Abstract

For photovoltaic effect (PE), both barrier height and carrier lifetime are all very important factors. However, how to distinguish their contributions to the PE is very difficult. In this paper, we prepared a series of GaAs/Al0.3Ga0.7As two dimensional electron gas (2DEG) with typical Al0.3Ga0.7As doping concentration of 0.6 × 1018/cm3, 1.2 × 1018/cm3, and 2.5 × 1018/cm3, respectively (sample number: #1, #2, #3), and studied their lateral photovoltaic effects (LPEs). It is found that their position sensitivities all increase with both laser wavelength and laser power. However, the position sensitivity exhibits a non-monotonic behavior with increasing doping concentration, which can be mainly ascribed to the doping concentration-dependent carrier lifetime, especially in the low power regime. With increasing laser power gradually, the position sensitivity difference between sample #1 and sample #2 is still large and increases a little, while the position sensitivity of sample #3 approaches to that of sample #2, suggesting that the doping concentration-dependent barrier height also starts to play an important role in the high power regime. Our results will provide important information for the design and development of novel and multifunctional PE devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large lateral photovoltaic effect observed in nano Al-doped ZnO films

Jing Lu and Hui Wang
Opt. Express 19(15) 13806-13811 (2011)

Polarization envelope helicity dependent photovoltage in GaAs/Al0.3Ga0.7As modulation-doped quantum well

Hironori Ito, Tetsuo Nakano, Shintaro Nomura, and Kazuhiko Misawa
Opt. Express 27(20) 28091-28103 (2019)

Sb2S3 thickness-dependent lateral photovoltaic effect and time response observed in glass/FTO/CdS/Sb2S3/Au structure

Shuang Qiao, Jihong Liu, ZhiQiang Li, ShuFang Wang, and GuangSheng Fu
Opt. Express 25(16) 19583-19594 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
    [Crossref]
  2. I. Carcia, I. Rey-Stolle, B. Galiana, and C. Algora, “A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns,” Appl. Phys. Lett. 94(5), 053509 (2009).
    [Crossref]
  3. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
    [Crossref]
  4. S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
    [Crossref]
  5. F. Proulx, M. C. A. York, P. O. Provost, R. Ares, V. Aimez, D. P. Masson, and S. Fafard, “Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architechtures with conversion efficiencier exceeding 60%,” Phys. Status Solidi Rapid Res. Lett., in press (2016).
  6. V. N. Vorobev and Y. F. Sokolov, “Determination of the mobility in small samples of gallium arsenide from magnetoresistive effects,” Sov. Phys. Semicond. 5(4), 616–618 (1971).
  7. S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
    [Crossref]
  8. E. Bucher, “Solar cell materials and their basic parameters,” Appl. Phys. (Berl.) 17(1), 1–26 (1978).
    [Crossref]
  9. E. Ortiz and C. Algora, “A high-efficiency LPE GaAs solar cell at concentrations ranging from 2000 to 4000 suns,” Prog. Photovolt. Res. Appl. 11(3), 155–163 (2003).
    [Crossref]
  10. A. Belghachi, A. Helmaoui, and A. Cheknane, “High efficiency all-GaAs solar cell,” Prog. Photovolt. Res. Appl. 18(2), 79–82 (2010).
    [Crossref]
  11. J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
    [Crossref] [PubMed]
  12. M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116(19), 194504 (2014).
    [Crossref]
  13. O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett. 108(24), 241104 (2016).
    [Crossref]
  14. M. G. W. Alexander, M. Nido, K. Reimann, W. W. Ruhle, and K. Kohler, “Γ- and X-band contributions to nonresonant tunneling in GaAs/Al0.35Ga0.65As double quantum wells,” Appl. Phys. Lett. 55(24), 2517–2519 (1989).
    [Crossref]
  15. G. R. Lin and C. L. Pan, “Picosecond responses of low-dosage arsenic-ion-implanted GaAs photoconductors,” Appl. Phys. Lett. 71(20), 2901–2903 (1997).
    [Crossref]
  16. C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
    [Crossref]
  17. A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
    [Crossref]
  18. J. Afalla, M. H. Balgos, A. Garcia, J. J. Ibanes, A. Salvador, and A. Somintac, “Observation of picosecond carrier lifetimes in GaAs/AlGaAs single quantum wells grown at 630 °C,” J. Lumin. 143, 538–541 (2013).
    [Crossref]
  19. A. Kawaharazuka, K. Onomitsu, J. Nishinaga, and Y. Horikoshi, “Effect of excitons on the absorption in the solar-cell with AlGaAs/GaAs superlattice grown by molecular beam epitaxy,” J. Cryst. Growth 323(1), 504–507 (2011).
    [Crossref]
  20. I. García, I. Rey-Stolle, and C. Algora, “Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics,” J. Phys. D Appl. Phys. 45(4), 045101 (2012).
    [Crossref]
  21. J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
    [Crossref]
  22. T. Noda, M. Elborg, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells,” J. Appl. Phys. 119(8), 085105 (2016).
    [Crossref]
  23. N. Puhlmann, G. Oelgart, V. Gottschalch, and R. Nemitz, “Minority carrier recombination and internal quantum yield in GaAs: Sn by means of EBIC and CL,” Semicond. Sci. Technol. 6(3), 181–187 (1991).
    [Crossref]
  24. G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
    [Crossref]
  25. W. Schottky, “On the origins of photoelectrons in Cu2O-Cu photocells,” Phys. Z. 31, 913 (1930).
  26. J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474 (1957).
  27. E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p–i–n diode,” Rev. Sci. Instrum. 65(12), 3784–3786 (1994).
    [Crossref]
  28. J. Henry and J. Livingstone, “Sputtered a-Si: H thin-film position sensitive detectors,” J. Phys. D Appl. Phys. 34(13), 1939–1942 (2001).
    [Crossref]
  29. C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95(26), 263506 (2009).
    [Crossref]
  30. C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO(2)/Si,” Adv. Mater. 22(9), 966–970 (2010).
    [Crossref] [PubMed]
  31. K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
    [Crossref]
  32. K. J. Jin, H. B. Zhao, H. B. Lu, L. Liao, and G. Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007).
    [Crossref]
  33. D. Kabra, Th. B. Singh, and K. S. Narayan, “Semiconducting-polymer-based position-sensitive detectors,” Appl. Phys. Lett. 85(21), 5073–5075 (2004).
    [Crossref]
  34. N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989).
    [Crossref]
  35. C. Tivarus, J. P. Pelz, M. K. Hudait, and S. A. Ringel, “Direct measurement of quantum confinement effects at metal to quantum-well nanocontacts,” Phys. Rev. Lett. 94(20), 206803 (2005).
    [Crossref] [PubMed]
  36. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
    [Crossref]
  37. B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloy system,” J. Appl. Phys. 47(6), 2604–2613 (1976).
    [Crossref]
  38. R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si: H P-I-N devices,” Rev. Sci. Instrum. 66(4), 2927–2934 (1995).
    [Crossref]
  39. J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1023–1026 (2001).
  40. E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandez, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2), 135 (1996).
  41. S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
    [Crossref]
  42. S. Qiao, J. H. Chen, J. H. Liu, N. Fu, G. Y. Yan, and S. F. Wang, “Distance-dependent lateral photovoltaic effect in a-Si: H (p)/a-Si: H (i)/c-Si (n) structure,” Appl. Surf. Sci. 356, 732–736 (2015).
    [Crossref]
  43. J. B. Li, X. G. Wu, G. W. Wang, Y. Q. Xu, Z. C. Niu, and X. H. Zhang, “Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well,” J. Phys. D Appl. Phys. 49(8), 145303 (2016).
    [Crossref]
  44. J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
    [Crossref]
  45. A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
    [Crossref] [PubMed]
  46. C. Q. Yu and H. Wang, “Large near-infrared lateral photovoltaic effect observed in Co/Si metal-semiconductor structures,” Appl. Phys. Lett. 96(17), 171102 (2010).
    [Crossref]
  47. B. Song, X. Wang, B. Li, L. Zhang, Z. Lv, Y. Zhang, Y. Wang, J. Tang, P. Xu, B. Li, Y. Yang, Y. Sui, and B. Song, “Near-ultraviolet lateral photovoltaic effect in Fe3O4/3C-SiC Schottky junctions,” Opt. Express 24(21), 23755–23764 (2016).
    [Crossref] [PubMed]

2016 (5)

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett. 108(24), 241104 (2016).
[Crossref]

T. Noda, M. Elborg, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells,” J. Appl. Phys. 119(8), 085105 (2016).
[Crossref]

J. B. Li, X. G. Wu, G. W. Wang, Y. Q. Xu, Z. C. Niu, and X. H. Zhang, “Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well,” J. Phys. D Appl. Phys. 49(8), 145303 (2016).
[Crossref]

B. Song, X. Wang, B. Li, L. Zhang, Z. Lv, Y. Zhang, Y. Wang, J. Tang, P. Xu, B. Li, Y. Yang, Y. Sui, and B. Song, “Near-ultraviolet lateral photovoltaic effect in Fe3O4/3C-SiC Schottky junctions,” Opt. Express 24(21), 23755–23764 (2016).
[Crossref] [PubMed]

2015 (2)

S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
[Crossref]

S. Qiao, J. H. Chen, J. H. Liu, N. Fu, G. Y. Yan, and S. F. Wang, “Distance-dependent lateral photovoltaic effect in a-Si: H (p)/a-Si: H (i)/c-Si (n) structure,” Appl. Surf. Sci. 356, 732–736 (2015).
[Crossref]

2014 (1)

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116(19), 194504 (2014).
[Crossref]

2013 (2)

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

J. Afalla, M. H. Balgos, A. Garcia, J. J. Ibanes, A. Salvador, and A. Somintac, “Observation of picosecond carrier lifetimes in GaAs/AlGaAs single quantum wells grown at 630 °C,” J. Lumin. 143, 538–541 (2013).
[Crossref]

2012 (2)

I. García, I. Rey-Stolle, and C. Algora, “Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics,” J. Phys. D Appl. Phys. 45(4), 045101 (2012).
[Crossref]

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

2011 (2)

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

A. Kawaharazuka, K. Onomitsu, J. Nishinaga, and Y. Horikoshi, “Effect of excitons on the absorption in the solar-cell with AlGaAs/GaAs superlattice grown by molecular beam epitaxy,” J. Cryst. Growth 323(1), 504–507 (2011).
[Crossref]

2010 (4)

C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO(2)/Si,” Adv. Mater. 22(9), 966–970 (2010).
[Crossref] [PubMed]

A. Belghachi, A. Helmaoui, and A. Cheknane, “High efficiency all-GaAs solar cell,” Prog. Photovolt. Res. Appl. 18(2), 79–82 (2010).
[Crossref]

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

C. Q. Yu and H. Wang, “Large near-infrared lateral photovoltaic effect observed in Co/Si metal-semiconductor structures,” Appl. Phys. Lett. 96(17), 171102 (2010).
[Crossref]

2009 (2)

I. Carcia, I. Rey-Stolle, B. Galiana, and C. Algora, “A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns,” Appl. Phys. Lett. 94(5), 053509 (2009).
[Crossref]

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95(26), 263506 (2009).
[Crossref]

2008 (1)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

2007 (1)

K. J. Jin, H. B. Zhao, H. B. Lu, L. Liao, and G. Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007).
[Crossref]

2006 (1)

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

2005 (2)

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

C. Tivarus, J. P. Pelz, M. K. Hudait, and S. A. Ringel, “Direct measurement of quantum confinement effects at metal to quantum-well nanocontacts,” Phys. Rev. Lett. 94(20), 206803 (2005).
[Crossref] [PubMed]

2004 (2)

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
[Crossref]

D. Kabra, Th. B. Singh, and K. S. Narayan, “Semiconducting-polymer-based position-sensitive detectors,” Appl. Phys. Lett. 85(21), 5073–5075 (2004).
[Crossref]

2003 (2)

E. Ortiz and C. Algora, “A high-efficiency LPE GaAs solar cell at concentrations ranging from 2000 to 4000 suns,” Prog. Photovolt. Res. Appl. 11(3), 155–163 (2003).
[Crossref]

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

2002 (1)

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

2001 (2)

J. Henry and J. Livingstone, “Sputtered a-Si: H thin-film position sensitive detectors,” J. Phys. D Appl. Phys. 34(13), 1939–1942 (2001).
[Crossref]

J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1023–1026 (2001).

1997 (1)

G. R. Lin and C. L. Pan, “Picosecond responses of low-dosage arsenic-ion-implanted GaAs photoconductors,” Appl. Phys. Lett. 71(20), 2901–2903 (1997).
[Crossref]

1996 (1)

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandez, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2), 135 (1996).

1995 (1)

R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si: H P-I-N devices,” Rev. Sci. Instrum. 66(4), 2927–2934 (1995).
[Crossref]

1994 (1)

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p–i–n diode,” Rev. Sci. Instrum. 65(12), 3784–3786 (1994).
[Crossref]

1992 (1)

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
[Crossref]

1991 (1)

N. Puhlmann, G. Oelgart, V. Gottschalch, and R. Nemitz, “Minority carrier recombination and internal quantum yield in GaAs: Sn by means of EBIC and CL,” Semicond. Sci. Technol. 6(3), 181–187 (1991).
[Crossref]

1989 (2)

N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989).
[Crossref]

M. G. W. Alexander, M. Nido, K. Reimann, W. W. Ruhle, and K. Kohler, “Γ- and X-band contributions to nonresonant tunneling in GaAs/Al0.35Ga0.65As double quantum wells,” Appl. Phys. Lett. 55(24), 2517–2519 (1989).
[Crossref]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

1978 (1)

E. Bucher, “Solar cell materials and their basic parameters,” Appl. Phys. (Berl.) 17(1), 1–26 (1978).
[Crossref]

1976 (1)

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloy system,” J. Appl. Phys. 47(6), 2604–2613 (1976).
[Crossref]

1971 (1)

V. N. Vorobev and Y. F. Sokolov, “Determination of the mobility in small samples of gallium arsenide from magnetoresistive effects,” Sov. Phys. Semicond. 5(4), 616–618 (1971).

1957 (1)

J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474 (1957).

1930 (1)

W. Schottky, “On the origins of photoelectrons in Cu2O-Cu photocells,” Phys. Z. 31, 913 (1930).

Afalla, J.

J. Afalla, M. H. Balgos, A. Garcia, J. J. Ibanes, A. Salvador, and A. Somintac, “Observation of picosecond carrier lifetimes in GaAs/AlGaAs single quantum wells grown at 630 °C,” J. Lumin. 143, 538–541 (2013).
[Crossref]

Ahrenkiel, R. K.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
[Crossref]

Aimez, V.

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

F. Proulx, M. C. A. York, P. O. Provost, R. Ares, V. Aimez, D. P. Masson, and S. Fafard, “Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architechtures with conversion efficiencier exceeding 60%,” Phys. Status Solidi Rapid Res. Lett., in press (2016).

Alexander, M. G. W.

M. G. W. Alexander, M. Nido, K. Reimann, W. W. Ruhle, and K. Kohler, “Γ- and X-band contributions to nonresonant tunneling in GaAs/Al0.35Ga0.65As double quantum wells,” Appl. Phys. Lett. 55(24), 2517–2519 (1989).
[Crossref]

Algora, C.

I. García, I. Rey-Stolle, and C. Algora, “Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics,” J. Phys. D Appl. Phys. 45(4), 045101 (2012).
[Crossref]

I. Carcia, I. Rey-Stolle, B. Galiana, and C. Algora, “A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns,” Appl. Phys. Lett. 94(5), 053509 (2009).
[Crossref]

E. Ortiz and C. Algora, “A high-efficiency LPE GaAs solar cell at concentrations ranging from 2000 to 4000 suns,” Prog. Photovolt. Res. Appl. 11(3), 155–163 (2003).
[Crossref]

Ares, R.

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

F. Proulx, M. C. A. York, P. O. Provost, R. Ares, V. Aimez, D. P. Masson, and S. Fafard, “Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architechtures with conversion efficiencier exceeding 60%,” Phys. Status Solidi Rapid Res. Lett., in press (2016).

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Atwater, H. A.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Atwater, J. H.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Auret, F. D.

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

Baccarani, G.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Balgos, M. H.

J. Afalla, M. H. Balgos, A. Garcia, J. J. Ibanes, A. Salvador, and A. Somintac, “Observation of picosecond carrier lifetimes in GaAs/AlGaAs single quantum wells grown at 630 °C,” J. Lumin. 143, 538–541 (2013).
[Crossref]

Belghachi, A.

A. Belghachi, A. Helmaoui, and A. Cheknane, “High efficiency all-GaAs solar cell,” Prog. Photovolt. Res. Appl. 18(2), 79–82 (2010).
[Crossref]

Bett, A. W.

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett. 108(24), 241104 (2016).
[Crossref]

Botha, J. R.

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

Bucher, E.

E. Bucher, “Solar cell materials and their basic parameters,” Appl. Phys. (Berl.) 17(1), 1–26 (1978).
[Crossref]

Carcia, I.

I. Carcia, I. Rey-Stolle, B. Galiana, and C. Algora, “A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns,” Appl. Phys. Lett. 94(5), 053509 (2009).
[Crossref]

Cheknane, A.

A. Belghachi, A. Helmaoui, and A. Cheknane, “High efficiency all-GaAs solar cell,” Prog. Photovolt. Res. Appl. 18(2), 79–82 (2010).
[Crossref]

Chen, J. H.

S. Qiao, J. H. Chen, J. H. Liu, N. Fu, G. Y. Yan, and S. F. Wang, “Distance-dependent lateral photovoltaic effect in a-Si: H (p)/a-Si: H (i)/c-Si (n) structure,” Appl. Surf. Sci. 356, 732–736 (2015).
[Crossref]

Chen, Z. H.

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

Chun, I. S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Coelho, S. M.

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

Colalongo, L.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Coleman, J. J.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Duda, A.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Elborg, M.

T. Noda, M. Elborg, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells,” J. Appl. Phys. 119(8), 085105 (2016).
[Crossref]

Fafard, S.

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

F. Proulx, M. C. A. York, P. O. Provost, R. Ares, V. Aimez, D. P. Masson, and S. Fafard, “Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architechtures with conversion efficiencier exceeding 60%,” Phys. Status Solidi Rapid Res. Lett., in press (2016).

Felber, N.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Fernandez, L.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandez, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2), 135 (1996).

Fichtner, W.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Florez, L. T.

N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989).
[Crossref]

Fortunato, E.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandez, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2), 135 (1996).

R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si: H P-I-N devices,” Rev. Sci. Instrum. 66(4), 2927–2934 (1995).
[Crossref]

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p–i–n diode,” Rev. Sci. Instrum. 65(12), 3784–3786 (1994).
[Crossref]

Friedman, D. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Fu, G. S.

S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
[Crossref]

Fu, N.

S. Qiao, J. H. Chen, J. H. Liu, N. Fu, G. Y. Yan, and S. F. Wang, “Distance-dependent lateral photovoltaic effect in a-Si: H (p)/a-Si: H (i)/c-Si (n) structure,” Appl. Surf. Sci. 356, 732–736 (2015).
[Crossref]

Fu, P. M.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Galiana, B.

I. Carcia, I. Rey-Stolle, B. Galiana, and C. Algora, “A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns,” Appl. Phys. Lett. 94(5), 053509 (2009).
[Crossref]

Garcia, A.

J. Afalla, M. H. Balgos, A. Garcia, J. J. Ibanes, A. Salvador, and A. Somintac, “Observation of picosecond carrier lifetimes in GaAs/AlGaAs single quantum wells grown at 630 °C,” J. Lumin. 143, 538–541 (2013).
[Crossref]

García, I.

I. García, I. Rey-Stolle, and C. Algora, “Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics,” J. Phys. D Appl. Phys. 45(4), 045101 (2012).
[Crossref]

Geisz, J. F.

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116(19), 194504 (2014).
[Crossref]

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Gottschalch, V.

N. Puhlmann, G. Oelgart, V. Gottschalch, and R. Nemitz, “Minority carrier recombination and internal quantum yield in GaAs: Sn by means of EBIC and CL,” Semicond. Sci. Technol. 6(3), 181–187 (1991).
[Crossref]

Guo, L. W.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Hagen, A.

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

Hall, T. J.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Han, L.

T. Noda, M. Elborg, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells,” J. Appl. Phys. 119(8), 085105 (2016).
[Crossref]

Han, Y. J.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Harbison, J. P.

N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989).
[Crossref]

Hartschuh, A.

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

He, M.

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

Helmaoui, A.

A. Belghachi, A. Helmaoui, and A. Cheknane, “High efficiency all-GaAs solar cell,” Prog. Photovolt. Res. Appl. 18(2), 79–82 (2010).
[Crossref]

Helmers, H.

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett. 108(24), 241104 (2016).
[Crossref]

Henry, J.

J. Henry and J. Livingstone, “Sputtered a-Si: H thin-film position sensitive detectors,” J. Phys. D Appl. Phys. 34(13), 1939–1942 (2001).
[Crossref]

J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1023–1026 (2001).

Hertel, T.

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

Hinzer, K.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Höhn, O.

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett. 108(24), 241104 (2016).
[Crossref]

Horikoshi, Y.

A. Kawaharazuka, K. Onomitsu, J. Nishinaga, and Y. Horikoshi, “Effect of excitons on the absorption in the solar-cell with AlGaAs/GaAs superlattice grown by molecular beam epitaxy,” J. Cryst. Growth 323(1), 504–507 (2011).
[Crossref]

Huang, Q.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Huang, Y. H.

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

Hudait, M. K.

C. Tivarus, J. P. Pelz, M. K. Hudait, and S. A. Ringel, “Direct measurement of quantum confinement effects at metal to quantum-well nanocontacts,” Phys. Rev. Lett. 94(20), 206803 (2005).
[Crossref] [PubMed]

Ibanes, J. J.

J. Afalla, M. H. Balgos, A. Garcia, J. J. Ibanes, A. Salvador, and A. Somintac, “Observation of picosecond carrier lifetimes in GaAs/AlGaAs single quantum wells grown at 630 °C,” J. Lumin. 143, 538–541 (2013).
[Crossref]

Illien, F.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Janse van Rensburg, P. J.

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

Jaouad, A.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Jin, K. J.

K. J. Jin, H. B. Zhao, H. B. Lu, L. Liao, and G. Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007).
[Crossref]

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

Jo, S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Johnson, J. C.

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
[Crossref]

Jones, K. M.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Jung, I.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Kabra, D.

D. Kabra, Th. B. Singh, and K. S. Narayan, “Semiconducting-polymer-based position-sensitive detectors,” Appl. Phys. Lett. 85(21), 5073–5075 (2004).
[Crossref]

Kawaharazuka, A.

A. Kawaharazuka, K. Onomitsu, J. Nishinaga, and Y. Horikoshi, “Effect of excitons on the absorption in the solar-cell with AlGaAs/GaAs superlattice grown by molecular beam epitaxy,” J. Cryst. Growth 323(1), 504–507 (2011).
[Crossref]

Kawazu, T.

T. Noda, M. Elborg, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells,” J. Appl. Phys. 119(8), 085105 (2016).
[Crossref]

Keyes, B. M.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
[Crossref]

Kiehl, J. K.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Kim, H. S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Knutsen, K. P.

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
[Crossref]

Kohler, K.

M. G. W. Alexander, M. Nido, K. Reimann, W. W. Ruhle, and K. Kohler, “Γ- and X-band contributions to nonresonant tunneling in GaAs/Al0.35Ga0.65As double quantum wells,” Appl. Phys. Lett. 55(24), 2517–2519 (1989).
[Crossref]

Kolhatkar, G.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Kolkovsky, V. I.

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

Kosten, E. D.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Lavareda, G.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandez, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2), 135 (1996).

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p–i–n diode,” Rev. Sci. Instrum. 65(12), 3784–3786 (1994).
[Crossref]

Law, M.

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
[Crossref]

Levi, D. H.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
[Crossref]

Li, B.

Li, C. Y.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Li, J. B.

J. B. Li, X. G. Wu, G. W. Wang, Y. Q. Xu, Z. C. Niu, and X. H. Zhang, “Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well,” J. Phys. D Appl. Phys. 49(8), 145303 (2016).
[Crossref]

Li, X.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Liao, L.

K. J. Jin, H. B. Zhao, H. B. Lu, L. Liao, and G. Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007).
[Crossref]

Lienau, C.

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

Lin, G. R.

G. R. Lin and C. L. Pan, “Picosecond responses of low-dosage arsenic-ion-implanted GaAs photoconductors,” Appl. Phys. Lett. 71(20), 2901–2903 (1997).
[Crossref]

Liu, J. H.

S. Qiao, J. H. Chen, J. H. Liu, N. Fu, G. Y. Yan, and S. F. Wang, “Distance-dependent lateral photovoltaic effect in a-Si: H (p)/a-Si: H (i)/c-Si (n) structure,” Appl. Surf. Sci. 356, 732–736 (2015).
[Crossref]

S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
[Crossref]

Livingstone, J.

J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1023–1026 (2001).

J. Henry and J. Livingstone, “Sputtered a-Si: H thin-film position sensitive detectors,” J. Phys. D Appl. Phys. 34(13), 1939–1942 (2001).
[Crossref]

Lu, H. B.

K. J. Jin, H. B. Zhao, H. B. Lu, L. Liao, and G. Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007).
[Crossref]

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

Lumb, M. P.

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116(19), 194504 (2014).
[Crossref]

Lundstrom, M. S.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
[Crossref]

Lush, G. B.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
[Crossref]

Lv, Z.

MacMillan, H. F.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
[Crossref]

Mano, T.

T. Noda, M. Elborg, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells,” J. Appl. Phys. 119(8), 085105 (2016).
[Crossref]

Martins, R.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandez, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2), 135 (1996).

R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si: H P-I-N devices,” Rev. Sci. Instrum. 66(4), 2927–2934 (1995).
[Crossref]

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p–i–n diode,” Rev. Sci. Instrum. 65(12), 3784–3786 (1994).
[Crossref]

Masson, D.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Masson, D. P.

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

F. Proulx, M. C. A. York, P. O. Provost, R. Ares, V. Aimez, D. P. Masson, and S. Fafard, “Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architechtures with conversion efficiencier exceeding 60%,” Phys. Status Solidi Rapid Res. Lett., in press (2016).

Meitl, M.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Meixner, A. J.

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

Melloch, M. R.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
[Crossref]

Menard, E.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Meyer, W. E.

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

Meynadier, M. H.

N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989).
[Crossref]

Monemar, B.

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloy system,” J. Appl. Phys. 47(6), 2604–2613 (1976).
[Crossref]

Moriarty, T. E.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Nahory, R. E.

N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989).
[Crossref]

Narayan, K. S.

D. Kabra, Th. B. Singh, and K. S. Narayan, “Semiconducting-polymer-based position-sensitive detectors,” Appl. Phys. Lett. 85(21), 5073–5075 (2004).
[Crossref]

Nemitz, R.

N. Puhlmann, G. Oelgart, V. Gottschalch, and R. Nemitz, “Minority carrier recombination and internal quantum yield in GaAs: Sn by means of EBIC and CL,” Semicond. Sci. Technol. 6(3), 181–187 (1991).
[Crossref]

Nido, M.

M. G. W. Alexander, M. Nido, K. Reimann, W. W. Ruhle, and K. Kohler, “Γ- and X-band contributions to nonresonant tunneling in GaAs/Al0.35Ga0.65As double quantum wells,” Appl. Phys. Lett. 55(24), 2517–2519 (1989).
[Crossref]

Nishinaga, J.

A. Kawaharazuka, K. Onomitsu, J. Nishinaga, and Y. Horikoshi, “Effect of excitons on the absorption in the solar-cell with AlGaAs/GaAs superlattice grown by molecular beam epitaxy,” J. Cryst. Growth 323(1), 504–507 (2011).
[Crossref]

Niu, Z. C.

J. B. Li, X. G. Wu, G. W. Wang, Y. Q. Xu, Z. C. Niu, and X. H. Zhang, “Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well,” J. Phys. D Appl. Phys. 49(8), 145303 (2016).
[Crossref]

Noda, T.

T. Noda, M. Elborg, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells,” J. Appl. Phys. 119(8), 085105 (2016).
[Crossref]

Norman, A. G.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Nyamhere, C.

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

Oelgart, G.

N. Puhlmann, G. Oelgart, V. Gottschalch, and R. Nemitz, “Minority carrier recombination and internal quantum yield in GaAs: Sn by means of EBIC and CL,” Semicond. Sci. Technol. 6(3), 181–187 (1991).
[Crossref]

Olavarria, W. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Onomitsu, K.

A. Kawaharazuka, K. Onomitsu, J. Nishinaga, and Y. Horikoshi, “Effect of excitons on the absorption in the solar-cell with AlGaAs/GaAs superlattice grown by molecular beam epitaxy,” J. Cryst. Growth 323(1), 504–507 (2011).
[Crossref]

Ortiz, E.

E. Ortiz and C. Algora, “A high-efficiency LPE GaAs solar cell at concentrations ranging from 2000 to 4000 suns,” Prog. Photovolt. Res. Appl. 11(3), 155–163 (2003).
[Crossref]

Paik, U.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Pan, C. L.

G. R. Lin and C. L. Pan, “Picosecond responses of low-dosage arsenic-ion-implanted GaAs photoconductors,” Appl. Phys. Lett. 71(20), 2901–2903 (1997).
[Crossref]

Parsons, J.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Pelz, J. P.

C. Tivarus, J. P. Pelz, M. K. Hudait, and S. A. Ringel, “Direct measurement of quantum confinement effects at metal to quantum-well nanocontacts,” Phys. Rev. Lett. 94(20), 206803 (2005).
[Crossref] [PubMed]

Pettit, G. D.

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloy system,” J. Appl. Phys. 47(6), 2604–2613 (1976).
[Crossref]

Polman, A.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Proulx, F.

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

F. Proulx, M. C. A. York, P. O. Provost, R. Ares, V. Aimez, D. P. Masson, and S. Fafard, “Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architechtures with conversion efficiencier exceeding 60%,” Phys. Status Solidi Rapid Res. Lett., in press (2016).

Provost, P. O.

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

F. Proulx, M. C. A. York, P. O. Provost, R. Ares, V. Aimez, D. P. Masson, and S. Fafard, “Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architechtures with conversion efficiencier exceeding 60%,” Phys. Status Solidi Rapid Res. Lett., in press (2016).

Puetz, B.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Puhlmann, N.

N. Puhlmann, G. Oelgart, V. Gottschalch, and R. Nemitz, “Minority carrier recombination and internal quantum yield in GaAs: Sn by means of EBIC and CL,” Semicond. Sci. Technol. 6(3), 181–187 (1991).
[Crossref]

Qian, H.

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

Qiao, S.

S. Qiao, J. H. Chen, J. H. Liu, N. Fu, G. Y. Yan, and S. F. Wang, “Distance-dependent lateral photovoltaic effect in a-Si: H (p)/a-Si: H (i)/c-Si (n) structure,” Appl. Surf. Sci. 356, 732–736 (2015).
[Crossref]

S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
[Crossref]

Raschke, M. B.

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

Reggiani, S.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Reimann, K.

M. G. W. Alexander, M. Nido, K. Reimann, W. W. Ruhle, and K. Kohler, “Γ- and X-band contributions to nonresonant tunneling in GaAs/Al0.35Ga0.65As double quantum wells,” Appl. Phys. Lett. 55(24), 2517–2519 (1989).
[Crossref]

Rey-Stolle, I.

I. García, I. Rey-Stolle, and C. Algora, “Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics,” J. Phys. D Appl. Phys. 45(4), 045101 (2012).
[Crossref]

I. Carcia, I. Rey-Stolle, B. Galiana, and C. Algora, “A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns,” Appl. Phys. Lett. 94(5), 053509 (2009).
[Crossref]

Richard, L. S.

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

Riel, B.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Ringel, S. A.

C. Tivarus, J. P. Pelz, M. K. Hudait, and S. A. Ringel, “Direct measurement of quantum confinement effects at metal to quantum-well nanocontacts,” Phys. Rev. Lett. 94(20), 206803 (2005).
[Crossref] [PubMed]

Rogers, J. A.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Romero, M. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Rudan, M.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Ruhle, W. W.

M. G. W. Alexander, M. Nido, K. Reimann, W. W. Ruhle, and K. Kohler, “Γ- and X-band contributions to nonresonant tunneling in GaAs/Al0.35Ga0.65As double quantum wells,” Appl. Phys. Lett. 55(24), 2517–2519 (1989).
[Crossref]

Sakaki, H.

T. Noda, M. Elborg, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells,” J. Appl. Phys. 119(8), 085105 (2016).
[Crossref]

Salvador, A.

J. Afalla, M. H. Balgos, A. Garcia, J. J. Ibanes, A. Salvador, and A. Somintac, “Observation of picosecond carrier lifetimes in GaAs/AlGaAs single quantum wells grown at 630 °C,” J. Lumin. 143, 538–541 (2013).
[Crossref]

Saykally, R. J.

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
[Crossref]

Schottky, W.

W. Schottky, “On the origins of photoelectrons in Cu2O-Cu photocells,” Phys. Z. 31, 913 (1930).

Shih, K. K.

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloy system,” J. Appl. Phys. 47(6), 2604–2613 (1976).
[Crossref]

Singh, Th. B.

D. Kabra, Th. B. Singh, and K. S. Narayan, “Semiconducting-polymer-based position-sensitive detectors,” Appl. Phys. Lett. 85(21), 5073–5075 (2004).
[Crossref]

Soares, F.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandez, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2), 135 (1996).

Sokolov, Y. F.

V. N. Vorobev and Y. F. Sokolov, “Determination of the mobility in small samples of gallium arsenide from magnetoresistive effects,” Sov. Phys. Semicond. 5(4), 616–618 (1971).

Somintac, A.

J. Afalla, M. H. Balgos, A. Garcia, J. J. Ibanes, A. Salvador, and A. Somintac, “Observation of picosecond carrier lifetimes in GaAs/AlGaAs single quantum wells grown at 630 °C,” J. Lumin. 143, 538–541 (2013).
[Crossref]

Song, B.

Steiner, M.

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

Steiner, M. A.

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116(19), 194504 (2014).
[Crossref]

Stricker, A. D.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Sui, Y.

Tabatabaie, N.

N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989).
[Crossref]

Tang, J.

Tivarus, C.

C. Tivarus, J. P. Pelz, M. K. Hudait, and S. A. Ringel, “Direct measurement of quantum confinement effects at metal to quantum-well nanocontacts,” Phys. Rev. Lett. 94(20), 206803 (2005).
[Crossref] [PubMed]

Turala, A.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Valdinoci, M.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Valdivia, C. E.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Venter, A.

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

Vieira, M.

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p–i–n diode,” Rev. Sci. Instrum. 65(12), 3784–3786 (1994).
[Crossref]

Vorobev, V. N.

V. N. Vorobev and Y. F. Sokolov, “Determination of the mobility in small samples of gallium arsenide from magnetoresistive effects,” Sov. Phys. Semicond. 5(4), 616–618 (1971).

Walker, A. W.

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett. 108(24), 241104 (2016).
[Crossref]

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Wallmark, J. T.

J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474 (1957).

Walters, R. J.

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116(19), 194504 (2014).
[Crossref]

Wang, G. W.

J. B. Li, X. G. Wu, G. W. Wang, Y. Q. Xu, Z. C. Niu, and X. H. Zhang, “Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well,” J. Phys. D Appl. Phys. 49(8), 145303 (2016).
[Crossref]

Wang, H.

C. Q. Yu and H. Wang, “Large near-infrared lateral photovoltaic effect observed in Co/Si metal-semiconductor structures,” Appl. Phys. Lett. 96(17), 171102 (2010).
[Crossref]

C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO(2)/Si,” Adv. Mater. 22(9), 966–970 (2010).
[Crossref] [PubMed]

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95(26), 263506 (2009).
[Crossref]

Wang, L.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Wang, S. F.

S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
[Crossref]

S. Qiao, J. H. Chen, J. H. Liu, N. Fu, G. Y. Yan, and S. F. Wang, “Distance-dependent lateral photovoltaic effect in a-Si: H (p)/a-Si: H (i)/c-Si (n) structure,” Appl. Surf. Sci. 356, 732–736 (2015).
[Crossref]

Wang, X.

Wang, Y.

Ward, J. S.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Wei, Y. F.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Wheeldon, J. F.

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

Wu, X. G.

J. B. Li, X. G. Wu, G. W. Wang, Y. Q. Xu, Z. C. Niu, and X. H. Zhang, “Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well,” J. Phys. D Appl. Phys. 49(8), 145303 (2016).
[Crossref]

Xia, Y. X.

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95(26), 263506 (2009).
[Crossref]

Xu, P.

Xu, Y. Q.

J. B. Li, X. G. Wu, G. W. Wang, Y. Q. Xu, Z. C. Niu, and X. H. Zhang, “Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well,” J. Phys. D Appl. Phys. 49(8), 145303 (2016).
[Crossref]

Yan, G. Y.

S. Qiao, J. H. Chen, J. H. Liu, N. Fu, G. Y. Yan, and S. F. Wang, “Distance-dependent lateral photovoltaic effect in a-Si: H (p)/a-Si: H (i)/c-Si (n) structure,” Appl. Surf. Sci. 356, 732–736 (2015).
[Crossref]

S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
[Crossref]

Yan, H.

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
[Crossref]

Yang, G. Z.

K. J. Jin, H. B. Zhao, H. B. Lu, L. Liao, and G. Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007).
[Crossref]

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

Yang, P.

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
[Crossref]

Yang, Q. S.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Yang, Y.

Yoon, J.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

York, M. C. A.

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

F. Proulx, M. C. A. York, P. O. Provost, R. Ares, V. Aimez, D. P. Masson, and S. Fafard, “Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architechtures with conversion efficiencier exceeding 60%,” Phys. Status Solidi Rapid Res. Lett., in press (2016).

Yu, C.

C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO(2)/Si,” Adv. Mater. 22(9), 966–970 (2010).
[Crossref] [PubMed]

Yu, C. Q.

C. Q. Yu and H. Wang, “Large near-infrared lateral photovoltaic effect observed in Co/Si metal-semiconductor structures,” Appl. Phys. Lett. 96(17), 171102 (2010).
[Crossref]

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95(26), 263506 (2009).
[Crossref]

Zhang, L.

Zhang, X. H.

J. B. Li, X. G. Wu, G. W. Wang, Y. Q. Xu, Z. C. Niu, and X. H. Zhang, “Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well,” J. Phys. D Appl. Phys. 49(8), 145303 (2016).
[Crossref]

S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
[Crossref]

Zhang, Y.

Zhang, Y. F.

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
[Crossref]

Zhang, Z. G.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Zhao, H. B.

K. J. Jin, H. B. Zhao, H. B. Lu, L. Liao, and G. Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007).
[Crossref]

Zhao, J. H.

S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
[Crossref]

Zhao, K.

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

Zhao, S. P.

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Zhou, Q. L.

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

Zhou, Y. L.

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

Zullino, L.

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

Adv. Mater. (2)

C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO(2)/Si,” Adv. Mater. 22(9), 966–970 (2010).
[Crossref] [PubMed]

J. Henry and J. Livingstone, “Thin-film amorphous silicon position-sensitive detectors,” Adv. Mater. 13(12–13), 1023–1026 (2001).

Appl. Phys. (Berl.) (1)

E. Bucher, “Solar cell materials and their basic parameters,” Appl. Phys. (Berl.) 17(1), 1–26 (1978).
[Crossref]

Appl. Phys. Lett. (13)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. K. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

I. Carcia, I. Rey-Stolle, B. Galiana, and C. Algora, “A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns,” Appl. Phys. Lett. 94(5), 053509 (2009).
[Crossref]

S. Fafard, F. Proulx, M. C. A. York, L. S. Richard, P. O. Provost, R. Ares, V. Aimez, and D. P. Masson, “High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%,” Appl. Phys. Lett. 109(13), 131107 (2016).
[Crossref]

O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, “Optimal laser wavelength for efficient laser power converter operation over temperature,” Appl. Phys. Lett. 108(24), 241104 (2016).
[Crossref]

M. G. W. Alexander, M. Nido, K. Reimann, W. W. Ruhle, and K. Kohler, “Γ- and X-band contributions to nonresonant tunneling in GaAs/Al0.35Ga0.65As double quantum wells,” Appl. Phys. Lett. 55(24), 2517–2519 (1989).
[Crossref]

G. R. Lin and C. L. Pan, “Picosecond responses of low-dosage arsenic-ion-implanted GaAs photoconductors,” Appl. Phys. Lett. 71(20), 2901–2903 (1997).
[Crossref]

K. Zhao, K. J. Jin, H. B. Lu, Y. H. Huang, Q. L. Zhou, M. He, Z. H. Chen, Y. L. Zhou, and G. Z. Yang, “Transient lateral photovoltaic effect in p-n heterojunctions of La0.7Sr0.3MnO3 and Si,” Appl. Phys. Lett. 88(14), 141914 (2006).
[Crossref]

K. J. Jin, H. B. Zhao, H. B. Lu, L. Liao, and G. Z. Yang, “Dember effect induced photovoltage in perovskite p-n heterojunctions,” Appl. Phys. Lett. 91(8), 081906 (2007).
[Crossref]

D. Kabra, Th. B. Singh, and K. S. Narayan, “Semiconducting-polymer-based position-sensitive detectors,” Appl. Phys. Lett. 85(21), 5073–5075 (2004).
[Crossref]

N. Tabatabaie, M. H. Meynadier, R. E. Nahory, J. P. Harbison, and L. T. Florez, “Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures,” Appl. Phys. Lett. 55(8), 792–794 (1989).
[Crossref]

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95(26), 263506 (2009).
[Crossref]

C. Q. Yu and H. Wang, “Large near-infrared lateral photovoltaic effect observed in Co/Si metal-semiconductor structures,” Appl. Phys. Lett. 96(17), 171102 (2010).
[Crossref]

S. Qiao, J. H. Liu, G. Y. Yan, J. H. Zhao, X. H. Zhang, S. F. Wang, and G. S. Fu, “Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film,” Appl. Phys. Lett. 107(18), 182402 (2015).
[Crossref]

Appl. Surf. Sci. (1)

S. Qiao, J. H. Chen, J. H. Liu, N. Fu, G. Y. Yan, and S. F. Wang, “Distance-dependent lateral photovoltaic effect in a-Si: H (p)/a-Si: H (i)/c-Si (n) structure,” Appl. Surf. Sci. 356, 732–736 (2015).
[Crossref]

IEEE Trans. Electron Dev. (1)

S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. D. Stricker, F. Illien, N. Felber, W. Fichtner, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility,” IEEE Trans. Electron Dev. 49(3), 490–499 (2002).
[Crossref]

J. Appl. Phys. (5)

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116(19), 194504 (2014).
[Crossref]

A. Venter, C. Nyamhere, J. R. Botha, F. D. Auret, P. J. Janse van Rensburg, W. E. Meyer, S. M. Coelho, and V. I. Kolkovsky, “Ar plasma induced deep levels in epitaxial n-GaAs,” J. Appl. Phys. 111(1), 013703 (2012).
[Crossref]

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloy system,” J. Appl. Phys. 47(6), 2604–2613 (1976).
[Crossref]

T. Noda, M. Elborg, T. Mano, T. Kawazu, L. Han, and H. Sakaki, “Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells,” J. Appl. Phys. 119(8), 085105 (2016).
[Crossref]

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436–1442 (1992).
[Crossref]

J. Cryst. Growth (1)

A. Kawaharazuka, K. Onomitsu, J. Nishinaga, and Y. Horikoshi, “Effect of excitons on the absorption in the solar-cell with AlGaAs/GaAs superlattice grown by molecular beam epitaxy,” J. Cryst. Growth 323(1), 504–507 (2011).
[Crossref]

J. Lumin. (1)

J. Afalla, M. H. Balgos, A. Garcia, J. J. Ibanes, A. Salvador, and A. Somintac, “Observation of picosecond carrier lifetimes in GaAs/AlGaAs single quantum wells grown at 630 °C,” J. Lumin. 143, 538–541 (2013).
[Crossref]

J. Phys. D Appl. Phys. (3)

I. García, I. Rey-Stolle, and C. Algora, “Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics,” J. Phys. D Appl. Phys. 45(4), 045101 (2012).
[Crossref]

J. Henry and J. Livingstone, “Sputtered a-Si: H thin-film position sensitive detectors,” J. Phys. D Appl. Phys. 34(13), 1939–1942 (2001).
[Crossref]

J. B. Li, X. G. Wu, G. W. Wang, Y. Q. Xu, Z. C. Niu, and X. H. Zhang, “Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well,” J. Phys. D Appl. Phys. 49(8), 145303 (2016).
[Crossref]

Light Sci. Appl. (1)

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Nano Lett. (1)

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. F. Zhang, P. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4(2), 197–204 (2004).
[Crossref]

Nature (1)

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

C. Y. Li, L. Wang, P. M. Fu, Z. G. Zhang, Y. F. Wei, S. P. Zhao, Q. S. Yang, Y. J. Han, L. W. Guo, and Q. Huang, “Carrier dynamics in low-temperature-grown AlxGa1-xAs/GaAs multiple quantum wells,” Phys. Rev. B 67(13), 134304 (2003).
[Crossref]

Phys. Rev. Lett. (2)

C. Tivarus, J. P. Pelz, M. K. Hudait, and S. A. Ringel, “Direct measurement of quantum confinement effects at metal to quantum-well nanocontacts,” Phys. Rev. Lett. 94(20), 206803 (2005).
[Crossref] [PubMed]

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, and A. Hartschuh, “Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes,” Phys. Rev. Lett. 95(19), 197401 (2005).
[Crossref] [PubMed]

Phys. Z. (1)

W. Schottky, “On the origins of photoelectrons in Cu2O-Cu photocells,” Phys. Z. 31, 913 (1930).

Proc. IRE (1)

J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474 (1957).

Prog. Photovolt. Res. Appl. (3)

J. F. Wheeldon, C. E. Valdivia, A. W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, B. Puetz, S. Fafard, R. Ares, V. Aimez, T. J. Hall, and K. Hinzer, “Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells,” Prog. Photovolt. Res. Appl. 19(4), 442–452 (2011).
[Crossref]

E. Ortiz and C. Algora, “A high-efficiency LPE GaAs solar cell at concentrations ranging from 2000 to 4000 suns,” Prog. Photovolt. Res. Appl. 11(3), 155–163 (2003).
[Crossref]

A. Belghachi, A. Helmaoui, and A. Cheknane, “High efficiency all-GaAs solar cell,” Prog. Photovolt. Res. Appl. 18(2), 79–82 (2010).
[Crossref]

Rev. Sci. Instrum. (2)

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p–i–n diode,” Rev. Sci. Instrum. 65(12), 3784–3786 (1994).
[Crossref]

R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si: H P-I-N devices,” Rev. Sci. Instrum. 66(4), 2927–2934 (1995).
[Crossref]

Semicond. Sci. Technol. (1)

N. Puhlmann, G. Oelgart, V. Gottschalch, and R. Nemitz, “Minority carrier recombination and internal quantum yield in GaAs: Sn by means of EBIC and CL,” Semicond. Sci. Technol. 6(3), 181–187 (1991).
[Crossref]

Sens. Actuators A Phys. (1)

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandez, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A Phys. 51(2), 135 (1996).

Sov. Phys. Semicond. (1)

V. N. Vorobev and Y. F. Sokolov, “Determination of the mobility in small samples of gallium arsenide from magnetoresistive effects,” Sov. Phys. Semicond. 5(4), 616–618 (1971).

Other (1)

F. Proulx, M. C. A. York, P. O. Provost, R. Ares, V. Aimez, D. P. Masson, and S. Fafard, “Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architechtures with conversion efficiencier exceeding 60%,” Phys. Status Solidi Rapid Res. Lett., in press (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Sample structure sketch of GaAs/Al0.3Ga0.7As and the schematic illustration of the LPV measurement. (b) Typical LPV as a function of laser position in the GaAs/AlGaAs structure (red solid line is the theoretical fitting as shown in Eq. (1)) with inset the transverse I-V curve in the dark.
Fig. 2
Fig. 2 (a) The longitudinal I-V curve for the Al0.3Ga0.7As/GaAs junction with inset showing the schematic circuit. (b) Energy band diagram of Al0.3Ga0.7As and p-type GaAs and Al0.3Ga0.7As/GaAs junction.
Fig. 3
Fig. 3 (a) LPVs of #1, #2, #3 samples as a function of laser position in the GaAs/Al0.3Ga0.7As structure under illumination of 10 mW for 532 nm laser. (b) LPVs of #2 sample as a function of laser position in the GaAs/Al0.3Ga0.7As structure under illumination of 10 mW for 405 nm, 532 nm, 671 nm and 980 nm lasers, respectively.
Fig. 4
Fig. 4 (a) Position sensitivity as a function of laser power for #1, #2 and #3 samples under illumination of 671 nm laser. (b) Position sensitivities as a function of doping concentration for typical powers of 1, 5, 10, 20, and 30 mW, respectively.
Fig. 5
Fig. 5 (a) Time-resolved reflectivity spectroscopy of three samples with pump power of 10 mW and probe power of 0.5 mW for 671 nm laser (red solid line is the best fitting). (b) The extracted carrier lifetimes as a function of carrier density for typical pump powers of 1, 5, 10, 20, and 30 m W, respectively.
Fig. 6
Fig. 6 The relative changing of barrier height, carrier lifetime and position sensitivity between sample #2 and sample #3 at different laser powers.

Tables (1)

Tables Icon

Table 1 The calculated parameters for the GaAs/Al0.3Ga0.7As structure samples.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

LPV=K N 0 [exp( | xL | l )exp( | x+L | l )]
LPV= 2K N 0 l exp( L l )x (L<x<L)
y(t)= A 0 exp(t/τ)+ y 0
LPV= 2K n 0 l (1 δ τp/ n 0 )exp( L l )x (L<x<L)

Metrics