Abstract

The accurate description of a water body’s volume scattering function (VSF), and hence its phase functions, is critical to the determination of the constituent inherent optical properties (IOPs), the associated spectral water-leaving reflectance, and consequently the retrieval of phytoplankton functional type (PFT) information. The equivalent algal populations (EAP) model has previously been evaluated for phytoplankton-dominated waters, and offers the ability to provide phytoplankton population-specific phase functions, unveiling a new opportunity to further understanding of the causality of the PFT signal. This study presents and evaluates the wavelength dependent, spectrally variable EAP particle phase functions and the subsequent effects on water-leaving reflectance. Comparisons are made with frequently used phase function approximations e.g. the Fournier Forand formulation, as well as with phase functions inferred from measured VSFs in coastal waters. Relative differences in shape and magnitude are quantified. Reflectance modelled with the EAP phase functions is then compared against measured reflectance data from phytoplankton-dominated waters. Further examples of modelled phytoplankton-dominated waters are discussed with reference to choice of phase function for two PFTs (eukaryote and prokaryote) across a range of biomass. Finally a demonstration of the sensitivity of reflectance due to the choice of phase function is presented. The EAP model phase functions account for both spectral and angular variability in phytoplankton backscattering i.e. they display variability which is both spectral and shape-related. It is concluded that phase functions modelled in this way are necessary for investigating the effects of assemblage variability on the ocean colour signal, and should be considered for model closure even in relatively low scattering conditions where phytoplankton dominate the IOPs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity analysis of volume scattering phase functions

Noah Tuchow, Jennifer Broughton, and Raphael Kudela
Opt. Express 24(16) 18559-18570 (2016)

Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches

Hayley Evers-King, Stewart Bernard, Lisl Robertson Lain, and Trevor A. Probyn
Opt. Express 22(10) 11536-11551 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156
  2. N. Tuchow, J. Broughton, and R. Kudela, “Sensitivity analysis of volume scattering functions,” Opt. Express 24, 18559–18568 (2016).
    [Crossref] [PubMed]
  3. I. Lefering, F. Bengil, C. Trees, R. Röttgers, D. Bowers, A. Nimmo-Smith, J. Schwarz, and D. McKee, “Optical closure in marine waters from in situ inherent optical property measurements,” Opt. Express 24, 14036–14052 (2016).
    [Crossref] [PubMed]
  4. C.D. Mobley, L.K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
    [Crossref] [PubMed]
  5. W. Freda and J. Piskozub, “Improved method of Fournier-Forand marine phase function parameterization,” Opt. Express 15, 12763–12768 (2007).
    [Crossref] [PubMed]
  6. D. McKee and A. Cunningham, “Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas,” Appl. Opt. 44(1), 126–135 (2005).
    [Crossref] [PubMed]
  7. G.R. Fournier and J.L. Forand, “Analytic phase function for ocean water,” Ocean Optics XIIInternational Society for Optics and Photonics (1994).
    [Crossref]
  8. L. Robertson Lain, S. Bernard, and H. Evers-King, “Biophysical modelling of phytoplankton communities from first principles using two-layered spheres: Equivalent Algal Populations (EAP) model,” Opt. Express 22, 16745–16758 (2014).
    [Crossref]
  9. S. Bernard, T.A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6, 1497–1563 (2009).
    [Crossref]
  10. M.W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosciences 10, 8139–8157 (2013).
    [Crossref]
  11. A.L. Whitmire, W.S. Pegau, L. Karp-Boss, E. Boss, and T.J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18, 1680–1690 (2010).
    [Crossref]
  12. W. Zhou, G. Wang, Z. Sun, W. Cao, Z. Xu, S. Hu, and J. Zhao, “Variations in the optical scattering properties of phytoplankton cultures,” Opt. express 20, 11189–11206 (2012).
    [Crossref] [PubMed]
  13. S. Bernard, F.A. Shillington, and T.A. Probyn, “The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling,” Opt. Express 15, 1995–2007 (2007).
    [Crossref] [PubMed]
  14. A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton: theoretical and experimental results,” Can. B Fish Aquat. Sci. 214, 521–559 (1986).
  15. W. Freda, “Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern Baltic Sea,” Oceanologia 54, 355–367 (2012).
    [Crossref]
  16. M. Chami, D. McKee, E. Leymarie, and G. Khomenko, “Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance,” Appl. Opt. 45, 9210–9220 (2006).
    [Crossref] [PubMed]
  17. E. Boss and W.S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503–5507 (2001).
    [Crossref]
  18. T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami, “Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols,” Opt. Express 24, 234–256 (2016)
    [Crossref]
  19. A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
    [Crossref]
  20. G.B. Dubelaar, J.W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry 8, 405–412, (1987).
    [Crossref] [PubMed]
  21. H. Evers-King, S. Bernard, L. Robertson Lain, and T.A. Probyn, “Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches,” Opt. Express 22, 11536–11551 (2014).
    [Crossref] [PubMed]
  22. R.A. Leathers, T.V. Downes, and C.D. Mobley, “Self-shading correction for upwelling sea-surface radiance measurements made with buoyed instruments,” Opt. Express 8, 561–570 (2001).
    [Crossref] [PubMed]
  23. M. W. Matthews, S. Bernard, and L. Robertson, “An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters,” Remote Sensing of Environment 124, 637–652 (2012).
    [Crossref]
  24. S.G.H. Simis, S.W.M. Peters, and H.J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50 (1), 237–245, (2005).
    [Crossref]
  25. A.M. Ciotti, M.R. Lewis, and J.J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr 47(2), 404–417 (2002).
    [Crossref]
  26. J.R.V. Zaneveld, “A theoretical derivation of the dependence of the remotely-sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100 (C7), 13135–13142 (1995).
    [Crossref]
  27. H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21, 18697–18711 (2013).
    [Crossref] [PubMed]
  28. M. Chami, A. Thirouard, and T. Harmel, “POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols,” Opt. Express 22, 26403–26428 (2014).
    [Crossref] [PubMed]

2016 (3)

2014 (3)

2013 (2)

H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21, 18697–18711 (2013).
[Crossref] [PubMed]

M.W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosciences 10, 8139–8157 (2013).
[Crossref]

2012 (3)

W. Freda, “Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern Baltic Sea,” Oceanologia 54, 355–367 (2012).
[Crossref]

M. W. Matthews, S. Bernard, and L. Robertson, “An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters,” Remote Sensing of Environment 124, 637–652 (2012).
[Crossref]

W. Zhou, G. Wang, Z. Sun, W. Cao, Z. Xu, S. Hu, and J. Zhao, “Variations in the optical scattering properties of phytoplankton cultures,” Opt. express 20, 11189–11206 (2012).
[Crossref] [PubMed]

2010 (1)

A.L. Whitmire, W.S. Pegau, L. Karp-Boss, E. Boss, and T.J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18, 1680–1690 (2010).
[Crossref]

2009 (1)

S. Bernard, T.A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6, 1497–1563 (2009).
[Crossref]

2007 (2)

2006 (1)

2005 (2)

D. McKee and A. Cunningham, “Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas,” Appl. Opt. 44(1), 126–135 (2005).
[Crossref] [PubMed]

S.G.H. Simis, S.W.M. Peters, and H.J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50 (1), 237–245, (2005).
[Crossref]

2002 (2)

A.M. Ciotti, M.R. Lewis, and J.J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr 47(2), 404–417 (2002).
[Crossref]

C.D. Mobley, L.K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[Crossref] [PubMed]

2001 (2)

1998 (1)

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

1995 (1)

J.R.V. Zaneveld, “A theoretical derivation of the dependence of the remotely-sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100 (C7), 13135–13142 (1995).
[Crossref]

1987 (1)

G.B. Dubelaar, J.W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry 8, 405–412, (1987).
[Crossref] [PubMed]

1986 (1)

A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton: theoretical and experimental results,” Can. B Fish Aquat. Sci. 214, 521–559 (1986).

Aiken, J.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Alvain, S.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Barlow, R.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Bengil, F.

Bernard, S.

L. Robertson Lain, S. Bernard, and H. Evers-King, “Biophysical modelling of phytoplankton communities from first principles using two-layered spheres: Equivalent Algal Populations (EAP) model,” Opt. Express 22, 16745–16758 (2014).
[Crossref]

H. Evers-King, S. Bernard, L. Robertson Lain, and T.A. Probyn, “Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches,” Opt. Express 22, 11536–11551 (2014).
[Crossref] [PubMed]

M.W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosciences 10, 8139–8157 (2013).
[Crossref]

M. W. Matthews, S. Bernard, and L. Robertson, “An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters,” Remote Sensing of Environment 124, 637–652 (2012).
[Crossref]

S. Bernard, T.A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6, 1497–1563 (2009).
[Crossref]

S. Bernard, F.A. Shillington, and T.A. Probyn, “The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling,” Opt. Express 15, 1995–2007 (2007).
[Crossref] [PubMed]

Boss, E.

Bouman, H.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Bowers, D.

Bracher, A.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Brewin, R.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Bricaud, A.

A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton: theoretical and experimental results,” Can. B Fish Aquat. Sci. 214, 521–559 (1986).

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Broughton, J.

Brown, C.W.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Cao, W.

Chami, M.

Charlton, F.

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Ciotti, A.M.

A.M. Ciotti, M.R. Lewis, and J.J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr 47(2), 404–417 (2002).
[Crossref]

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Clementson, L.A.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Cowles, T.J.

A.L. Whitmire, W.S. Pegau, L. Karp-Boss, E. Boss, and T.J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18, 1680–1690 (2010).
[Crossref]

Craig, S.E

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Cullen, J.J.

A.M. Ciotti, M.R. Lewis, and J.J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr 47(2), 404–417 (2002).
[Crossref]

Cunningham, A.

Dekker, A.G.

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Devred, E.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Doerffer, R.

Donze, M.

G.B. Dubelaar, J.W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry 8, 405–412, (1987).
[Crossref] [PubMed]

Downes, T.V.

Dubelaar, G.B.

G.B. Dubelaar, J.W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry 8, 405–412, (1987).
[Crossref] [PubMed]

Evers-King, H.

Forand, J.L.

G.R. Fournier and J.L. Forand, “Analytic phase function for ocean water,” Ocean Optics XIIInternational Society for Optics and Photonics (1994).
[Crossref]

Fournier, G.R.

G.R. Fournier and J.L. Forand, “Analytic phase function for ocean water,” Ocean Optics XIIInternational Society for Optics and Photonics (1994).
[Crossref]

Freda, W.

W. Freda, “Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern Baltic Sea,” Oceanologia 54, 355–367 (2012).
[Crossref]

W. Freda and J. Piskozub, “Improved method of Fournier-Forand marine phase function parameterization,” Opt. Express 15, 12763–12768 (2007).
[Crossref] [PubMed]

Gons, H.J.

S.G.H. Simis, S.W.M. Peters, and H.J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50 (1), 237–245, (2005).
[Crossref]

Haan, J.F.D.

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Hardman-Mountford, N.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Harmel, T.

T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami, “Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols,” Opt. Express 24, 234–256 (2016)
[Crossref]

M. Chami, A. Thirouard, and T. Harmel, “POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols,” Opt. Express 22, 26403–26428 (2014).
[Crossref] [PubMed]

Hieronymi, M.

T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami, “Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols,” Opt. Express 24, 234–256 (2016)
[Crossref]

Hirata, T.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Hoogenboom, J.

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Hovenier, J.W.

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Hu, C.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Hu, S.

Karp-Boss, L.

A.L. Whitmire, W.S. Pegau, L. Karp-Boss, E. Boss, and T.J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18, 1680–1690 (2010).
[Crossref]

Khomenko, G.

Kostadinov, T.S.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Kudela, R.

Lain, L. Robertson

Lavender, S.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Leathers, R.A.

Lefering, I.

Lewis, M.R.

A.M. Ciotti, M.R. Lewis, and J.J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr 47(2), 404–417 (2002).
[Crossref]

Leymarie, E.

Loisel, H.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Matthews, M. W.

M. W. Matthews, S. Bernard, and L. Robertson, “An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters,” Remote Sensing of Environment 124, 637–652 (2012).
[Crossref]

Matthews, M.W.

M.W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosciences 10, 8139–8157 (2013).
[Crossref]

McKee, D.

Mobley, C.D.

Moore, T.S

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Morales, J.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Morel, A.

A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton: theoretical and experimental results,” Can. B Fish Aquat. Sci. 214, 521–559 (1986).

Mouw, C.B.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Nair, A.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Nimmo-Smith, A.

Oishi, T.

Pegau, W.S.

A.L. Whitmire, W.S. Pegau, L. Karp-Boss, E. Boss, and T.J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18, 1680–1690 (2010).
[Crossref]

E. Boss and W.S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503–5507 (2001).
[Crossref]

Peters, S.W.M.

S.G.H. Simis, S.W.M. Peters, and H.J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50 (1), 237–245, (2005).
[Crossref]

Piskozub, J.

Probyn, T.A.

Quirantes, A.

S. Bernard, T.A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6, 1497–1563 (2009).
[Crossref]

Raitsos, D.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Robertson, L.

M. W. Matthews, S. Bernard, and L. Robertson, “An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters,” Remote Sensing of Environment 124, 637–652 (2012).
[Crossref]

Roesler, C.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Röttgers, R.

T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami, “Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols,” Opt. Express 24, 234–256 (2016)
[Crossref]

I. Lefering, F. Bengil, C. Trees, R. Röttgers, D. Bowers, A. Nimmo-Smith, J. Schwarz, and D. McKee, “Optical closure in marine waters from in situ inherent optical property measurements,” Opt. Express 24, 14036–14052 (2016).
[Crossref] [PubMed]

Roullier, F.

T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami, “Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols,” Opt. Express 24, 234–256 (2016)
[Crossref]

Sathyendranath, S.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Schreurs, R.

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Schwarz, J.

Shillington, F.A.

Shutler, J.D.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Simis, S.G.H.

S.G.H. Simis, S.W.M. Peters, and H.J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50 (1), 237–245, (2005).
[Crossref]

Slade, W.

T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami, “Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols,” Opt. Express 24, 234–256 (2016)
[Crossref]

Sosik, H.M.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Soto, I.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Stuart, V.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Subramaniam, A.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Sun, Z.

Sundman, L.K.

Tan, H.

Tanaka, A.

Thirouard, A.

Trees, C.

Tuchow, N.

Uitz, J.

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

Vassen, W.

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Visser, J.W.

G.B. Dubelaar, J.W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry 8, 405–412, (1987).
[Crossref] [PubMed]

Volten, A.H.

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Wang, G.

Whitmire, A.L.

A.L. Whitmire, W.S. Pegau, L. Karp-Boss, E. Boss, and T.J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18, 1680–1690 (2010).
[Crossref]

Wouts, R.

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Xu, Z.

Zaneveld, J.R.V.

J.R.V. Zaneveld, “A theoretical derivation of the dependence of the remotely-sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100 (C7), 13135–13142 (1995).
[Crossref]

Zhao, J.

Zhou, W.

Appl. Opt. (4)

Biogeosciences (1)

M.W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosciences 10, 8139–8157 (2013).
[Crossref]

Biogeosciences Discuss. (1)

S. Bernard, T.A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6, 1497–1563 (2009).
[Crossref]

Can. B Fish Aquat. Sci. (1)

A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton: theoretical and experimental results,” Can. B Fish Aquat. Sci. 214, 521–559 (1986).

Cytometry (1)

G.B. Dubelaar, J.W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry 8, 405–412, (1987).
[Crossref] [PubMed]

J. Geophys. Res. (1)

J.R.V. Zaneveld, “A theoretical derivation of the dependence of the remotely-sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100 (C7), 13135–13142 (1995).
[Crossref]

Limnol. Oceanogr (1)

A.M. Ciotti, M.R. Lewis, and J.J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr 47(2), 404–417 (2002).
[Crossref]

Limnol. Oceanogr. (2)

S.G.H. Simis, S.W.M. Peters, and H.J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50 (1), 237–245, (2005).
[Crossref]

A.H. Volten, J.F.D. Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A.G. Dekker, J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197, (1998).
[Crossref]

Oceanologia (1)

W. Freda, “Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern Baltic Sea,” Oceanologia 54, 355–367 (2012).
[Crossref]

Opt. Express (11)

T. Harmel, M. Hieronymi, W. Slade, R. Röttgers, F. Roullier, and M. Chami, “Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols,” Opt. Express 24, 234–256 (2016)
[Crossref]

A.L. Whitmire, W.S. Pegau, L. Karp-Boss, E. Boss, and T.J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18, 1680–1690 (2010).
[Crossref]

W. Zhou, G. Wang, Z. Sun, W. Cao, Z. Xu, S. Hu, and J. Zhao, “Variations in the optical scattering properties of phytoplankton cultures,” Opt. express 20, 11189–11206 (2012).
[Crossref] [PubMed]

S. Bernard, F.A. Shillington, and T.A. Probyn, “The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling,” Opt. Express 15, 1995–2007 (2007).
[Crossref] [PubMed]

L. Robertson Lain, S. Bernard, and H. Evers-King, “Biophysical modelling of phytoplankton communities from first principles using two-layered spheres: Equivalent Algal Populations (EAP) model,” Opt. Express 22, 16745–16758 (2014).
[Crossref]

W. Freda and J. Piskozub, “Improved method of Fournier-Forand marine phase function parameterization,” Opt. Express 15, 12763–12768 (2007).
[Crossref] [PubMed]

N. Tuchow, J. Broughton, and R. Kudela, “Sensitivity analysis of volume scattering functions,” Opt. Express 24, 18559–18568 (2016).
[Crossref] [PubMed]

I. Lefering, F. Bengil, C. Trees, R. Röttgers, D. Bowers, A. Nimmo-Smith, J. Schwarz, and D. McKee, “Optical closure in marine waters from in situ inherent optical property measurements,” Opt. Express 24, 14036–14052 (2016).
[Crossref] [PubMed]

H. Evers-King, S. Bernard, L. Robertson Lain, and T.A. Probyn, “Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches,” Opt. Express 22, 11536–11551 (2014).
[Crossref] [PubMed]

R.A. Leathers, T.V. Downes, and C.D. Mobley, “Self-shading correction for upwelling sea-surface radiance measurements made with buoyed instruments,” Opt. Express 8, 561–570 (2001).
[Crossref] [PubMed]

H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21, 18697–18711 (2013).
[Crossref] [PubMed]

M. Chami, A. Thirouard, and T. Harmel, “POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols,” Opt. Express 22, 26403–26428 (2014).
[Crossref] [PubMed]

Remote Sensing of Environment (1)

M. W. Matthews, S. Bernard, and L. Robertson, “An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters,” Remote Sensing of Environment 124, 637–652 (2012).
[Crossref]

Other (2)

S. Sathyendranath, J. Aiken, S. Alvain, R. Barlow, H. Bouman, A. Bracher, R. Brewin, A. Bricaud, C.W. Brown, A.M. Ciotti, L.A. Clementson, S.E Craig, E. Devred, N. Hardman-Mountford, T. Hirata, C. Hu, T.S. Kostadinov, S. Lavender, H. Loisel, T.S Moore, J. Morales, C.B. Mouw, A. Nair, D. Raitsos, C. Roesler, J.D. Shutler, H.M. Sosik, I. Soto, V. Stuart, A. Subramaniam, and J. Uitz, “Phytoplankton functional types from Space,” S. Sathyendranath and V. Stuart, eds.Reports of the International Ocean-Colour Coordinating Group (IOCCG)15International Ocean-Colour Coordinating Group156

G.R. Fournier and J.L. Forand, “Analytic phase function for ocean water,” Ocean Optics XIIInternational Society for Optics and Photonics (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 EAP phase functions for the phytoplankton component only of generalised eukaryote populations at selected λ, for three different Deff 2, 10 and 50 µm, with corresponding phytoplankton backscatter fraction b ˜ b ϕ (A–C). (D) illustrates the differences in EAP phase functions due only to wavelength, for constant b ˜ b ϕ, compared with a single corresponding Fournier Forand phase function which does not vary with wavelength.
Fig. 2
Fig. 2 Percentage differences between β ˜ E A P for a generalised eukaryote assemblage with Deff = 12 µm, and corresponding β ˜ F F. Percentages are calculated by ( β ˜ E A P β ˜ F F ) / β ˜ E A P * 100. Selected phase functions for different wavelengths and phytoplankton backscatter fractions are shown in the top panel. The differences between them are shown in the bottom two panels: 0.1° to 100° are shown on a log scale, and 90° to 180° below. These phase functions were selected to illustrate variability in wavelength and backscatter fraction, and how the differences between β ˜ E A P and β ˜ F F vary with both of these parameters.
Fig. 3
Fig. 3 Selected EAP phase functions for a generalised prokaryote (vacuolate) assemblage with Deff = 5 µm, are shown in the top panel together with their corresponding β ˜ F F, and the percentage differences between them are shown in the panels below.
Fig. 4
Fig. 4 IOPs for generalised eukaryote and prokaryote assemblages, with effective diameters of 12 and 5 µm respectively. The elevated total scatter by the prokaryotes (B), and correspondingly elevated backscatter probability (C), is reflected in the comparatively higher phase function values (D), with unique angular variability (D). The angular variability in the phase function of the highly scattering prokaryote assemblage is markedly different in shape from the equivalent β ˜ F F.
Fig. 5
Fig. 5 Demonstration of measured/modelled Rrs closure for 3 high biomass examples from a 2005 bloom in the Southern Benguela. The corresponding FF Rrs are much brighter than their EAP counterparts.
Fig. 6
Fig. 6 Modelled Rrs for prokaryotes (cyanobacteria) (A), with Deff = 5 µm, and eukaryotes (mixed dinoflagellates) (B), with Deff = 12 µm, for increasing Chl a = 1, 10, 100 and 500 mg.m3.
Fig. 7
Fig. 7 Differences between Rrs EAP and Rrs FF, Rrs expressed per steradian (above) and as unsigned percentages of Rrs FF (below), shown for a generalised 6µm population against a background of low NAP backscatter (bbnap550 = 0.0005m1). Comparative EAP and FF phase functions for 3 different wavelengths and backscatter fractions are presented in the bottom row.
Fig. 8
Fig. 8 Differences between Rrs EAP and Rrs FF, Rrs expressed per steradian (above) and as unsigned percentages of Rrs FF (below), shown for a generalised 16 µm population, low NAP (bbnap550 = 0.0005m1) conditions. Comparative EAP and FF phase functions for 3 different wavelengths and backscatter fractions are presented in the bottom row.
Fig. 9
Fig. 9 Rrs EAP and Rrs FF, Rrs shown for generalised 6 and 16 µm populations in low NAP (bbnap550 = 0.0005m1) conditions. The black lines indicate the wavelengths for which the phase functions are shown in Figs. 7 and 8. The grey boxes identify three example regions of high absolute and low percentage error (shown in Figs. 7 and 8) and vice versa.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β θ , α M , m = 1 π i θ , α , m F α d α Q b α , m F α α 2 d α

Metrics