Abstract

In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and 0.578 nm/(m/s) for water and oil, flowing at v = 0.2 m/s. The sensitivity can be increased with higher laser power launched to the Co2+-doped multimode fibers. A small flow rate of 0.005 m/s and 0.002 m/s can be distinguished for a particular phase of water or oil, respectively, at a certain laser power (i.e. ~1.43W). The flow sensor can measure volume speed up to 30 L/min, which is limited by the test rig. The experimental results show that the sensor can discriminate slight variation of flow rates as small as 0.002m/s.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical fiber anemometer based on laser heated fiber Bragg gratings

Shaorui Gao, A. Ping Zhang, Hwa-Yaw Tam, L. H. Cho, and Chao Lu
Opt. Express 19(11) 10124-10130 (2011)

Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating

Yang Zhang, Fang Wang, Zigeng Liu, Zhihui Duan, Wenli Cui, Jie Han, Yiying Gu, Zhenlin Wu, Zhenguo Jing, Changsen Sun, and Wei Peng
Opt. Express 25(20) 24521-24530 (2017)

Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer

Ying Li, Guofeng Yan, Liang Zhang, and Sailing He
Opt. Express 23(7) 9483-9493 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  2. H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University, 1995).
  3. V. T. Morgan, “The Overall Convective Heat Transfer from Smooth Circular Cylinders,” Adv. Heat Transf. 11, 199–264 (1975).
    [Crossref]
  4. Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
    [Crossref]
  5. S. Gao, A. P. Zhang, H.-Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19(11), 10124–10130 (2011).
    [Crossref] [PubMed]
  6. K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
    [Crossref]
  7. J. Cheng, W. Zhu, Z. Huang, and P. Hu, “Experimental and simulation study on thermal gas flowmeter based on fiber Bragg grating coated with silver film,” Sens. Actuators A Phys. 228, 23–27 (2015).
    [Crossref]
  8. Z. Liu, M. L. Tse, A. P. Zhang, and H. Y. Tam, “Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co2+-doped optical fiber,” Opt. Lett. 39(20), 5877–5880 (2014).
    [Crossref] [PubMed]
  9. Y. Li, G. Yan, L. Zhang, and S. He, “Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer,” Opt. Express 23(7), 9483–9493 (2015).
    [Crossref] [PubMed]
  10. X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photonics Technol. Lett. 25(24), 2458–2461 (2013).
    [Crossref]
  11. L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5(6), 1327–1331 (2005).
    [Crossref]
  12. P. Caldas, P. A. S. Jorge, G. Rego, O. Frazão, J. L. Santos, L. A. Ferreira, and F. Araújo, “Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure,” Appl. Opt. 50(17), 2738–2743 (2011).
    [Crossref] [PubMed]
  13. S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
    [Crossref]
  14. J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined Thermal Flow Sensors—A Review,” Micromachines (Basel) 3(4), 550–573 (2012).
    [Crossref]
  15. M. Melani, L. Bertini, M. De Marinis, P. Lange, F. D’Ascoli, and L. Fanucci, “Hot wire anemometric MEMS sensor for water flow monitoring,” Proc. –Design. Autom. Test Eur. DATE 342–347 (2008).
  16. R. Ahrens and K. Schlote-Holubek, “A micro flow sensor from a polymer for gases and liquids,” J. Micromech. Microeng. 19(7), 074006 (2009).
    [Crossref]
  17. R. Ahrens and M. Festa, “Dynamical flow measurements in hydraulic systems using a polymer-based micro flow sensor,” Procedia Chem. 1(1), 927–930 (2009).
    [Crossref]

2015 (2)

J. Cheng, W. Zhu, Z. Huang, and P. Hu, “Experimental and simulation study on thermal gas flowmeter based on fiber Bragg grating coated with silver film,” Sens. Actuators A Phys. 228, 23–27 (2015).
[Crossref]

Y. Li, G. Yan, L. Zhang, and S. He, “Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer,” Opt. Express 23(7), 9483–9493 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photonics Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

2012 (1)

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined Thermal Flow Sensors—A Review,” Micromachines (Basel) 3(4), 550–573 (2012).
[Crossref]

2011 (2)

2009 (3)

R. Ahrens and K. Schlote-Holubek, “A micro flow sensor from a polymer for gases and liquids,” J. Micromech. Microeng. 19(7), 074006 (2009).
[Crossref]

R. Ahrens and M. Festa, “Dynamical flow measurements in hydraulic systems using a polymer-based micro flow sensor,” Procedia Chem. 1(1), 927–930 (2009).
[Crossref]

Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
[Crossref]

2005 (2)

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5(6), 1327–1331 (2005).
[Crossref]

2004 (1)

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

1975 (1)

V. T. Morgan, “The Overall Convective Heat Transfer from Smooth Circular Cylinders,” Adv. Heat Transf. 11, 199–264 (1975).
[Crossref]

Ahrens, R.

R. Ahrens and K. Schlote-Holubek, “A micro flow sensor from a polymer for gases and liquids,” J. Micromech. Microeng. 19(7), 074006 (2009).
[Crossref]

R. Ahrens and M. Festa, “Dynamical flow measurements in hydraulic systems using a polymer-based micro flow sensor,” Procedia Chem. 1(1), 927–930 (2009).
[Crossref]

Araújo, F.

Asanuma, H.

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bertini, L.

M. Melani, L. Bertini, M. De Marinis, P. Lange, F. D’Ascoli, and L. Fanucci, “Hot wire anemometric MEMS sensor for water flow monitoring,” Proc. –Design. Autom. Test Eur. DATE 342–347 (2008).

Buric, M.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

Caldas, P.

Cashdollar, L. J.

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5(6), 1327–1331 (2005).
[Crossref]

Chang, C. M.

Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
[Crossref]

Chen, C. P.

Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
[Crossref]

Chen, K. P.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5(6), 1327–1331 (2005).
[Crossref]

Chen, Z.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photonics Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Cheng, J.

J. Cheng, W. Zhu, Z. Huang, and P. Hu, “Experimental and simulation study on thermal gas flowmeter based on fiber Bragg grating coated with silver film,” Sens. Actuators A Phys. 228, 23–27 (2015).
[Crossref]

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photonics Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Cho, L. H.

D’Ascoli, F.

M. Melani, L. Bertini, M. De Marinis, P. Lange, F. D’Ascoli, and L. Fanucci, “Hot wire anemometric MEMS sensor for water flow monitoring,” Proc. –Design. Autom. Test Eur. DATE 342–347 (2008).

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

De Marinis, M.

M. Melani, L. Bertini, M. De Marinis, P. Lange, F. D’Ascoli, and L. Fanucci, “Hot wire anemometric MEMS sensor for water flow monitoring,” Proc. –Design. Autom. Test Eur. DATE 342–347 (2008).

Dong, X.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photonics Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Fanucci, L.

M. Melani, L. Bertini, M. De Marinis, P. Lange, F. D’Ascoli, and L. Fanucci, “Hot wire anemometric MEMS sensor for water flow monitoring,” Proc. –Design. Autom. Test Eur. DATE 342–347 (2008).

Ferreira, L. A.

Festa, M.

R. Ahrens and M. Festa, “Dynamical flow measurements in hydraulic systems using a polymer-based micro flow sensor,” Procedia Chem. 1(1), 927–930 (2009).
[Crossref]

Frazão, O.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Fu, L. M.

Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
[Crossref]

Gao, S.

He, S.

Hu, P.

J. Cheng, W. Zhu, Z. Huang, and P. Hu, “Experimental and simulation study on thermal gas flowmeter based on fiber Bragg grating coated with silver film,” Sens. Actuators A Phys. 228, 23–27 (2015).
[Crossref]

Huang, Z.

J. Cheng, W. Zhu, Z. Huang, and P. Hu, “Experimental and simulation study on thermal gas flowmeter based on fiber Bragg grating coated with silver film,” Sens. Actuators A Phys. 228, 23–27 (2015).
[Crossref]

Jewart, C.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

Jorge, P. A. S.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kuo, J. T. W.

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined Thermal Flow Sensors—A Review,” Micromachines (Basel) 3(4), 550–573 (2012).
[Crossref]

Lange, P.

M. Melani, L. Bertini, M. De Marinis, P. Lange, F. D’Ascoli, and L. Fanucci, “Hot wire anemometric MEMS sensor for water flow monitoring,” Proc. –Design. Autom. Test Eur. DATE 342–347 (2008).

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lee, C. Y.

Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
[Crossref]

Li, Y.

Lin, C. H.

Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
[Crossref]

Lin, C. P.

Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
[Crossref]

Liu, Z.

Lu, C.

McMillen, B.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

Melani, M.

M. Melani, L. Bertini, M. De Marinis, P. Lange, F. D’Ascoli, and L. Fanucci, “Hot wire anemometric MEMS sensor for water flow monitoring,” Proc. –Design. Autom. Test Eur. DATE 342–347 (2008).

Meng, E.

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined Thermal Flow Sensors—A Review,” Micromachines (Basel) 3(4), 550–573 (2012).
[Crossref]

Morgan, V. T.

V. T. Morgan, “The Overall Convective Heat Transfer from Smooth Circular Cylinders,” Adv. Heat Transf. 11, 199–264 (1975).
[Crossref]

Ni, K.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photonics Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Niitsuma, H.

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Rego, G.

Santos, J. L.

Schlote-Holubek, K.

R. Ahrens and K. Schlote-Holubek, “A micro flow sensor from a polymer for gases and liquids,” J. Micromech. Microeng. 19(7), 074006 (2009).
[Crossref]

Takashima, S.

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

Tam, H. Y.

Tam, H.-Y.

Tse, M. L.

Wang, X.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photonics Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Wang, Y. H.

Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
[Crossref]

Xu, W.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

Yan, G.

Yu, L.

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined Thermal Flow Sensors—A Review,” Micromachines (Basel) 3(4), 550–573 (2012).
[Crossref]

Zhang, A. P.

Zhang, L.

Zhou, Y.

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photonics Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Zhu, W.

J. Cheng, W. Zhu, Z. Huang, and P. Hu, “Experimental and simulation study on thermal gas flowmeter based on fiber Bragg grating coated with silver film,” Sens. Actuators A Phys. 228, 23–27 (2015).
[Crossref]

Adv. Heat Transf. (1)

V. T. Morgan, “The Overall Convective Heat Transfer from Smooth Circular Cylinders,” Adv. Heat Transf. 11, 199–264 (1975).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86(14), 143502 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Wang, X. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photonics Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

IEEE Sens. J. (1)

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5(6), 1327–1331 (2005).
[Crossref]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

J. Micromech. Microeng. (1)

R. Ahrens and K. Schlote-Holubek, “A micro flow sensor from a polymer for gases and liquids,” J. Micromech. Microeng. 19(7), 074006 (2009).
[Crossref]

Microfluid. Nanofluidics (1)

Y. H. Wang, C. P. Chen, C. M. Chang, C. P. Lin, C. H. Lin, L. M. Fu, and C. Y. Lee, “MEMS-based gas flow sensors,” Microfluid. Nanofluidics 6(3), 333–346 (2009).
[Crossref]

Micromachines (Basel) (1)

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined Thermal Flow Sensors—A Review,” Micromachines (Basel) 3(4), 550–573 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Procedia Chem. (1)

R. Ahrens and M. Festa, “Dynamical flow measurements in hydraulic systems using a polymer-based micro flow sensor,” Procedia Chem. 1(1), 927–930 (2009).
[Crossref]

Sens. Actuators A Phys. (2)

J. Cheng, W. Zhu, Z. Huang, and P. Hu, “Experimental and simulation study on thermal gas flowmeter based on fiber Bragg grating coated with silver film,” Sens. Actuators A Phys. 228, 23–27 (2015).
[Crossref]

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

Other (2)

M. Melani, L. Bertini, M. De Marinis, P. Lange, F. D’Ascoli, and L. Fanucci, “Hot wire anemometric MEMS sensor for water flow monitoring,” Proc. –Design. Autom. Test Eur. DATE 342–347 (2008).

H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic figure of the fluid flow sensor.
Fig. 2
Fig. 2 (a) Temperature response of the flow sensor and (b) wavelength shifts of the flow sensor placed in water at room temperature and ~100°C, and hot oil at ~130°C when pumped by 980 laser with increasing power, the inset shows the spectrum shift of FBG in the hot oil.
Fig. 3
Fig. 3 Demonstration of the temperature increase of the flow sensor when pumped at one laser only and two lasers simultaneously.
Fig. 4
Fig. 4 Schematic setup use to measure the water and oil flow rate.
Fig. 5
Fig. 5 Photos of the (a) test rig and the Plexiglas tube when (b) no fluid (c) water and (c) hydraulic oil are flowing inside respectively. (e) Wavelength shifts of the FBG when oil and water are flowing individually at the same mass flow rate of 200 kg/hr and pumping power level of 60%.
Fig. 6
Fig. 6 Bragg wavelength shift of (a) water and (c) oil flow measurement for two different flow rates at the pumping power level of 20%, 40%, 60%, 80% and 100%, (b) and (d) show the wavelength shift at the pumping power level of 60% for all the measured flow rates, respectively
Fig. 7
Fig. 7 Bragg wavelength shifts as a function of (a) water flow rate and (c) oil flow rate at different pump power levels, (b) and (d) are the sensitivities with respect to the flow rates of both measurands respectively.
Fig. 8
Fig. 8 Comparison of sensitivities as a function of pumping power for the oil and water flowing at the same speed of 0.2 m/s.
Fig. 9
Fig. 9 (a) Bragg wavelength change monitored in real time when the flow rate is reduced step by step gradually, and (b) comparison curves of flow rates measured using heated-FBG flow sensor and a commercial flowmeter installed inside the test rig, both results have a correlation coefficient of 0.9974.

Tables (1)

Tables Icon

Table 1 Settings of the flow rates for oil and water during the measurement, ρwater = 1000 kg/m3, ρoil = 878 kg/m3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H loss =(A+B v )ΔT,
Δλ=2 n eff Λ( α+ 1 n e ff d n eff dT )ΔT,
λ= λ 0 +2 n eff Λ( α+ 1 n e ff d n eff dT ) H loss A+B v .

Metrics