Abstract

We demonstrate how to optimize the performance of PAM-4 transmitters based on lumped Silicon Photonic Mach-Zehnder Modulators (MZMs) for short-reach optical links. Firstly, we analyze the trade-off that occurs between extinction ratio and modulation loss when driving an MZM with a voltage swing less than the MZM’s Vπ. This is important when driver circuits are realized in deep submicron CMOS process nodes. Next, a driving scheme based upon a switched capacitor approach is proposed to maximize the achievable bandwidth of the combined lumped MZM and CMOS driver chip. This scheme allows the use of lumped MZM for high speed optical links with reduced RF driver power consumption compared to the conventional approach of driving MZMs (with transmission line based electrodes) with a power amplifier. This is critical for upcoming short-reach link standards such as 400Gb/s 802.3 Ethernet. The driver chip was fabricated using a 65nm CMOS technology and flip-chipped on top of the Silicon Photonic chip (fabricated using IMEC’s ISIPP25G technology) that contains the MZM. Open eyes with 4dB extinction ratio for a 36Gb/s (18Gbaud) PAM-4 signal are experimentally demonstrated. The electronic driver chip has a core area of only 0.11mm2 and consumes 236mW from 1.2V and 2.4V supply voltages. This corresponds to an energy efficiency of 6.55pJ/bit including Gray encoder and retiming, or 5.37pJ/bit for the driver circuit only.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications

Miaofeng Li, Lei Wang, Xiang Li, Xi Xiao, and Shaohua Yu
Photon. Res. 6(2) 109-116 (2018)

Monolithic 56  Gb/s silicon photonic pulse-amplitude modulation transmitter

Chi Xiong, Douglas M. Gill, Jonathan E. Proesel, Jason S. Orcutt, Wilfried Haensch, and William M. J. Green
Optica 3(10) 1060-1065 (2016)

Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Yun Wang, and David V. Plant
Opt. Express 26(5) 5395-5407 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion mode silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
    [Crossref]
  2. M. Webster, C. Appel, P. Gothoskar, S. Sunder, B. Dama, and K. Shastri, “Silicon photonic modulator based on a MOS-Capacitor and a CMOS driver,” IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 1–4, Oct. 2014.
    [Crossref]
  3. H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
    [Crossref]
  4. S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
    [Crossref]
  5. P. Winzer and R. Essiambre, “Advance optical modulation format,” Proc. IEEE 94(5), 952–985 (2006).
    [Crossref]
  6. “IMEC ISIPP25G technology handbook,” Confidential Documents from Interuniversity Microelectronics Center, July. 2014.
  7. G. Denoyer, C. Cole, A. Santipo, R. Russo, C. Robinson, L. Li, Y. Zhou, J. Chen, B. Park, F. Boeuf, S. Crémer, and N. Vulliet, “Hybrid silicon photonic circuits and transceiver for 50Gb/s NRZ transmission over single-mode fiber,” J. Lightwave Technol. 33(6), 1247–1254 (2015).
    [Crossref]
  8. A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
    [Crossref]
  9. N. Pavarelli, J. Lee, M. Rensing, C. Scarcella, S. Zhou, P. Ossieur, and P. O’Brien, “Optical and electronic packaging processes for silicon photonic systems,” J. Lightwave Technol. 33(5), 991–997 (2015).
    [Crossref]
  10. M. Ker, C. Lin, and Y. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device Mater. Reliab. 11(2), 207–218 (2011).
    [Crossref]
  11. G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNb03 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1999).
    [Crossref]
  12. W. Leeb, A. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18(1), 14–16 (1982).
    [Crossref]
  13. R. Alferness, S. Korotky, and E. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
    [Crossref]
  14. D. Pozar, Microwave Engineering (John Wiley and Sons, 2012).
  15. S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
    [Crossref]
  16. E. Temporiti, G. Minoia, M. Repossi, D. Baldi, A. Ghilioni, and F. Svelto, “A 56Gb/s 300mW silicon-photonics transmitter in 3D-integrated PIC25G and 55nm BiCMOS technologies,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 404–405, Feb. 2016.
    [Crossref]
  17. D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
    [Crossref]
  18. C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch, and W. M. J. Green, “A monolithic 56Gb/s CMOS integrated nanophotonic PAM-4 transmitter,” Optical Interconnects Conference, pp. 16–17, Apr. 2015.

2016 (2)

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

2015 (2)

2013 (1)

S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
[Crossref]

2011 (2)

M. Ker, C. Lin, and Y. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device Mater. Reliab. 11(2), 207–218 (2011).
[Crossref]

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

2010 (1)

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion mode silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

2007 (1)

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

2006 (1)

P. Winzer and R. Essiambre, “Advance optical modulation format,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

1999 (1)

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNb03 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1999).
[Crossref]

1984 (1)

R. Alferness, S. Korotky, and E. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

1982 (1)

W. Leeb, A. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18(1), 14–16 (1982).
[Crossref]

Abdalla, S.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Alferness, R.

R. Alferness, S. Korotky, and E. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

Allstot, D.

S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
[Crossref]

Analui, B.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Antony, C.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

Balmater, E.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Boeuf, F.

Bonek, E.

W. Leeb, A. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18(1), 14–16 (1982).
[Crossref]

Bovington, J.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Bowers, J.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNb03 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1999).
[Crossref]

Burns, W. K.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNb03 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1999).
[Crossref]

Chen, H.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Chen, J.

Cole, C.

Crémer, S.

Degani, O.

S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
[Crossref]

Denoyer, G.

Eason, C.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

Ellis-Monaghan, J.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

Essiambre, R.

P. Winzer and R. Essiambre, “Advance optical modulation format,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Fang, A.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Gill, D.

C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch, and W. M. J. Green, “A monolithic 56Gb/s CMOS integrated nanophotonic PAM-4 transmitter,” Optical Interconnects Conference, pp. 16–17, Apr. 2015.

Gill, D. M.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

Gloeckner, S.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNb03 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1999).
[Crossref]

Green, W. M. J.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch, and W. M. J. Green, “A monolithic 56Gb/s CMOS integrated nanophotonic PAM-4 transmitter,” Optical Interconnects Conference, pp. 16–17, Apr. 2015.

Greenblatt, A. S.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNb03 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1999).
[Crossref]

Guckenberger, D.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Haensch, W.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch, and W. M. J. Green, “A monolithic 56Gb/s CMOS integrated nanophotonic PAM-4 transmitter,” Optical Interconnects Conference, pp. 16–17, Apr. 2015.

Harrison, M.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Hsiao, Y.

M. Ker, C. Lin, and Y. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device Mater. Reliab. 11(2), 207–218 (2011).
[Crossref]

Jacob-Mitos, M.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Jann, B.

S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
[Crossref]

Jones, R.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Ker, M.

M. Ker, C. Lin, and Y. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device Mater. Reliab. 11(2), 207–218 (2011).
[Crossref]

Khater, M.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

Kiewra, E.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

Koch, B.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Korotky, S.

R. Alferness, S. Korotky, and E. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

Koumans, R.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Kucharski, D.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Lee, J.

Leeb, W.

W. Leeb, A. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18(1), 14–16 (1982).
[Crossref]

Lentine, A.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion mode silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Li, L.

Liang, D.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Liang, Y.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Liao, L.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Lin, C.

M. Ker, C. Lin, and Y. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device Mater. Reliab. 11(2), 207–218 (2011).
[Crossref]

Marcatili, E.

R. Alferness, S. Korotky, and E. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

Martin, Y.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

McElhanon, R. W.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNb03 traveling wave optical intensity modulators,” J. Lightwave Technol. 12(10), 1807–1819 (1999).
[Crossref]

Mekis, A.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Mirsaidi, S.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Narasimha, A.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

O’Brien, P.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

N. Pavarelli, J. Lee, M. Rensing, C. Scarcella, S. Zhou, P. Ossieur, and P. O’Brien, “Optical and electronic packaging processes for silicon photonic systems,” J. Lightwave Technol. 33(5), 991–997 (2015).
[Crossref]

Orcutt, J.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch, and W. M. J. Green, “A monolithic 56Gb/s CMOS integrated nanophotonic PAM-4 transmitter,” Optical Interconnects Conference, pp. 16–17, Apr. 2015.

Ossieur, P.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

N. Pavarelli, J. Lee, M. Rensing, C. Scarcella, S. Zhou, P. Ossieur, and P. O’Brien, “Optical and electronic packaging processes for silicon photonic systems,” J. Lightwave Technol. 33(5), 991–997 (2015).
[Crossref]

Park, B.

Park, H.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Pavarelli, N.

Pinguet, T.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Power, M.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

Proesel, J.

C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch, and W. M. J. Green, “A monolithic 56Gb/s CMOS integrated nanophotonic PAM-4 transmitter,” Optical Interconnects Conference, pp. 16–17, Apr. 2015.

Proesel, J. E.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

Rensing, M.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

N. Pavarelli, J. Lee, M. Rensing, C. Scarcella, S. Zhou, P. Ossieur, and P. O’Brien, “Optical and electronic packaging processes for silicon photonic systems,” J. Lightwave Technol. 33(5), 991–997 (2015).
[Crossref]

Robinson, C.

Rosenberg, J. C.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

Rudell, J.

S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
[Crossref]

Russo, R.

Sadeghipour, K.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

Sadhwani, R.

S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
[Crossref]

Santipo, A.

Scarcella, C.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

N. Pavarelli, J. Lee, M. Rensing, C. Scarcella, S. Zhou, P. Ossieur, and P. O’Brien, “Optical and electronic packaging processes for silicon photonic systems,” J. Lightwave Technol. 33(5), 991–997 (2015).
[Crossref]

Scholtz, A.

W. Leeb, A. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18(1), 14–16 (1982).
[Crossref]

Sleboda, T.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Song, D.

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

Stricker, A.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

Sysak, M.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Tang, Y.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Townsend, P.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

Trotter, D.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion mode silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Vlasov, Y.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

Vulliet, N.

Walling, J.

S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
[Crossref]

Watts, M.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion mode silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Winzer, P.

P. Winzer and R. Essiambre, “Advance optical modulation format,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Wong, K.

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

Wu, H.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

Xiong, C.

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch, and W. M. J. Green, “A monolithic 56Gb/s CMOS integrated nanophotonic PAM-4 transmitter,” Optical Interconnects Conference, pp. 16–17, Apr. 2015.

Yoo, S.

S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
[Crossref]

Young, R.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion mode silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Zhou, S.

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

N. Pavarelli, J. Lee, M. Rensing, C. Scarcella, S. Zhou, P. Ossieur, and P. O’Brien, “Optical and electronic packaging processes for silicon photonic systems,” J. Lightwave Technol. 33(5), 991–997 (2015).
[Crossref]

Zhou, Y.

Zortman, W.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion mode silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Electron. Lett. (1)

S. Zhou, H. Wu, K. Sadeghipour, C. Scarcella, C. Eason, M. Rensing, M. Power, C. Antony, P. O’Brien, P. Townsend, and P. Ossieur, “Driver circuit for a PAM-4 optical transmitter using 65 nm CMOS and silicon photonic technologies,” Electron. Lett. 52(23), 1939–1940 (2016).
[Crossref]

IEEE J. Quantum Electron. (2)

W. Leeb, A. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18(1), 14–16 (1982).
[Crossref]

R. Alferness, S. Korotky, and E. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion mode silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

H. Park, M. Sysak, H. Chen, A. Fang, D. Liang, L. Liao, B. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[Crossref]

IEEE J. Solid-State Circuits (2)

A. Narasimha, B. Analui, Y. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[Crossref]

S. Yoo, J. Walling, O. Degani, B. Jann, R. Sadhwani, J. Rudell, and D. Allstot, “A Class-G switched-capacitor RF power amplifier,” IEEE J. Solid-State Circuits 48(5), 1212–1224 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green, “Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters,” IEEE Photonics Technol. Lett. 28(13), 1410–1413 (2016).
[Crossref]

IEEE Trans. Device Mater. Reliab. (1)

M. Ker, C. Lin, and Y. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device Mater. Reliab. 11(2), 207–218 (2011).
[Crossref]

J. Lightwave Technol. (3)

Proc. IEEE (1)

P. Winzer and R. Essiambre, “Advance optical modulation format,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Other (5)

“IMEC ISIPP25G technology handbook,” Confidential Documents from Interuniversity Microelectronics Center, July. 2014.

M. Webster, C. Appel, P. Gothoskar, S. Sunder, B. Dama, and K. Shastri, “Silicon photonic modulator based on a MOS-Capacitor and a CMOS driver,” IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 1–4, Oct. 2014.
[Crossref]

D. Pozar, Microwave Engineering (John Wiley and Sons, 2012).

C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch, and W. M. J. Green, “A monolithic 56Gb/s CMOS integrated nanophotonic PAM-4 transmitter,” Optical Interconnects Conference, pp. 16–17, Apr. 2015.

E. Temporiti, G. Minoia, M. Repossi, D. Baldi, A. Ghilioni, and F. Svelto, “A 56Gb/s 300mW silicon-photonics transmitter in 3D-integrated PIC25G and 55nm BiCMOS technologies,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 404–405, Feb. 2016.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Electro-optical transfer function of MZM.
Fig. 2
Fig. 2 Asymmetrical MZM.
Fig. 3
Fig. 3 The trade-off between modulation loss of the modulator and extinction ratio for different applied voltage swings (VRF is the voltage applied to a single arm in a push pull scheme) (Vπ = 8V).
Fig. 4
Fig. 4 Available optical budget (Vπ = 8V) for different applied voltage swing (VRF is the voltage applied to a single arm in a push pull scheme). The locus of optimum bias voltages is shown as well.
Fig. 5
Fig. 5 Velocity mismatch
Fig. 6
Fig. 6 Electrical length of Lumped MZM and TW-MZM.
Fig. 7
Fig. 7 (a) The equivalent circuit model of Lumped-MZM and (b) bandwidth enhancement scheme.
Fig. 8
Fig. 8 PAM4 driving scheme for Lumped-MZM.
Fig. 9
Fig. 9 Asymmetrical Lumped-MZM based on IMEC iSIPP25G technology.
Fig. 10
Fig. 10 Driver micrograph (top left), Silicon photonic die (bottom left) and driver flip-chipped on top of SiPhotonic die (right).
Fig. 11
Fig. 11 DC electro-optical transfer of Lumped-MZM by sweeping the voltage on (a) arm1 and (b) arm2
Fig. 12
Fig. 12 Electro-optical bandwidth (S21) of the Lumped-MZM.
Fig. 13
Fig. 13 36Gb/s (18Gbaud) PAM-4 eye diagram.

Tables (2)

Tables Icon

Table 1 Encoding Scheme

Tables Icon

Table 2 Performance Summary

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P optical = | T E ( V 1 , V 2 ) | 2 = cos 2 ( π 2 ×( V 1 V 2 V DCbias V π ) )
P optical = | T E ( V 1 , V 2 ) | 2 = cos 2 ( π 2 ×( V 1 V 2 V DCbias V π ) π 4 )
ML=10 log 10 ( P high + P low 2 P CW )
P TWMZM(norm) = cos 2 [ π 2 | sin[ fπL( n RF n o c ) ] fπL( n RF n o c ) | π 2 ]
f= c 4L n RF

Metrics