] [PubMed]
  53. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007), Ch. 2.
  54. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref] [PubMed]
  55. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
    [Crossref] [PubMed]
  56. S. Lin and D. J. Costello, Jr., Error Control Coding (Pearson Prentice Hall, 2004).
  57. J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Crosstalk in double-pumped fiber optics parametric amplifiers for wavelength division multiplexing systems,” Opt. Commun. 259(1), 94–103 (2006).
    [Crossref]
  58. J. D. Marconi, M. L. F. Abbade, C. M. Serpa-Imbett, J. Cordoba-Ramirez, and E. A. M. Fagotto, “Broadband two-pump parametric amplifier in engineered dispersion tellurite waveguides,” in Latin America Optics and Photonics Conference, 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper LTu4A.11.
    [Crossref]

2016 (6)

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

A. D. Ellis, N. M. Suibhne, D. Saad, and D. N. Payne, “Communication networks beyond the capacity crunch,” Phil. Trans. R. Soc. A 374(2062), 20150191 (2016).
[Crossref] [PubMed]

L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre,” J. Opt. 18(5), 055502 (2016).
[Crossref]

D. C. Kilper and H. Rastegarfar, “Energy challenges in optical access and aggregation networks,” Phil. Trans. R. Soc. A 374(2062), 20140435 (2016).
[Crossref] [PubMed]

V. Mishra, S. Pratap, R. haldar, and S. K. Varshney, “Sub-wavelength dual capillaries-assisted chalcogenide optical fibers: unusual modal properties in mid-IR (2-5 mm) spectral range,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4401906 (2016).
[Crossref]

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core x 3 mode) heterogeneous few-mode multicore fiber,” J. Lightwave Technol. 34(1), 93–103 (2016).
[Crossref]

2015 (7)

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric amplification, wavelength conversion, and phase conjugation of a 2048-Tbit/;s WDM PDM 16-QAM signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
[Crossref]

P. S. Maji and P. R. Chaudhuri, “Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength,” Appl. Opt. 54(11), 3263–3272 (2015).
[Crossref] [PubMed]

J. X. Cai, Y. Sun, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. G. Foursa, and A. Pilipetskii, “49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA,” J. Lightwave Technol. 33(15), 2724–2734 (2015).
[Crossref]

X. Guan, Y. Ding, and L. H. Frandsen, “Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics,” Opt. Lett. 40(16), 3893–3896 (2015).
[Crossref] [PubMed]

J. Wilde, C. Schulze, R. Brüning, M. Duparré, and S. Schröter, “Selective higher order fiber mode excitation using a monolithic setup of a phase plate at fiber facet,” Proc. SPIE 9343, 2078993 (2015).

J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
[Crossref]

2014 (5)

S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Two-octave spanning single pump parametric amplification at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: influence of multi-order dispersion engineering,” Opt. Commun. 332, 244–256 (2014).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

S. F. Mansour, E. Sayed Yousef, M. Y. Hassaan, and A. M. Emara, “The influence of oxides on the optical properties of tellurite glass,” Phys. Scr. 89(11), 115812 (2014).
[Crossref]

D. Bigourd, P. B. d’Augerès, J. Dubertrand, E. Hugonnot, and A. Mussot, “Ultra-broadband fiber optical parametric amplifier pumped by chirped pulses,” Opt. Lett. 39(13), 3782–3785 (2014).
[Crossref] [PubMed]

N. Bhatia, K. C. Rustagi, and J. John, “Single LP(0,n) mode excitation in multimode fibers,” Opt. Express 22(14), 16847–16862 (2014).
[Crossref] [PubMed]

2013 (4)

C. Schulze, D. Flamm, S. Unger, S. Schröter, and M. Duparré, “Measurement of higher-order mode propagation losses in effectively single mode fibers,” Opt. Lett. 38(23), 4958–4961 (2013).
[Crossref] [PubMed]

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near- infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5–6), 315–340 (2013).

2012 (2)

N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron. 18(2), 950–957 (2012).
[Crossref]

R. J. Essiambre and R. W. Tkach, “Capacity trend and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

2011 (2)

K.-Y. Yang, Y.-F. Chau, Y.-W. Huang, H.-Y. Yeh, and D. Ping Tsai, “Design of high birefringence and low confinement loss photonics crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding,” J. Appl. Phys. 109(9), 093103 (2011).
[Crossref]

J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
[Crossref] [PubMed]

2010 (5)

2009 (3)

2008 (1)

2007 (5)

2006 (4)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends,” Opt. Express 14(23), 11128–11141 (2006).
[Crossref] [PubMed]

E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Crosstalk in double-pumped fiber optics parametric amplifiers for wavelength division multiplexing systems,” Opt. Commun. 259(1), 94–103 (2006).
[Crossref]

2005 (1)

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

2003 (1)

2002 (1)

S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[Crossref]

2001 (1)

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

1994 (1)

Afshar V, S.

Agrawal, G. P.

Alic, N.

J. M. Chavez Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Alvarado, A.

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Andrekson, P.

T. Toroundinis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

Awaji, Y.

Azaña, J.

Batshon, H. G.

Bayvel, P.

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Beppu, S.

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Berthold, J.

Bhatia, N.

Bickham, S. R.

Bigourd, D.

Bindra, K.

S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[Crossref]

Bindra, K. S.

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Blair, L.

Bookey, H. J.

S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[Crossref]

Bookey, H. T.

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Brambilla, G.

Brüning, R.

J. Wilde, C. Schulze, R. Brüning, M. Duparré, and S. Schröter, “Selective higher order fiber mode excitation using a monolithic setup of a phase plate at fiber facet,” Proc. SPIE 9343, 2078993 (2015).

Cai, J. X.

Callegari, F. A.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

Chan, J. S. P.

Chandrasekhar, S.

Chatterjee, S. K.

S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Two-octave spanning single pump parametric amplification at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: influence of multi-order dispersion engineering,” Opt. Commun. 332, 244–256 (2014).
[Crossref]

Chau, Y.-F.

K.-Y. Yang, Y.-F. Chau, Y.-W. Huang, H.-Y. Yeh, and D. Ping Tsai, “Design of high birefringence and low confinement loss photonics crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding,” J. Appl. Phys. 109(9), 093103 (2011).
[Crossref]

Chaudhuri, P. R.

P. S. Maji and P. R. Chaudhuri, “Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength,” Appl. Opt. 54(11), 3263–3272 (2015).
[Crossref] [PubMed]

S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Two-octave spanning single pump parametric amplification at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: influence of multi-order dispersion engineering,” Opt. Commun. 332, 244–256 (2014).
[Crossref]

Chavez Boggio, J. M.

J. M. Chavez Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
[Crossref] [PubMed]

J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Crosstalk in double-pumped fiber optics parametric amplifiers for wavelength division multiplexing systems,” Opt. Commun. 259(1), 94–103 (2006).
[Crossref]

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

Chen, C. P.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chiles, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near- infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Chu, S. T.

Clarkson, W. A.

d’Augerès, P. B.

Daniel, J. M. O.

De la Rosa, E.

J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
[Crossref]

Delqué, M.

Desevedavy, F.

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Desirena, H.

J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
[Crossref]

Desurvire, E. B.

Ding, Y.

Dinu, M.

Doran, N. J.

N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron. 18(2), 950–957 (2012).
[Crossref]

Dubertrand, J.

Dubois, F.

Duparré, M.

J. Wilde, C. Schulze, R. Brüning, M. Duparré, and S. Schröter, “Selective higher order fiber mode excitation using a monolithic setup of a phase plate at fiber facet,” Proc. SPIE 9343, 2078993 (2015).

C. Schulze, D. Flamm, S. Unger, S. Schröter, and M. Duparré, “Measurement of higher-order mode propagation losses in effectively single mode fibers,” Opt. Lett. 38(23), 4958–4961 (2013).
[Crossref] [PubMed]

El Dahdah, N.

N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron. 18(2), 950–957 (2012).
[Crossref]

Ellis, A. D.

A. D. Ellis, N. M. Suibhne, D. Saad, and D. N. Payne, “Communication networks beyond the capacity crunch,” Phil. Trans. R. Soc. A 374(2062), 20150191 (2016).
[Crossref] [PubMed]

Emara, A. M.

S. F. Mansour, E. Sayed Yousef, M. Y. Hassaan, and A. M. Emara, “The influence of oxides on the optical properties of tellurite glass,” Phys. Scr. 89(11), 115812 (2014).
[Crossref]

Emplit, P.

Essiambre, R. J.

R. J. Essiambre and R. W. Tkach, “Capacity trend and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transmission in optically-routed fiber networks,” Bell Labs Tech. J. 14(4), 149–162 (2010).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

Fathpour, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near- infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Fatome, J.

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Finazzi, V.

Flamm, D.

Foschini, G. J.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transmission in optically-routed fiber networks,” Bell Labs Tech. J. 14(4), 149–162 (2010).
[Crossref]

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Foursa, D. G.

Fragnito, H. L.

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
[Crossref] [PubMed]

J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Crosstalk in double-pumped fiber optics parametric amplifiers for wavelength division multiplexing systems,” Opt. Commun. 259(1), 94–103 (2006).
[Crossref]

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

Frandsen, L. H.

Freude, W.

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Gadret, G.

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Gleyze, J.-F.

Gnauck, A. H.

Goebel, B.

Govan, D. S.

N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron. 18(2), 950–957 (2012).
[Crossref]

Green, W. M. J.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).

Guan, X.

Guimarães, A.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

haldar, R.

V. Mishra, S. Pratap, R. haldar, and S. K. Varshney, “Sub-wavelength dual capillaries-assisted chalcogenide optical fibers: unusual modal properties in mid-IR (2-5 mm) spectral range,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4401906 (2016).
[Crossref]

Hassaan, M. Y.

S. F. Mansour, E. Sayed Yousef, M. Y. Hassaan, and A. M. Emara, “The influence of oxides on the optical properties of tellurite glass,” Phys. Scr. 89(11), 115812 (2014).
[Crossref]

Hayashi, T.

Hu, H.

Huang, Y.-W.

K.-Y. Yang, Y.-F. Chau, Y.-W. Huang, H.-Y. Yeh, and D. Ping Tsai, “Design of high birefringence and low confinement loss photonics crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding,” J. Appl. Phys. 109(9), 093103 (2011).
[Crossref]

Hugon, O.

Hugonnot, E.

Ibsen, M.

Jacome, L.

Jamshidifar, M.

N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron. 18(2), 950–957 (2012).
[Crossref]

Jeong, Y.

Jha, A.

S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[Crossref]

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

John, J.

Jolly, A.

Jonasz, M.

Jopson, R. M.

Jules, J. C.

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Jung, Y.

Kakihara, K.

Kar, A. K.

S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[Crossref]

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Kasai, K.

Kawamura, H.

L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre,” J. Opt. 18(5), 055502 (2016).
[Crossref]

Kawashima, H.

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near- infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Khan, S. N.

S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Two-octave spanning single pump parametric amplification at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: influence of multi-order dispersion engineering,” Opt. Commun. 332, 244–256 (2014).
[Crossref]

Kibler, B.

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Killey, R. I.

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Kilper, D. C.

D. C. Kilper and H. Rastegarfar, “Energy challenges in optical access and aggregation networks,” Phil. Trans. R. Soc. A 374(2062), 20140435 (2016).
[Crossref] [PubMed]

Kim, J. W.

Kitamura, R.

Klaus, W.

Kobayashi, T.

Kokubun, Y.

Kono, N.

Koos, C.

Koshiba, M.

Kramer, G.

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transmission in optically-routed fiber networks,” Bell Labs Tech. J. 14(4), 149–162 (2010).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

Kudlinski, A.

Lavery, D.

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Leal, J. J.

J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
[Crossref]

Lee, M. W.

Légaré, F.

Leuthold, J.

Liga, G.

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Lin, Q.

Linganna, K.

J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
[Crossref]

Lipson, M.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Little, B. E.

Liu, X.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).

S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[Crossref]

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Luís, R. S.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Ma, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near- infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Maher, R.

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Maillotte, H.

Maji, P. S.

Mansour, S. F.

S. F. Mansour, E. Sayed Yousef, M. Y. Hassaan, and A. M. Emara, “The influence of oxides on the optical properties of tellurite glass,” Phys. Scr. 89(11), 115812 (2014).
[Crossref]

Marconi, J. D.

J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
[Crossref] [PubMed]

J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Crosstalk in double-pumped fiber optics parametric amplifiers for wavelength division multiplexing systems,” Opt. Commun. 259(1), 94–103 (2006).
[Crossref]

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

Marhic, M. E.

N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron. 18(2), 950–957 (2012).
[Crossref]

Mazurczyk, M. V.

Mendinueta, J. M. D.

Mishra, V.

V. Mishra, S. Pratap, R. haldar, and S. K. Varshney, “Sub-wavelength dual capillaries-assisted chalcogenide optical fibers: unusual modal properties in mid-IR (2-5 mm) spectral range,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4401906 (2016).
[Crossref]

Monro, T. M.

Morandotti, R.

Moro, S.

J. M. Chavez Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Moss, D. J.

Mussot, A.

Myslivets, E.

J. M. Chavez Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Nafataly, M.

S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[Crossref]

Nagasaka, K.

L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre,” J. Opt. 18(5), 055502 (2016).
[Crossref]

Nakanishi, T.

Nakazawa, M.

Narro-Garcia, R.

J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
[Crossref]

Ohishi, Y.

L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre,” J. Opt. 18(5), 055502 (2016).
[Crossref]

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Osgood, R. M.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).

Painter, O. J.

Park, Y.

Pasquazi, A.

Payne, D. N.

A. D. Ellis, N. M. Suibhne, D. Saad, and D. N. Payne, “Communication networks beyond the capacity crunch,” Phil. Trans. R. Soc. A 374(2062), 20150191 (2016).
[Crossref] [PubMed]

Petrovich, M. N.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5–6), 315–340 (2013).

Pilipetskii, A.

Pilon, L.

Ping Tsai, D.

K.-Y. Yang, Y.-F. Chau, Y.-W. Huang, H.-Y. Yeh, and D. Ping Tsai, “Design of high birefringence and low confinement loss photonics crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding,” J. Appl. Phys. 109(9), 093103 (2011).
[Crossref]

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Poletti, F.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5–6), 315–340 (2013).

Poulton, C.

Pratap, S.

V. Mishra, S. Pratap, R. haldar, and S. K. Varshney, “Sub-wavelength dual capillaries-assisted chalcogenide optical fibers: unusual modal properties in mid-IR (2-5 mm) spectral range,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4401906 (2016).
[Crossref]

Puttnam, B. J.

Radic, S.

J. M. Chavez Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Randel, S.

Rastegarfar, H.

D. C. Kilper and H. Rastegarfar, “Energy challenges in optical access and aggregation networks,” Phil. Trans. R. Soc. A 374(2062), 20140435 (2016).
[Crossref] [PubMed]

Richardson, D. J.

Rodrigues, E.

J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
[Crossref]

Rustagi, K. C.

Saad, D.

A. D. Ellis, N. M. Suibhne, D. Saad, and D. N. Payne, “Communication networks beyond the capacity crunch,” Phil. Trans. R. Soc. A 374(2062), 20150191 (2016).
[Crossref] [PubMed]

Sahu, J. K.

Saitoh, K.

Sakaguchi, J.

Saleh, A. A. M.

Savelli, I.

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Sayed Yousef, E.

S. F. Mansour, E. Sayed Yousef, M. Y. Hassaan, and A. M. Emara, “The influence of oxides on the optical properties of tellurite glass,” Phys. Scr. 89(11), 115812 (2014).
[Crossref]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Schröter, S.

J. Wilde, C. Schulze, R. Brüning, M. Duparré, and S. Schröter, “Selective higher order fiber mode excitation using a monolithic setup of a phase plate at fiber facet,” Proc. SPIE 9343, 2078993 (2015).

C. Schulze, D. Flamm, S. Unger, S. Schröter, and M. Duparré, “Measurement of higher-order mode propagation losses in effectively single mode fibers,” Opt. Lett. 38(23), 4958–4961 (2013).
[Crossref] [PubMed]

Schulze, C.

J. Wilde, C. Schulze, R. Brüning, M. Duparré, and S. Schröter, “Selective higher order fiber mode excitation using a monolithic setup of a phase plate at fiber facet,” Proc. SPIE 9343, 2078993 (2015).

C. Schulze, D. Flamm, S. Unger, S. Schröter, and M. Duparré, “Measurement of higher-order mode propagation losses in effectively single mode fibers,” Opt. Lett. 38(23), 4958–4961 (2013).
[Crossref] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Shen, S.

S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[Crossref]

Shevchenko, N. A.

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Simmons, J. M.

Sinkin, O. V.

Smektala, F.

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Suibhne, N. M.

A. D. Ellis, N. M. Suibhne, D. Saad, and D. N. Payne, “Communication networks beyond the capacity crunch,” Phil. Trans. R. Soc. A 374(2062), 20150191 (2016).
[Crossref] [PubMed]

Sun, Y.

Suzuki, T.

L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre,” J. Opt. 18(5), 055502 (2016).
[Crossref]

Sylvestre, T.

Takahata, T.

Tkach, R. W.

R. J. Essiambre and R. W. Tkach, “Capacity trend and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Toroundinis, T.

T. Toroundinis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

Tuan, T.-H.

L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre,” J. Opt. 18(5), 055502 (2016).
[Crossref]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Unger, S.

Varshney, S. K.

V. Mishra, S. Pratap, R. haldar, and S. K. Varshney, “Sub-wavelength dual capillaries-assisted chalcogenide optical fibers: unusual modal properties in mid-IR (2-5 mm) spectral range,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4401906 (2016).
[Crossref]

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).

Wada, N.

Watanabe, T.

Wherrett, B. S.

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Wilde, J.

J. Wilde, C. Schulze, R. Brüning, M. Duparré, and S. Schröter, “Selective higher order fiber mode excitation using a monolithic setup of a phase plate at fiber facet,” Proc. SPIE 9343, 2078993 (2015).

Windmiller, J. R.

J. M. Chavez Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Winzer, P. J.

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transmission in optically-routed fiber networks,” Bell Labs Tech. J. 14(4), 149–162 (2010).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

Xie, C.

Xu, T.

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

Yang, K.-Y.

K.-Y. Yang, Y.-F. Chau, Y.-W. Huang, H.-Y. Yeh, and D. Ping Tsai, “Design of high birefringence and low confinement loss photonics crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding,” J. Appl. Phys. 109(9), 093103 (2011).
[Crossref]

Yeh, H.-Y.

K.-Y. Yang, Y.-F. Chau, Y.-W. Huang, H.-Y. Yeh, and D. Ping Tsai, “Design of high birefringence and low confinement loss photonics crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding,” J. Appl. Phys. 109(9), 093103 (2011).
[Crossref]

Yoshida, M.

Zhang, H.

Zhang, L.

L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre,” J. Opt. 18(5), 055502 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near- infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Bell Labs Tech. J. (1)

R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transmission in optically-routed fiber networks,” Bell Labs Tech. J. 14(4), 149–162 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron. 18(2), 950–957 (2012).
[Crossref]

V. Mishra, S. Pratap, R. haldar, and S. K. Varshney, “Sub-wavelength dual capillaries-assisted chalcogenide optical fibers: unusual modal properties in mid-IR (2-5 mm) spectral range,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4401906 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. M. Chavez Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

T. Toroundinis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

J. Am. Ceram. Soc. (1)

S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[Crossref]

J. Appl. Phys. (1)

K.-Y. Yang, Y.-F. Chau, Y.-W. Huang, H.-Y. Yeh, and D. Ping Tsai, “Design of high birefringence and low confinement loss photonics crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding,” J. Appl. Phys. 109(9), 093103 (2011).
[Crossref]

J. Lightwave Technol. (7)

H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric amplification, wavelength conversion, and phase conjugation of a 2048-Tbit/;s WDM PDM 16-QAM signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
[Crossref]

M. W. Lee, T. Sylvestre, M. Delqué, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, and H. Maillotte, “Demonstration of an all-fiber broadband optical parametric amplifier at 1 μm,” J. Lightwave Technol. 28(15), 2173–2178 (2010).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

J. Berthold, A. A. M. Saleh, L. Blair, and J. M. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol. 26(9), 1104–1118 (2008).
[Crossref]

E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
[Crossref]

J. X. Cai, Y. Sun, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. G. Foursa, and A. Pilipetskii, “49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA,” J. Lightwave Technol. 33(15), 2724–2734 (2015).
[Crossref]

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core x 3 mode) heterogeneous few-mode multicore fiber,” J. Lightwave Technol. 34(1), 93–103 (2016).
[Crossref]

J. Lumin. (1)

J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, “Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 (2015).
[Crossref]

J. Opt. (1)

L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre,” J. Opt. 18(5), 055502 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5–6), 315–340 (2013).

Nat. Commun. (1)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Opt. Commun. (3)

S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Two-octave spanning single pump parametric amplification at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: influence of multi-order dispersion engineering,” Opt. Commun. 332, 244–256 (2014).
[Crossref]

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Crosstalk in double-pumped fiber optics parametric amplifiers for wavelength division multiplexing systems,” Opt. Commun. 259(1), 94–103 (2006).
[Crossref]

Opt. Express (9)

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref] [PubMed]

K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends,” Opt. Express 14(23), 11128–11141 (2006).
[Crossref] [PubMed]

J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
[Crossref] [PubMed]

N. Bhatia, K. C. Rustagi, and J. John, “Single LP(0,n) mode excitation in multimode fibers,” Opt. Express 22(14), 16847–16862 (2014).
[Crossref] [PubMed]

S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[Crossref] [PubMed]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
[Crossref] [PubMed]

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18(8), 7634–7641 (2010).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. (1)

I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35(8), 1595–1599 (2013).
[Crossref]

Phil. Trans. R. Soc. A (3)

P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016).
[Crossref] [PubMed]

A. D. Ellis, N. M. Suibhne, D. Saad, and D. N. Payne, “Communication networks beyond the capacity crunch,” Phil. Trans. R. Soc. A 374(2062), 20150191 (2016).
[Crossref] [PubMed]

D. C. Kilper and H. Rastegarfar, “Energy challenges in optical access and aggregation networks,” Phil. Trans. R. Soc. A 374(2062), 20140435 (2016).
[Crossref] [PubMed]

Phys. Scr. (1)

S. F. Mansour, E. Sayed Yousef, M. Y. Hassaan, and A. M. Emara, “The influence of oxides on the optical properties of tellurite glass,” Phys. Scr. 89(11), 115812 (2014).
[Crossref]

Proc. IEEE (1)

R. J. Essiambre and R. W. Tkach, “Capacity trend and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Proc. SPIE (1)

J. Wilde, C. Schulze, R. Brüning, M. Duparré, and S. Schröter, “Selective higher order fiber mode excitation using a monolithic setup of a phase plate at fiber facet,” Proc. SPIE 9343, 2078993 (2015).

Other (9)

M. Baas, G. Li, and E. Van Stryland, Handbook of Optics Vol. IV (Mc Graw Hill, 2010), Ch. 3.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007), Ch. 2.

G. P. Agrawal, Fiber Optic Communication Systems (John Wiley & Sons, 2002), Ch. 2.

K. Okamoto, Fundamental of Optical Waveguides (Academic, 2006), Ch. 4.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 2007), Ch. 8.

S. Lin and D. J. Costello, Jr., Error Control Coding (Pearson Prentice Hall, 2004).

J. D. Marconi, M. L. F. Abbade, C. M. Serpa-Imbett, J. Cordoba-Ramirez, and E. A. M. Fagotto, “Broadband two-pump parametric amplifier in engineered dispersion tellurite waveguides,” in Latin America Optics and Photonics Conference, 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper LTu4A.11.
[Crossref]

A. Jha, Inorganic Glasses for Photonics (John Wiley & Sons, 2016), Chap. 7.

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators, and Related Devices (Cambridge University, 2007), Ch. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 a) Schematic design (not in scale) of the Archimedean spiral with their principal geometrical dimensions. b) Detail of the transversal cross sections with the high and the width of the waveguide that allow to obtain a λ0 around 1550 nm.
Fig. 2
Fig. 2 Real part of tellurite refractive index as a function of wavelength. Dots are the experimental values.
Fig. 3
Fig. 3 Waveguide confinement losses.
Fig. 4
Fig. 4 a) Waveguide dispersion curves of the TE (fundamental) mode for 30 μm ≤ R ≤ 800 μm. b) ZDW as a function of the R. c) Dispersion curves of the TM mode for 30 μm ≤ R ≤ 800 μm.
Fig. 5
Fig. 5 a) Initially, the energy of the mode TE1 is fully located in waveguide I. b) After a propagation distance equal to Lc, the energy is completely transferred to waveguide II (mode TE2). The coefficients n1 and n2 are de refractive index of the core and the cladding, respectively.
Fig. 6
Fig. 6 Coupling length as a function of the gap width between adjacent waveguides.
Fig. 7
Fig. 7 a) Magnitude of the TE mode for a gap of 1.8 μm. b) 3 μm.
Fig. 8
Fig. 8 2P-OPA gain spectrum obtained for the designed waveguide. The dotted red line is the OPA gain obtained with the analytic model. The continuous red line is the OPA input set of channels.
Fig. 9
Fig. 9 Curves for: a) β2(λ). The red arrows show the pumps positions, and the black points the position of λc and λ0. b) β3(λ). c) β4(λ). Dots indicate the values of β3(λc) = −0.67 ps3/km and β4(λc) = 0.007 ps4/km for λc = 1537.34 nm.
Fig. 10
Fig. 10 a) BER performance for a 2P-OPA based on the designed tellurite waveguide. b) Constellation diagrams in the best and the worst BERs cases, for the 1st and the 6th passes.
Fig. 11
Fig. 11 Gain spectrum at the output of the sixth span of standard fiber followed by the sixth 2P-OPA. The continuous red line is the OPA input set of channels.
Fig. 12
Fig. 12 2P-OPA BER performance for different number of amplified 56 Gbps QPSK signals, spaced by 50 GHz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G=1+ ( x 0 sinhx x ) 2 ,
x= x 0 1 ( κ 2γ P 0 ) 2 ,
n( λ )= 2.0016+2.2951 λ 2 ( λ 2 0.046242 ) +0.47334 λ 2 ( λ 2 34.479 ) ,
R m in max( R L , R D , R λ 0 ),
κ 12 = ω ε 0 ( n 1 2 n 2 2 ) h +h Cw/2 C+w/2 E 1 * ¯ E 2 ¯ dxdy + + k ^ ( E 1 * ¯ × H 1 ¯ + E 1 ¯ × H 1 * ¯ ) dxdy ,
κ 12 = ω ε 0 ( n 1 2 n 2 2 ) h +h Cw/2 C+w/2 E x 1 * E x 2 dxdy 2 + + e( E x 1 * H y 1 ) dxdy .

Metrics