Abstract

The development of LED secondary optics for road illumination is quite a challenging problem. Optical elements developed for this kind of application should have maximal efficiency, provide high luminance and illuminance uniformity, and meet many other specific requirements. Here, we demonstrate that the usage of the supporting quadric method modification enables generating free-form optical solution satisfying all these requirements perfectly. As an example, two optical elements for different roadway types are computed, manufactured by injection molding, and then measured in a photometry bench. Experimental data demonstrate that the obtained light distributions meet ME1 class requirements of EN 13201 standard. The obtained directivity patterns are universal and provide high performance with different configurations of luminaires’ arrangement: the ratio of pole altitude to distance can vary from 2.5 up to 3.6.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Designing freeform TIR optical elements using supporting quadric method

Ksenya V. Andreeva, Sergey V. Kravchenko, Mikhail A. Moiseev, and Leonid L. Doskolovich
Opt. Express 25(19) 23465-23476 (2017)

Design of LED freeform optical system for road lighting with high luminance/illuminance ratio

Zexin Feng, Yi Luo, and Yanjun Han
Opt. Express 18(21) 22020-22031 (2010)

Design of primary optics for LED chip array
in road lighting application

Shang Wang, Kai Wang, Fei Chen, and Sheng Liu
Opt. Express 19(S4) A716-A724 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Zalewski, “Design of optical systems for LED road luminaires,” Appl. Opt. 54(2), 163–170 (2015).
    [Crossref] [PubMed]
  2. M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design of high-efficient freeform LED lens for illumination of elongated rectangular regions,” Opt. Express 19(S3Suppl 3), A225–A233 (2011).
    [Crossref] [PubMed]
  3. X. Hu and K. Qian, “Optimal design of optical system for LED road lighting with high illuminance and luminance uniformity,” Appl. Opt. 52(24), 5888–5893 (2013).
    [Crossref] [PubMed]
  4. L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46(18), 3716–3723 (2007).
    [Crossref] [PubMed]
  5. X.-H. Lee, I. Moreno, and C.-C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21(9), 10612–10621 (2013).
    [Crossref] [PubMed]
  6. P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
    [Crossref]
  7. A. Bäuerle, A. Bruneton, R. Wester, J. Stollenwerk, and P. Loosen, “Algorithm for irradiance tailoring using multiple freeform optical surfaces,” Opt. Express 20(13), 14477–14485 (2012).
    [Crossref] [PubMed]
  8. A. Bruneton, A. Bäuerle, R. Wester, J. Stollenwerk, and P. Loosen, “High resolution irradiance tailoring using multiple freeform surfaces,” Opt. Express 21(9), 10563–10571 (2013).
    [Crossref] [PubMed]
  9. Z. Feng, L. Huang, G. Jin, and M. Gong, “Designing double freeform optical surfaces for controlling both irradiance and wavefront,” Opt. Express 21(23), 28693–28701 (2013).
    [Crossref] [PubMed]
  10. R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Stuttg.) 124(19), 3895–3897 (2013).
    [Crossref]
  11. M. A. Moiseev, S. V. Kravchenko, and L. L. Doskolovich, “Design of efficient LED optics with two free-form surfaces,” Opt. Express 22(S7Suppl 7), A1926–A1935 (2014).
    [Crossref] [PubMed]
  12. M. A. Moiseev, E. V. Byzov, S. V. Kravchenko, and L. L. Doskolovich, “Design of LED refractive optics with predetermined balance of ray deflection angles between inner and outer surfaces,” Opt. Express 23(19), A1140–A1148 (2015).
    [Crossref] [PubMed]
  13. S. A. Kochengin and V. I. Oliker, “Computational algorithms for constructing reflectors,” Comput. Vis. Sci. 6(1), 15–21 (2003).
    [Crossref]
  14. V. I. Oliker, Mathematical aspects of design of beam shaping surfaces in geometrical optics, Springer, 2003.
  15. V. Oliker, J. Rubinstein, and G. Wolansky, “Supporting quadric method in optical design of freeform lenses for illumination control of a collimated light,” Adv. Appl. Math. 62, 160–183 (2015).
    [Crossref]
  16. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2003).
  17. https://www.dial.de/en/software/

2015 (3)

2014 (1)

2013 (5)

2012 (1)

2011 (1)

2007 (1)

2004 (1)

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

2003 (1)

S. A. Kochengin and V. I. Oliker, “Computational algorithms for constructing reflectors,” Comput. Vis. Sci. 6(1), 15–21 (2003).
[Crossref]

Bäuerle, A.

Benitez, P.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Blen, J.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Bruneton, A.

Byzov, E. V.

Chaves, J.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Doskolovich, L. L.

Dross, O.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Falicoff, W.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Feng, Z.

Gan, Z.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Stuttg.) 124(19), 3895–3897 (2013).
[Crossref]

Gong, M.

Hernandez, M.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Hu, R.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Stuttg.) 124(19), 3895–3897 (2013).
[Crossref]

Hu, X.

Huang, L.

Jin, G.

Kazanskiy, N. L.

Kochengin, S. A.

S. A. Kochengin and V. I. Oliker, “Computational algorithms for constructing reflectors,” Comput. Vis. Sci. 6(1), 15–21 (2003).
[Crossref]

Kravchenko, S. V.

Lee, X.-H.

Liu, S.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Stuttg.) 124(19), 3895–3897 (2013).
[Crossref]

Loosen, P.

Luo, X.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Stuttg.) 124(19), 3895–3897 (2013).
[Crossref]

Luo, Y.

Minano, J. C.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Mohedano, R.

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Moiseev, M. A.

Moreno, I.

Oliker, V.

V. Oliker, J. Rubinstein, and G. Wolansky, “Supporting quadric method in optical design of freeform lenses for illumination control of a collimated light,” Adv. Appl. Math. 62, 160–183 (2015).
[Crossref]

Oliker, V. I.

S. A. Kochengin and V. I. Oliker, “Computational algorithms for constructing reflectors,” Comput. Vis. Sci. 6(1), 15–21 (2003).
[Crossref]

Qian, K.

Rubinstein, J.

V. Oliker, J. Rubinstein, and G. Wolansky, “Supporting quadric method in optical design of freeform lenses for illumination control of a collimated light,” Adv. Appl. Math. 62, 160–183 (2015).
[Crossref]

Stollenwerk, J.

Sun, C.-C.

Wang, L.

Wester, R.

Wolansky, G.

V. Oliker, J. Rubinstein, and G. Wolansky, “Supporting quadric method in optical design of freeform lenses for illumination control of a collimated light,” Adv. Appl. Math. 62, 160–183 (2015).
[Crossref]

Zalewski, S.

Zheng, H.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Stuttg.) 124(19), 3895–3897 (2013).
[Crossref]

Adv. Appl. Math. (1)

V. Oliker, J. Rubinstein, and G. Wolansky, “Supporting quadric method in optical design of freeform lenses for illumination control of a collimated light,” Adv. Appl. Math. 62, 160–183 (2015).
[Crossref]

Appl. Opt. (3)

Comput. Vis. Sci. (1)

S. A. Kochengin and V. I. Oliker, “Computational algorithms for constructing reflectors,” Comput. Vis. Sci. 6(1), 15–21 (2003).
[Crossref]

Opt. Eng. (1)

P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Opt. Express (7)

Optik (Stuttg.) (1)

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Stuttg.) 124(19), 3895–3897 (2013).
[Crossref]

Other (3)

V. I. Oliker, Mathematical aspects of design of beam shaping surfaces in geometrical optics, Springer, 2003.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2003).

https://www.dial.de/en/software/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Arrangement of PCB, LEDs and multi-lens array.
Fig. 2
Fig. 2 Arrangement of light source and optical element.
Fig. 3
Fig. 3 Passing rays through the segment of the inner surface.
Fig. 4
Fig. 4 Passing rays through the segment of the outer surface.
Fig. 5
Fig. 5 Required intensity curves for road lighting with central pole arrangement.
Fig. 6
Fig. 6 Scheme of road illumination with central pole arrangement.
Fig. 7
Fig. 7 Single optical element model.
Fig. 8
Fig. 8 Developed multi-lens array model.
Fig. 9
Fig. 9 Produced multi-lens array.
Fig. 10
Fig. 10 Intensity curves generated by produced multilens.
Fig. 11
Fig. 11 Required intensity curves for road lighting with side pole arrangement.
Fig. 12
Fig. 12 Scheme of road illumination with side pole arrangement.
Fig. 13
Fig. 13 Single optical element model.
Fig. 14
Fig. 14 Developed multi-lens array model.
Fig. 15
Fig. 15 Produced multi-lens array.
Fig. 16
Fig. 16 Intensity curves generated by produced multilens.

Tables (2)

Tables Icon

Table 1 Required and obtained values of road illumination criteria (example 1)

Tables Icon

Table 2 Required and obtained values of road illumination criteria (example 2)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Φ i = δ Ω i I( x )dΩ ,
x i = δ Ω i xI( x )dΩ Φ i .
γ=kψ,
r i ( s 0 )= s 0 r 0i ( ncos( (1k)arccos( s 0 x i ) )1 n1 ) 1 k1 ,
{ r C 0 ( s 0 )= r i ( s 0 ) s 0 , i= argmin j{ 1,...,N } r j ( s 0 ), r j ( s 0 )= r 0j ( ncos( (1k)arccos( s 0 x j ) )1 n1 ) 1 k1 .
{ M i ( s 0 )=r( s 0 )+ l i ( s 0 ) s 1 , l i ( s 0 )= l 0i ( 1n )+r( s 0 )( 1( s 0 x i ) ) ( s 1 ( s 0 ) x i )n ,
{ M( s 0 )=r( s 0 )+ l i ( s 0 ) s 1 , i= argmin j{ 1,...,N } l j ( s 0 ), l j ( s 0 )= l 0j (1n)+r( s 0 )(1( s 0 x j )) ( s 1 ( s 0 ) x j )n ,

Metrics