Abstract

An analysis of the atmospheric impact on ground brightness temperature (Tg) is performed for numerous land surface types at commonly-used frequencies (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz). The results indicate that the atmosphere has a negligible impact on Tg at 1.4 GHz for land surfaces with emissivities greater than 0.7, at 6.93 GHz for land surfaces with emissivities greater than 0.8, and at 10.65 GHz for land surfaces with emissivities greater than 0.9 if a root mean square error (RMSE) less than 1 K is desired. To remove the atmospheric effect on Tg, a generalized atmospheric correction method is proposed by parameterizing the atmospheric transmittance τ and upwelling atmospheric brightness temperature Tba↑. Better accuracies with Tg RMSEs less than 1 K are achieved at 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz and 36.5 GHz, and worse accuracies with RMSEs of 1.34 K and 4.35 K are obtained at 23.8 GHz and 89.0 GHz, respectively. Additionally, a simplified atmospheric correction method is developed when lacking sufficient input data to perform the generalized atmospheric correction method, and an emissivity-based atmospheric correction method is presented when the emissivity is known. Consequently, an appropriate atmospheric correction method can be selected based on the available data, frequency and required accuracy. Furthermore, this study provides a method to estimate τ and Tba↑ of different frequencies using the atmospheric parameters (total water vapor content in observation direction Lwv, total cloud liquid water content Lclw and mean temperature of cloud Tclw), which is important for simultaneously determining the land surface parameters using multi-frequency passive microwave satellite data.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atmospheric corrections of passive microwave data for estimating land surface temperature

Zeng-Lin Liu, Hua Wu, Bo-Hui Tang, Shi Qiu, and Zhao-Liang Li
Opt. Express 21(13) 15654-15663 (2013)

Land surface temperature retrieval from AMSR-E passive microwave data

Enyu Zhao, Caixia Gao, Xiaoguang Jiang, and Zhaoxia Liu
Opt. Express 25(20) A940-A952 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
    [Crossref]
  2. G. B. Franca and A. P. Cracknell, “Retrieval of land and sea-surface temperature using NOAA-11 AVHRR data in north-eastern Brazil,” Int. J. Remote Sens. 15(8), 1695–1712 (1994).
    [Crossref]
  3. Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
    [Crossref] [PubMed]
  4. Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
    [Crossref]
  5. M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).
  6. Panel on Frequency Allocations and Spectrum Protection for Scientific Uses, Committee on Radio Frequencies, Board on Physics and Astronomy, Division on Engineering and Physical Sciences, and National Academies of Sciences, Engineering, and Medicine, Handbook of Frequency Allocations and Spectrum Protection for Scientific Uses (The National Academies Press, 2015).
  7. B. C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39(6), 887–896 (2000).
    [Crossref] [PubMed]
  8. T. Harmel and M. Chami, “Influence of polarimetric satellite data measured in the visible region on aerosol detection and on the performance of atmospheric correction procedure over open ocean waters,” Opt. Express 19(21), 20960–20983 (2011).
    [Crossref] [PubMed]
  9. Z. L. Liu, H. Wu, B. H. Tang, S. Qiu, and Z. L. Li, “Atmospheric corrections of passive microwave data for estimating land surface temperature,” Opt. Express 21(13), 15654–15663 (2013).
    [Crossref] [PubMed]
  10. E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
    [Crossref]
  11. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
    [Crossref] [PubMed]
  12. M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western pacific region,” Opt. Express 20(2), 741–753 (2012).
    [Crossref] [PubMed]
  13. K. Das, P. K. Paul, and Z. Dobesova, “Present status of soil moisture estimation by microwave remote sensing,” Cogent Geosci. 1(1), 1–21 (2015).
    [Crossref]
  14. M. O. Jones, J. S. Kimball, L. A. Jones, and K. C. McDonald, “Satellite passive microwave detection of north America start of season,” Remote Sens. Environ. 123, 324–333 (2012).
    [Crossref]
  15. T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
    [Crossref]
  16. M. Owe, R. A. de Jeu, and T. R. Holmes, “Passive microwave retrieval of land surface properties,” Proc. SPIE 6211, 621108 (2006).
    [Crossref]
  17. S. S. Chen, X. Z. Chen, W. Q. Chen, Y. X. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
    [Crossref]
  18. M. Fily, A. Royer, K. Goita, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in Sub-Arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
    [Crossref]
  19. E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
    [Crossref]
  20. H. Shwetha and D. N. Kumar, “Prediction of land surface temperature under cloudy conditions using microwave remote sensing and ANN,” Aquatic Procedia 4, 1381–1388 (2015).
    [Crossref]
  21. C. T. Swift, ““Passive microwave remote-sensing of the ocean—Review,” Bound.-,” Layer Meteor. 18(1), 25–54 (1980).
    [Crossref]
  22. J. Y. Zeng, Z. Li, Q. Chen, and H. Y. Bi, “A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data,” Front. Earth Sci. 8(3), 427–438 (2014).
    [Crossref]
  23. M. Pan, A. K. Sahoo, and E. F. Wood, “Improving soil moisture retrievals from a physically-based radiative transfer model,” Remote Sens. Environ. 140, 130–140 (2014).
    [Crossref]
  24. X. J. Han, S. B. Duan, R. L. Tang, H. Q. Liu, and Z. L. Li, “Evaluation of temporal variations in soil moisture based on the microwave polarization difference index using in situ data over agricultural areas in China,” Int. J. Remote Sens. 36(19–20), 5003–5014 (2015).
    [Crossref]
  25. M. Owe, R. de Jeu, and J. Walker, “A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index,” IEEE Trans. Geosci. Remote Sens. 39(8), 1643–1654 (2001).
    [Crossref]
  26. M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
    [Crossref]
  27. Y. Qiu, J. Shi, L. Jiang, and K. Mao, “Study of atmospheric effects on AMSR-E microwave brightness temperature over Tibetan Plateau,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2007), pp. 1873–1876.
  28. L. Shi, Y. Qiu, J. Shi, and S. Zhao, “Atmospheric influences analysis in passive microwave remote sensing,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2015), pp. 2334–2337.
    [Crossref]
  29. M. H. Savoie, R. L. Armstrong, M. J. Brodzik, and J. R. Wang, “Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau,” Remote Sens. Environ. 113(12), 2661–2669 (2009).
    [Crossref]
  30. M. Tedesco and J. R. Wang, “Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping,” IEEE Geosci. Remote Sens. Lett. 3(3), 320–324 (2006).
    [Crossref]
  31. C. Prigent, W. B. Rossow, and E. Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. Atmos. 102(D18), 21867–21890 (1997).
    [Crossref]
  32. S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
    [Crossref]
  33. A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
    [Crossref]
  34. C. Prigent, F. Aires, and W. B. Rossow, “Land surface microwave emissivities over the globe for a decade,” Bull. Am. Meteorol. Soc. 87(11), 1573–1584 (2006).
    [Crossref]
  35. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Microwave Remote Sensing Fundamentals and Radiometry (Addison-Wesley Publishing Company, 1981).
  36. H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
    [Crossref]
  37. M. Drusch, E. F. Wood, and T. J. Jackson, “Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the southern great plains hydrology experiment 1997,” J. Hydrometeorol. 2(2), 181–192 (2001).
    [Crossref]
  38. Sharing earth observation resources, “Earth observation missions,” https://directory.eoportal.org/web/eoportal/satellite-missions .
  39. B. C. Gao and A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. Atmos. 95(D4), 3549–3564 (1990).
    [Crossref]
  40. Y. J. Kaufman and B. C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30(5), 871–884 (1992).
    [Crossref]
  41. D. B. Ji and J. C. Shi, “Cloud liquid water retrieval using AMSR-E on land,” Proc. SPIE 8523, 85231B (2012).
    [Crossref]
  42. C. O. M. E. T. Programme, “Emitted energy and spatial resolution (Footprint size),” http://www.meted.ucar.edu/npoess/microwave_topics/resources/print.htm .

2015 (3)

K. Das, P. K. Paul, and Z. Dobesova, “Present status of soil moisture estimation by microwave remote sensing,” Cogent Geosci. 1(1), 1–21 (2015).
[Crossref]

H. Shwetha and D. N. Kumar, “Prediction of land surface temperature under cloudy conditions using microwave remote sensing and ANN,” Aquatic Procedia 4, 1381–1388 (2015).
[Crossref]

X. J. Han, S. B. Duan, R. L. Tang, H. Q. Liu, and Z. L. Li, “Evaluation of temporal variations in soil moisture based on the microwave polarization difference index using in situ data over agricultural areas in China,” Int. J. Remote Sens. 36(19–20), 5003–5014 (2015).
[Crossref]

2014 (3)

J. Y. Zeng, Z. Li, Q. Chen, and H. Y. Bi, “A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data,” Front. Earth Sci. 8(3), 427–438 (2014).
[Crossref]

M. Pan, A. K. Sahoo, and E. F. Wood, “Improving soil moisture retrievals from a physically-based radiative transfer model,” Remote Sens. Environ. 140, 130–140 (2014).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
[Crossref]

2013 (2)

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z. L. Liu, H. Wu, B. H. Tang, S. Qiu, and Z. L. Li, “Atmospheric corrections of passive microwave data for estimating land surface temperature,” Opt. Express 21(13), 15654–15663 (2013).
[Crossref] [PubMed]

2012 (3)

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western pacific region,” Opt. Express 20(2), 741–753 (2012).
[Crossref] [PubMed]

D. B. Ji and J. C. Shi, “Cloud liquid water retrieval using AMSR-E on land,” Proc. SPIE 8523, 85231B (2012).
[Crossref]

M. O. Jones, J. S. Kimball, L. A. Jones, and K. C. McDonald, “Satellite passive microwave detection of north America start of season,” Remote Sens. Environ. 123, 324–333 (2012).
[Crossref]

2011 (2)

S. S. Chen, X. Z. Chen, W. Q. Chen, Y. X. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

T. Harmel and M. Chami, “Influence of polarimetric satellite data measured in the visible region on aerosol detection and on the performance of atmospheric correction procedure over open ocean waters,” Opt. Express 19(21), 20960–20983 (2011).
[Crossref] [PubMed]

2009 (2)

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

M. H. Savoie, R. L. Armstrong, M. J. Brodzik, and J. R. Wang, “Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau,” Remote Sens. Environ. 113(12), 2661–2669 (2009).
[Crossref]

2007 (1)

2006 (3)

C. Prigent, F. Aires, and W. B. Rossow, “Land surface microwave emissivities over the globe for a decade,” Bull. Am. Meteorol. Soc. 87(11), 1573–1584 (2006).
[Crossref]

M. Tedesco and J. R. Wang, “Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping,” IEEE Geosci. Remote Sens. Lett. 3(3), 320–324 (2006).
[Crossref]

M. Owe, R. A. de Jeu, and T. R. Holmes, “Passive microwave retrieval of land surface properties,” Proc. SPIE 6211, 621108 (2006).
[Crossref]

2005 (2)

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
[Crossref]

2004 (1)

M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
[Crossref]

2003 (2)

M. Fily, A. Royer, K. Goita, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in Sub-Arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

2001 (2)

M. Drusch, E. F. Wood, and T. J. Jackson, “Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the southern great plains hydrology experiment 1997,” J. Hydrometeorol. 2(2), 181–192 (2001).
[Crossref]

M. Owe, R. de Jeu, and J. Walker, “A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index,” IEEE Trans. Geosci. Remote Sens. 39(8), 1643–1654 (2001).
[Crossref]

2000 (1)

1999 (1)

E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
[Crossref]

1997 (2)

C. Prigent, W. B. Rossow, and E. Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. Atmos. 102(D18), 21867–21890 (1997).
[Crossref]

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

1994 (1)

G. B. Franca and A. P. Cracknell, “Retrieval of land and sea-surface temperature using NOAA-11 AVHRR data in north-eastern Brazil,” Int. J. Remote Sens. 15(8), 1695–1712 (1994).
[Crossref]

1992 (1)

Y. J. Kaufman and B. C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30(5), 871–884 (1992).
[Crossref]

1991 (1)

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

1990 (1)

B. C. Gao and A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. Atmos. 95(D4), 3549–3564 (1990).
[Crossref]

1985 (1)

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

1980 (1)

C. T. Swift, ““Passive microwave remote-sensing of the ocean—Review,” Bound.-,” Layer Meteor. 18(1), 25–54 (1980).
[Crossref]

Ahmad, Z.

Aires, F.

C. Prigent, F. Aires, and W. B. Rossow, “Land surface microwave emissivities over the globe for a decade,” Bull. Am. Meteorol. Soc. 87(11), 1573–1584 (2006).
[Crossref]

Armstrong, R. L.

M. H. Savoie, R. L. Armstrong, M. J. Brodzik, and J. R. Wang, “Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau,” Remote Sens. Environ. 113(12), 2661–2669 (2009).
[Crossref]

Attema, E.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Berger, M.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Bi, H. Y.

J. Y. Zeng, Z. Li, Q. Chen, and H. Y. Bi, “A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data,” Front. Earth Sci. 8(3), 427–438 (2014).
[Crossref]

Bi, Y.

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Bi, Y. Y.

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
[Crossref]

Boukabara, S.

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

Brodzik, M. J.

M. H. Savoie, R. L. Armstrong, M. J. Brodzik, and J. R. Wang, “Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau,” Remote Sens. Environ. 113(12), 2661–2669 (2009).
[Crossref]

Brown, P. D.

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

Cady-Pereira, K.

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

Calvet, J. C.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Chami, M.

Chanzy, A.

M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
[Crossref]

Chedin, A.

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

Chen, Q.

J. Y. Zeng, Z. Li, Q. Chen, and H. Y. Bi, “A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data,” Front. Earth Sci. 8(3), 427–438 (2014).
[Crossref]

Chen, S. S.

S. S. Chen, X. Z. Chen, W. Q. Chen, Y. X. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Chen, W. Q.

S. S. Chen, X. Z. Chen, W. Q. Chen, Y. X. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Chen, X. Z.

S. S. Chen, X. Z. Chen, W. Q. Chen, Y. X. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Clough, S. A.

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

Cracknell, A. P.

G. B. Franca and A. P. Cracknell, “Retrieval of land and sea-surface temperature using NOAA-11 AVHRR data in north-eastern Brazil,” Int. J. Remote Sens. 15(8), 1695–1712 (1994).
[Crossref]

Das, K.

K. Das, P. K. Paul, and Z. Dobesova, “Present status of soil moisture estimation by microwave remote sensing,” Cogent Geosci. 1(1), 1–21 (2015).
[Crossref]

Davis, C. O.

de Jeu, R.

M. Owe, R. de Jeu, and J. Walker, “A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index,” IEEE Trans. Geosci. Remote Sens. 39(8), 1643–1654 (2001).
[Crossref]

de Jeu, R. A.

M. Owe, R. A. de Jeu, and T. R. Holmes, “Passive microwave retrieval of land surface properties,” Proc. SPIE 6211, 621108 (2006).
[Crossref]

Delamere, J. S.

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

Di Leo, E. V.

T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
[Crossref]

Dobesova, Z.

K. Das, P. K. Paul, and Z. Dobesova, “Present status of soil moisture estimation by microwave remote sensing,” Cogent Geosci. 1(1), 1–21 (2015).
[Crossref]

Drusch, M.

M. Drusch, E. F. Wood, and T. J. Jackson, “Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the southern great plains hydrology experiment 1997,” J. Hydrometeorol. 2(2), 181–192 (2001).
[Crossref]

Duan, S. B.

X. J. Han, S. B. Duan, R. L. Tang, H. Q. Liu, and Z. L. Li, “Evaluation of temporal variations in soil moisture based on the microwave polarization difference index using in situ data over agricultural areas in China,” Int. J. Remote Sens. 36(19–20), 5003–5014 (2015).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
[Crossref]

ElSaleous, N.

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

Ferrazzoli, P.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Fily, M.

M. Fily, A. Royer, K. Goita, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in Sub-Arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

Font, J.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Franca, G. B.

G. B. Franca and A. P. Cracknell, “Retrieval of land and sea-surface temperature using NOAA-11 AVHRR data in north-eastern Brazil,” Int. J. Remote Sens. 15(8), 1695–1712 (1994).
[Crossref]

Gao, B. C.

B. C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39(6), 887–896 (2000).
[Crossref] [PubMed]

Y. J. Kaufman and B. C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30(5), 871–884 (1992).
[Crossref]

B. C. Gao and A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. Atmos. 95(D4), 3549–3564 (1990).
[Crossref]

Goetz, A. F. H.

B. C. Gao and A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. Atmos. 95(D4), 3549–3564 (1990).
[Crossref]

Goita, K.

M. Fily, A. Royer, K. Goita, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in Sub-Arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

Greco, M.

T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
[Crossref]

Han, X. J.

X. J. Han, S. B. Duan, R. L. Tang, H. Q. Liu, and Z. L. Li, “Evaluation of temporal variations in soil moisture based on the microwave polarization difference index using in situ data over agricultural areas in China,” Int. J. Remote Sens. 36(19–20), 5003–5014 (2015).
[Crossref]

Harmel, T.

Holmes, T. R.

M. Owe, R. A. de Jeu, and T. R. Holmes, “Passive microwave retrieval of land surface properties,” Proc. SPIE 6211, 621108 (2006).
[Crossref]

Hufford, G. A.

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

Iacono, M.

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

Jackson, T. J.

M. Drusch, E. F. Wood, and T. J. Jackson, “Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the southern great plains hydrology experiment 1997,” J. Hydrometeorol. 2(2), 181–192 (2001).
[Crossref]

Ji, D. B.

D. B. Ji and J. C. Shi, “Cloud liquid water retrieval using AMSR-E on land,” Proc. SPIE 8523, 85231B (2012).
[Crossref]

Jiang, L.

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western pacific region,” Opt. Express 20(2), 741–753 (2012).
[Crossref] [PubMed]

Y. Qiu, J. Shi, L. Jiang, and K. Mao, “Study of atmospheric effects on AMSR-E microwave brightness temperature over Tibetan Plateau,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2007), pp. 1873–1876.

Jones, L. A.

M. O. Jones, J. S. Kimball, L. A. Jones, and K. C. McDonald, “Satellite passive microwave detection of north America start of season,” Remote Sens. Environ. 123, 324–333 (2012).
[Crossref]

Jones, M. O.

M. O. Jones, J. S. Kimball, L. A. Jones, and K. C. McDonald, “Satellite passive microwave detection of north America start of season,” Remote Sens. Environ. 123, 324–333 (2012).
[Crossref]

Justice, C. O.

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

Kaufman, Y. J.

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

Y. J. Kaufman and B. C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30(5), 871–884 (1992).
[Crossref]

Kerr, Y.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Kerr, Y. H.

M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
[Crossref]

Kimball, J. S.

M. O. Jones, J. S. Kimball, L. A. Jones, and K. C. McDonald, “Satellite passive microwave detection of north America start of season,” Remote Sens. Environ. 123, 324–333 (2012).
[Crossref]

Kumar, D. N.

H. Shwetha and D. N. Kumar, “Prediction of land surface temperature under cloudy conditions using microwave remote sensing and ANN,” Aquatic Procedia 4, 1381–1388 (2015).
[Crossref]

Lacava, T.

T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
[Crossref]

Li, D.

S. S. Chen, X. Z. Chen, W. Q. Chen, Y. X. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Li, L.

E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
[Crossref]

Li, Z.

J. Y. Zeng, Z. Li, Q. Chen, and H. Y. Bi, “A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data,” Front. Earth Sci. 8(3), 427–438 (2014).
[Crossref]

Li, Z. L.

X. J. Han, S. B. Duan, R. L. Tang, H. Q. Liu, and Z. L. Li, “Evaluation of temporal variations in soil moisture based on the microwave polarization difference index using in situ data over agricultural areas in China,” Int. J. Remote Sens. 36(19–20), 5003–5014 (2015).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
[Crossref]

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z. L. Liu, H. Wu, B. H. Tang, S. Qiu, and Z. L. Li, “Atmospheric corrections of passive microwave data for estimating land surface temperature,” Opt. Express 21(13), 15654–15663 (2013).
[Crossref] [PubMed]

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Liebe, H. J.

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

Liu, H. Q.

X. J. Han, S. B. Duan, R. L. Tang, H. Q. Liu, and Z. L. Li, “Evaluation of temporal variations in soil moisture based on the microwave polarization difference index using in situ data over agricultural areas in China,” Int. J. Remote Sens. 36(19–20), 5003–5014 (2015).
[Crossref]

Liu, Z. L.

Lopez-Baeza, E.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Manabe, T.

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

Mao, K.

Y. Qiu, J. Shi, L. Jiang, and K. Mao, “Study of atmospheric effects on AMSR-E microwave brightness temperature over Tibetan Plateau,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2007), pp. 1873–1876.

Martino, G.

T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
[Crossref]

Matthews, E.

C. Prigent, W. B. Rossow, and E. Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. Atmos. 102(D18), 21867–21890 (1997).
[Crossref]

McDonald, K. C.

M. O. Jones, J. S. Kimball, L. A. Jones, and K. C. McDonald, “Satellite passive microwave detection of north America start of season,” Remote Sens. Environ. 123, 324–333 (2012).
[Crossref]

Mlawer, E.

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

Montes, M. J.

Moulinier, P.

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

Njoku, E. G.

E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
[Crossref]

Owe, M.

M. Owe, R. A. de Jeu, and T. R. Holmes, “Passive microwave retrieval of land surface properties,” Proc. SPIE 6211, 621108 (2006).
[Crossref]

M. Owe, R. de Jeu, and J. Walker, “A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index,” IEEE Trans. Geosci. Remote Sens. 39(8), 1643–1654 (2001).
[Crossref]

Pan, M.

M. Pan, A. K. Sahoo, and E. F. Wood, “Improving soil moisture retrievals from a physically-based radiative transfer model,” Remote Sens. Environ. 140, 130–140 (2014).
[Crossref]

Parde, M.

M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
[Crossref]

Paul, P. K.

K. Das, P. K. Paul, and Z. Dobesova, “Present status of soil moisture estimation by microwave remote sensing,” Cogent Geosci. 1(1), 1–21 (2015).
[Crossref]

Pergola, N.

T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
[Crossref]

Prigent, C.

C. Prigent, F. Aires, and W. B. Rossow, “Land surface microwave emissivities over the globe for a decade,” Bull. Am. Meteorol. Soc. 87(11), 1573–1584 (2006).
[Crossref]

M. Fily, A. Royer, K. Goita, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in Sub-Arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

C. Prigent, W. B. Rossow, and E. Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. Atmos. 102(D18), 21867–21890 (1997).
[Crossref]

Privette, J. L.

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

Qiu, S.

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z. L. Liu, H. Wu, B. H. Tang, S. Qiu, and Z. L. Li, “Atmospheric corrections of passive microwave data for estimating land surface temperature,” Opt. Express 21(13), 15654–15663 (2013).
[Crossref] [PubMed]

Qiu, Y.

L. Shi, Y. Qiu, J. Shi, and S. Zhao, “Atmospheric influences analysis in passive microwave remote sensing,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2015), pp. 2334–2337.
[Crossref]

Y. Qiu, J. Shi, L. Jiang, and K. Mao, “Study of atmospheric effects on AMSR-E microwave brightness temperature over Tibetan Plateau,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2007), pp. 1873–1876.

Rast, M.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Remer, L.

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

Roger, J. C.

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

Rossow, W. B.

C. Prigent, F. Aires, and W. B. Rossow, “Land surface microwave emissivities over the globe for a decade,” Bull. Am. Meteorol. Soc. 87(11), 1573–1584 (2006).
[Crossref]

C. Prigent, W. B. Rossow, and E. Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. Atmos. 102(D18), 21867–21890 (1997).
[Crossref]

Royer, A.

M. Fily, A. Royer, K. Goita, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in Sub-Arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

Sahoo, A. K.

M. Pan, A. K. Sahoo, and E. F. Wood, “Improving soil moisture retrievals from a physically-based radiative transfer model,” Remote Sens. Environ. 140, 130–140 (2014).
[Crossref]

Saleh, K.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Sannazzaro, F.

T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
[Crossref]

Savoie, M. H.

M. H. Savoie, R. L. Armstrong, M. J. Brodzik, and J. R. Wang, “Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau,” Remote Sens. Environ. 113(12), 2661–2669 (2009).
[Crossref]

Scott, N. A.

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

Shephard, M. W.

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

Shi, J.

Y. Qiu, J. Shi, L. Jiang, and K. Mao, “Study of atmospheric effects on AMSR-E microwave brightness temperature over Tibetan Plateau,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2007), pp. 1873–1876.

L. Shi, Y. Qiu, J. Shi, and S. Zhao, “Atmospheric influences analysis in passive microwave remote sensing,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2015), pp. 2334–2337.
[Crossref]

Shi, J. C.

D. B. Ji and J. C. Shi, “Cloud liquid water retrieval using AMSR-E on land,” Proc. SPIE 8523, 85231B (2012).
[Crossref]

Shi, L.

L. Shi, Y. Qiu, J. Shi, and S. Zhao, “Atmospheric influences analysis in passive microwave remote sensing,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2015), pp. 2334–2337.
[Crossref]

Shi, W.

Shwetha, H.

H. Shwetha and D. N. Kumar, “Prediction of land surface temperature under cloudy conditions using microwave remote sensing and ANN,” Aquatic Procedia 4, 1381–1388 (2015).
[Crossref]

Simmonds, L.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Skou, N.

M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
[Crossref]

Sobjaerg, S. S.

M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
[Crossref]

Sobrino, J. A.

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Su, Y. X.

S. S. Chen, X. Z. Chen, W. Q. Chen, Y. X. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Swift, C. T.

C. T. Swift, ““Passive microwave remote-sensing of the ocean—Review,” Bound.-,” Layer Meteor. 18(1), 25–54 (1980).
[Crossref]

Tang, B.

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Tang, B. H.

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
[Crossref]

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z. L. Liu, H. Wu, B. H. Tang, S. Qiu, and Z. L. Li, “Atmospheric corrections of passive microwave data for estimating land surface temperature,” Opt. Express 21(13), 15654–15663 (2013).
[Crossref] [PubMed]

Tang, R.

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Tang, R. L.

X. J. Han, S. B. Duan, R. L. Tang, H. Q. Liu, and Z. L. Li, “Evaluation of temporal variations in soil moisture based on the microwave polarization difference index using in situ data over agricultural areas in China,” Int. J. Remote Sens. 36(19–20), 5003–5014 (2015).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
[Crossref]

Tanre, D.

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

Tedesco, M.

M. Tedesco and J. R. Wang, “Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping,” IEEE Geosci. Remote Sens. Lett. 3(3), 320–324 (2006).
[Crossref]

Tramutoli, V.

T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
[Crossref]

van de Griend, A.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

van den Hurk, B.

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Vermote, E. F.

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

Wahiche, C.

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

Waldteufel, P.

M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
[Crossref]

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Walker, J.

M. Owe, R. de Jeu, and J. Walker, “A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index,” IEEE Trans. Geosci. Remote Sens. 39(8), 1643–1654 (2001).
[Crossref]

Wan, Z.

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Wan, Z. M.

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Wang, J. R.

M. H. Savoie, R. L. Armstrong, M. J. Brodzik, and J. R. Wang, “Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau,” Remote Sens. Environ. 113(12), 2661–2669 (2009).
[Crossref]

M. Tedesco and J. R. Wang, “Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping,” IEEE Geosci. Remote Sens. Lett. 3(3), 320–324 (2006).
[Crossref]

Wang, M.

Wang, N.

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Wigneron, J. P.

M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
[Crossref]

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Wood, E. F.

M. Pan, A. K. Sahoo, and E. F. Wood, “Improving soil moisture retrievals from a physically-based radiative transfer model,” Remote Sens. Environ. 140, 130–140 (2014).
[Crossref]

M. Drusch, E. F. Wood, and T. J. Jackson, “Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the southern great plains hydrology experiment 1997,” J. Hydrometeorol. 2(2), 181–192 (2001).
[Crossref]

Wu, H.

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
[Crossref]

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z. L. Liu, H. Wu, B. H. Tang, S. Qiu, and Z. L. Li, “Atmospheric corrections of passive microwave data for estimating land surface temperature,” Opt. Express 21(13), 15654–15663 (2013).
[Crossref] [PubMed]

Yan, G.

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Yan, G. J.

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Zeng, J. Y.

J. Y. Zeng, Z. Li, Q. Chen, and H. Y. Bi, “A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data,” Front. Earth Sci. 8(3), 427–438 (2014).
[Crossref]

Zhang, X.

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Zhao, S.

L. Shi, Y. Qiu, J. Shi, and S. Zhao, “Atmospheric influences analysis in passive microwave remote sensing,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2015), pp. 2334–2337.
[Crossref]

Zhou, C.

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Zhou, G. Q.

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
[Crossref]

Appl. Opt. (1)

Aquatic Procedia (1)

H. Shwetha and D. N. Kumar, “Prediction of land surface temperature under cloudy conditions using microwave remote sensing and ANN,” Aquatic Procedia 4, 1381–1388 (2015).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

C. Prigent, F. Aires, and W. B. Rossow, “Land surface microwave emissivities over the globe for a decade,” Bull. Am. Meteorol. Soc. 87(11), 1573–1584 (2006).
[Crossref]

Cogent Geosci. (1)

K. Das, P. K. Paul, and Z. Dobesova, “Present status of soil moisture estimation by microwave remote sensing,” Cogent Geosci. 1(1), 1–21 (2015).
[Crossref]

ESA Bull. (1)

M. Berger, Y. Kerr, J. Font, J. P. Wigneron, J. C. Calvet, K. Saleh, E. Lopez-Baeza, L. Simmonds, P. Ferrazzoli, B. van den Hurk, P. Waldteufel, A. van de Griend, E. Attema, and M. Rast, “Measuring the moisture in the earth’s soil—Advancing the science with ESA’s SMOS mission,” ESA Bull. 115, 40–45 (2003).

Front. Earth Sci. (1)

J. Y. Zeng, Z. Li, Q. Chen, and H. Y. Bi, “A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data,” Front. Earth Sci. 8(3), 427–438 (2014).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

M. Tedesco and J. R. Wang, “Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping,” IEEE Geosci. Remote Sens. Lett. 3(3), 320–324 (2006).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (4)

E. G. Njoku and L. Li, “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz,” IEEE Trans. Geosci. Remote Sens. 37(1), 79–93 (1999).
[Crossref]

M. Owe, R. de Jeu, and J. Walker, “A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index,” IEEE Trans. Geosci. Remote Sens. 39(8), 1643–1654 (2001).
[Crossref]

M. Parde, J. P. Wigneron, P. Waldteufel, Y. H. Kerr, A. Chanzy, S. S. Sobjaerg, and N. Skou, “N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields,” IEEE Trans. Geosci. Remote Sens. 42(6), 1168–1178 (2004).
[Crossref]

Y. J. Kaufman and B. C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30(5), 871–884 (1992).
[Crossref]

Int. J. Appl. Earth Obs. Geoinf. (1)

S. S. Chen, X. Z. Chen, W. Q. Chen, Y. X. Su, and D. Li, “A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over southern China during the strong snow disaster of 2008,” Int. J. Appl. Earth Obs. Geoinf. 13(1), 140–151 (2011).
[Crossref]

Int. J. Infrared Millim. Waves (1)

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

Int. J. Remote Sens. (3)

G. B. Franca and A. P. Cracknell, “Retrieval of land and sea-surface temperature using NOAA-11 AVHRR data in north-eastern Brazil,” Int. J. Remote Sens. 15(8), 1695–1712 (1994).
[Crossref]

Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B. H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

X. J. Han, S. B. Duan, R. L. Tang, H. Q. Liu, and Z. L. Li, “Evaluation of temporal variations in soil moisture based on the microwave polarization difference index using in situ data over agricultural areas in China,” Int. J. Remote Sens. 36(19–20), 5003–5014 (2015).
[Crossref]

J. Appl. Meteorol. (1)

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

J. Geophys. Res. Atmos. (3)

C. Prigent, W. B. Rossow, and E. Matthews, “Microwave land surface emissivities estimated from SSM/I observations,” J. Geophys. Res. Atmos. 102(D18), 21867–21890 (1997).
[Crossref]

E. F. Vermote, N. ElSaleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, “Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation,” J. Geophys. Res. Atmos. 102(D14), 17131–17141 (1997).
[Crossref]

B. C. Gao and A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. Atmos. 95(D4), 3549–3564 (1990).
[Crossref]

J. Hydrometeorol. (1)

M. Drusch, E. F. Wood, and T. J. Jackson, “Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the southern great plains hydrology experiment 1997,” J. Hydrometeorol. 2(2), 181–192 (2001).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

S. A. Clough, M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[Crossref]

Layer Meteor. (1)

C. T. Swift, ““Passive microwave remote-sensing of the ocean—Review,” Bound.-,” Layer Meteor. 18(1), 25–54 (1980).
[Crossref]

Nat. Hazards Earth Syst. Sci. (1)

T. Lacava, M. Greco, E. V. Di Leo, G. Martino, N. Pergola, F. Sannazzaro, and V. Tramutoli, “Monitoring soil wetness variations by means of satellite passive microwave observations: the hydroptimet study cases,” Nat. Hazards Earth Syst. Sci. 5(4), 583–592 (2005).
[Crossref]

Opt. Express (4)

Proc. SPIE (2)

M. Owe, R. A. de Jeu, and T. R. Holmes, “Passive microwave retrieval of land surface properties,” Proc. SPIE 6211, 621108 (2006).
[Crossref]

D. B. Ji and J. C. Shi, “Cloud liquid water retrieval using AMSR-E on land,” Proc. SPIE 8523, 85231B (2012).
[Crossref]

Remote Sens. (1)

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, R. L. Tang, Y. Y. Bi, and G. Q. Zhou, “Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data,” Remote Sens. 6(4), 3247–3262 (2014).
[Crossref]

Remote Sens. Environ. (4)

M. Fily, A. Royer, K. Goita, and C. Prigent, “A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in Sub-Arctic areas,” Remote Sens. Environ. 85(3), 328–338 (2003).
[Crossref]

M. O. Jones, J. S. Kimball, L. A. Jones, and K. C. McDonald, “Satellite passive microwave detection of north America start of season,” Remote Sens. Environ. 123, 324–333 (2012).
[Crossref]

M. Pan, A. K. Sahoo, and E. F. Wood, “Improving soil moisture retrievals from a physically-based radiative transfer model,” Remote Sens. Environ. 140, 130–140 (2014).
[Crossref]

M. H. Savoie, R. L. Armstrong, M. J. Brodzik, and J. R. Wang, “Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau,” Remote Sens. Environ. 113(12), 2661–2669 (2009).
[Crossref]

Sensors (Basel) (1)

Z. L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Other (6)

Panel on Frequency Allocations and Spectrum Protection for Scientific Uses, Committee on Radio Frequencies, Board on Physics and Astronomy, Division on Engineering and Physical Sciences, and National Academies of Sciences, Engineering, and Medicine, Handbook of Frequency Allocations and Spectrum Protection for Scientific Uses (The National Academies Press, 2015).

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Microwave Remote Sensing Fundamentals and Radiometry (Addison-Wesley Publishing Company, 1981).

Y. Qiu, J. Shi, L. Jiang, and K. Mao, “Study of atmospheric effects on AMSR-E microwave brightness temperature over Tibetan Plateau,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2007), pp. 1873–1876.

L. Shi, Y. Qiu, J. Shi, and S. Zhao, “Atmospheric influences analysis in passive microwave remote sensing,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 2015), pp. 2334–2337.
[Crossref]

C. O. M. E. T. Programme, “Emitted energy and spatial resolution (Footprint size),” http://www.meted.ucar.edu/npoess/microwave_topics/resources/print.htm .

Sharing earth observation resources, “Earth observation missions,” https://directory.eoportal.org/web/eoportal/satellite-missions .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1 Flowchart for generating the simulated data.
Fig. 2
Fig. 2 Scatter plot of WV vs T0 of 80 selected atmospheric profiles (60 atmospheric profiles are used for the simulation, and 20 are used for the accuracy assessment).
Fig. 3
Fig. 3 Means and ranges of τ (a) and Tba↑ (b) at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 4
Fig. 4 Means (a) and RMSEs (b) of ΔT for each emissivity (i.e., 0.6, 0.7, 0.8, 0.9 and 1.0) at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 5
Fig. 5 Ranges of ΔT for each emissivity (i.e., 0.6, 0.7, 0.8, 0.9 and 1.0) at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 6
Fig. 6 Means and standard deviations of Av at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 7
Fig. 7 Scatter plots of Lwv vs Av at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 8
Fig. 8 Means and standard deviations of AO at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 9
Fig. 9 Scatter plots of Lwv vs AO at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 10
Fig. 10 Means and standard deviations of AL at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 11
Fig. 11 Scatter plots between Tclw vs AL/Lclw (the unit of Lclw is mm) at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 12
Fig. 12 RMSEs of τ estimated from Eq. (10) using the coefficients given in Tables 1-3 at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 13
Fig. 13 Scatter plots of Lwv vs Ta at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 14
Fig. 14 RMSEs of Tba↑ estimated with Eq. (13) using the coefficients given in Tables 1-4 at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 15
Fig. 15 Histograms of the differences between actual and estimated values of Tg, which were obtained from Eq. (14) using the coefficients in Table 6 at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 16
Fig. 16 Biases and RMSEs of Tg retrieved from Eq. (14) using the coefficients given in Table 6 with Data set 2 at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 17
Fig. 17 Sensitivities of input variables X (i.e., Tb, Lwv, Lclw and Tclw) to Tg at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 18
Fig. 18 Variation of δTg caused by the errors of the algorithm, Tb, Lwv, Lclw and Tclw, with increasing Lwv at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 19
Fig. 19 RMSEs of the differences between the actual and estimated values of Tg, which were obtained from Eq. (1) using the values of Tba↑ and τ given in Table 7, at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).
Fig. 20
Fig. 20 Relationships between ε and the biases of the differences between the actual and estimated values of Tg.
Fig. 21
Fig. 21 RMSEs of the differences between the actual and estimated values of Tg, which were obtained from Eqs. (16) and (17) using the coefficients given in Table 8, for each emissivity (i.e., 0.6, 0.7, 0.8, 0.9 and 1.0) at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).

Tables (8)

Tables Icon

Table 1 Coefficients and RMSEs for the relationships between Lwv and Av at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).

Tables Icon

Table 2 Values of bO and RMSEs for Eq. (6) at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).

Tables Icon

Table 3 Coefficients and RMSEs for the relationships between Tclw and AL/Lclw at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).

Tables Icon

Table 4 Coefficients and RMSEs for the relationships between Lwv and Ta at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).

Tables Icon

Table 5 RMSEs of Tg estimated from Eq. (14) using the coefficients shown in Tables 1-4 at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).

Tables Icon

Table 6 New coefficients of Eq. (14) determined by nonlinear fitting with Data set 1 and the RMSEs of Tg estimated from Eq. (14) using the new coefficients at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).

Tables Icon

Table 7 Values of Tba↑ and τ of the simplified atmospheric correction method at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).

Tables Icon

Table 8 Coefficients m and n determined by linear regression using Data set 1 for Eq. (16) at each frequency (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

T b = T ba +τ T g
T g =ε T s +( 1ε ) T ba +( 1ε )τ T bc
ΔT= T g T b =( 1τ ) T g T ba
A I = A V + A O + A L
τ= e A I = e A V × e A O × e A L = τ V × τ O × τ L
A V = a V × L wv
A O = b O
A L = 0.6π L clw λ im( 1 ε ' 2+ ε ' )
A L / L clw = a L × T clw + b L
A L = L clw ×( a L × T clw + b L )
τ= e ( a V × L wv + b O + L clw ×( a L × T clw + b L ) )
T ba =( 1τ ) T a
T a = a T L wv 2 + b T L wv + c T
T ba =( 1 e ( a V × L wv + b O + L clw ×( a L × T clw + b L ) ) )×( a T L wv 2 + b T L wv + c T )
T g = ( T b T ba ) /τ
δ T g = δal g 2 +δ T b 2 +δ L wv 2 +δ L clw 2 +δ T clw 2
with δX=| T g X ΔX |
bias=m×ε+n
T g = T b +bias

Metrics