Abstract

The optical scattering property of a target is the essential signal for passive remote sensing. In this study, we performed the photopolarimetric measurements of a manmade target in the wavelength range of 400-1000 nm over the hemispherical directions using the Northeast Normal University Laboratory Goniospectrometer System (NENULGS). We discussed the influence of the absorption of a polarizer on the measured Stokes parameters, and used the BRF (bidirectional reflectance factor) and BPRF (bidirectional polarized reflectance factor) to characterize the scattering property of our sample at selected wavelengths. These measured BRFs and BPRFs were also compared with the modeled results using a semi-empirical photometric model and a semi-empirical polarimetric model, respectively. Subsequently, the modeled BRFs and BPRFs were used to simulate the degree of linear polarization (DoLP) of a man-made target, which provided a comparison with the measured DoLP. We found that (1) the I parameter reflectance factor (IpRF) can effectively represent the BRF if we considered the absorption of the polarizer, (2) the modeled photopolarimetric results of manmade target were in good agreement with the measurements, and (3) the simulated DoLP of manmade target also provided a good match with the measured DoLP, with an average relative difference of approximately 0.2 for all the selected wavelengths. Our results appeared very promising for proving that the polarimetric measurement is a very effective and useful method for remote sensing applications as well as deepening our understanding of the optical properties of reflected light from the manmade object as ours.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces

Zhongqiu Sun, Yunfeng Lv, and Zhijun Tong
Opt. Express 24(6) A612-A634 (2016)

Improved atmospheric effects elimination method for pBRDF models of painted surfaces

Ying Zhang, Yi Zhang, Huijie Zhao, and Zeying Wang
Opt. Express 25(14) 16458-16475 (2017)

Simple and fast approach to exploit the spectral reflection properties of liquid media

Si-Zhe Tian, Yong Shuai, Yan-Ming Guo, Bo-Shu Jiang, Guo-Hua Zhang, and He-Ping Tan
Appl. Opt. 57(30) 9046-9052 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Singh, “Digital change detection techniques using remotely-sensed data,” Int. J. Remote Sens. 10(6), 989–1003 (1989).
    [Crossref]
  2. C. Pohl and J. L. Van Genderen, “Multisensor image fusion in remote sensing: Concepts, methods and applications,” Int. J. Remote Sens. 19(5), 823–854 (1998).
    [Crossref]
  3. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  4. D. A. Talmage and P. J. Curran, “Remote sensing using partially polarized light,” Int. J. Remote Sens. 7(1), 47–64 (1986).
    [Crossref]
  5. L. B. Wolff, “Polarization-based meterial classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
    [Crossref]
  6. L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
    [Crossref]
  7. O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45(17), 4062–4068 (2006).
    [Crossref] [PubMed]
  8. G. A. Atkinson and E. R. Hancock, “Recovery of surface orientation from diffuse polarization,” IEEE Trans. Image Process. 15(6), 1653–1664 (2006).
    [Crossref] [PubMed]
  9. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35(11), 1855–1870 (1996).
    [Crossref] [PubMed]
  10. J. R. Shell, “Polarimetric remote sensing in the visible to near infrared,” (Rochester Institute of Technology, 2005).
  11. P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
    [Crossref]
  12. G. A. Atkinson and E. R. Hancock, “Shape estimation using polarization and shading from two views,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2001–2017 (2007).
    [Crossref] [PubMed]
  13. Y. Zhao, L. Zhang, D. Zhang, and Q. Pan, “Object separation by polarimetric and spectral imagery fusion,” Comput. Vis. Image Underst. 113(8), 855–866 (2009).
    [Crossref]
  14. L. Meng and J. P. Kerekes, “Adaptive target detection with a polarization-sensitive optical system,” Appl. Opt. 50(13), 1925–1932 (2011).
    [Crossref] [PubMed]
  15. J.-L. Roujean, M. Leroy, and P.-Y. Deschamps, “A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97(D18), 20455–20468 (1992).
    [Crossref]
  16. M. Ottaviani, B. Cairns, R. Ferrare, and R. Rogers, “Iterative atmospheric correction scheme and the polarization color of alpine snow,” J. Quant. Spectrosc. Radiat. Transf. 113(10), 789–804 (2012).
    [Crossref]
  17. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57(9), 1105 (1967).
    [Crossref]
  18. R. G. Priest, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988 (2002).
    [Crossref]
  19. V. Thilak, D. G. Voelz, and C. D. Creusere, “Polarization-based index of refraction and reflection angle estimation for remote sensing applications,” Appl. Opt. 46(30), 7527–7536 (2007).
    [Crossref] [PubMed]
  20. L. Bai, Z. Wu, Y. Cao, and X. Huang, “Spectral scattering characteristics of space target in near-UV to visible bands,” Opt. Express 22(7), 8515–8524 (2014).
    [Crossref] [PubMed]
  21. L. Bai, Z. Wu, X. Zou, and Y. Cao, “Seven-parameter statistical model for BRDF in the UV band,” Opt. Express 20(11), 12085–12094 (2012).
    [Crossref] [PubMed]
  22. I. G. Renhorn and G. D. Boreman, “Analytical fitting model for rough-surface BRDF,” Opt. Express 16(17), 12892–12898 (2008).
    [Crossref] [PubMed]
  23. M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, “A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces,” Opt. Express 17(24), 22138–22153 (2009).
    [Crossref] [PubMed]
  24. I. G. E. Renhorn, T. Hallberg, D. Bergström, and G. D. Boreman, “Four-parameter model for polarization-resolved rough-surface BRDF,” Opt. Express 19(2), 1027–1036 (2011).
    [Crossref] [PubMed]
  25. I. G. Renhorn, T. Hallberg, and G. D. Boreman, “Efficient polarimetric BRDF model,” Opt. Express 23(24), 31253–31273 (2015).
    [Crossref] [PubMed]
  26. M. W. Hyde, S. C. Cain, J. D. Schmidt, and M. J. Havrilla, “Material classification of an unknown object using turbulence-degraded polarimetric imagery,” IEEE Trans. Geosci. Remote Sens. 49(1), 264–276 (2011).
    [Crossref]
  27. L. Meng and J. P. Kerekes, “An analytical model for optical polarimetric imaging systems,” IEEE Trans. Geosci. Remote Sens. 52(10), 6615–6626 (2014).
    [Crossref]
  28. D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
    [Crossref]
  29. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
    [Crossref]
  30. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Nat. Bur. Stand. (U.S.) Monograph 160 (1977).
    [Crossref]
  31. J. Suomalainen, T. Hakala, J. Peltoniemi, and E. Puttonen, “Polarised multiangular reflectance measurements using the finnish geodetic institute field goniospectrometer,” Sensors (Basel) 9(5), 3891–3907 (2009).
    [Crossref] [PubMed]
  32. J. Peltoniemi, T. Hakala, J. Suomalainen, and E. Puttonen, “Polarised bidirectional reflectance factor measurements from soil, stones, and snow,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1940–1953 (2009).
    [Crossref]
  33. J. Suomalainen, T. Hakala, E. Puttonen, and J. Peltoniemi, “Polarised bidirectional reflectance factor measurements from vegetated land surfaces,” J. Quant. Spectrosc. Radiat. Transf. 110(12), 1044–1056 (2009).
    [Crossref]
  34. F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
    [Crossref]
  35. F. M. Bréon, D. Tanré, P. Lecomte, and M. Herman, “Polarized reflectance of bare soils and vegetation: measurements and models,” IEEE Trans. Geosci. Remote Sens. 33(2), 487–499 (1995).
    [Crossref]
  36. D. S. Kimes and J. A. Kirchner, “Irradiance measurement errors due to the assumption of a Lambertian reference panel,” Remote Sens. Environ. 12(2), 141–149 (1982).
    [Crossref]
  37. Z. Wu, D. Xie, P. Xie, and Q. Wei, “Modeling reflectance function from roughn surface and algorithms,” Acta Opt. Sin. 22, 897–901 (2002).
  38. Z. Q. Sun, Z. F. Wu, and Y. S. Zhao, “Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces,” Rev. Sci. Instrum. 85(1), 014503 (2014).
    [Crossref] [PubMed]
  39. O. Svensen, M. Kildemo, J. Maria, J. J. Stamnes, and Ø. Frette, “Mueller matrix measurements and modeling pertaining to Spectralon white reflectance standards,” Opt. Express 20(14), 15045–15053 (2012).
    [Crossref] [PubMed]
  40. Z. Sun and Y. Zhao, “The effects of grain size on bidirectional polarized reflectance factor measurements of snow,” J. Quant. Spectrosc. Radiat. Transf. 112(14), 2372–2383 (2011).
    [Crossref]
  41. Z. Sun, J. Zhang, Z. Tong, and Y. Zhao, “Particle size effects on the reflectance and negative polarization of light backscattered from natural surface particulate medium: Soil and sand,” J. Quant. Spectrosc. Radiat. Transf. 133, 1–12 (2014).
    [Crossref]
  42. Z. Sun, Y. Lv, and S. Lu, “An assessment of the bidirectional reflectance models basing on laboratory experiment of natural particulate surfaces,” J. Quant. Spectrosc. Radiat. Transf. 163, 102–119 (2015).
    [Crossref]
  43. Y. Lv and Z. Sun, “Multi-angular spectral reflectance to characterize the particle size of surfaces of desert and cultivated soil,” Eur. J. Soil Sci. 67(3), 253–265 (2016).
    [Crossref]
  44. Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett. 10(1), 170–173 (2013).
    [Crossref]
  45. Z. Sun, Y. Lv, and Z. Tong, “Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces,” Opt. Express 24(6), A612–A634 (2016).
    [Crossref] [PubMed]
  46. B. Cairns, E. E. Russell, and L. D. Travis, “The Research Scanning Polarimeter: calibraton and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
    [Crossref]
  47. S. Jacquemoud, F. Baret, and J. F. Hanocq, “Modeling spectral and bidirectional soil reflectance,” Remote Sens. Environ. 41(2-3), 123–132 (1992).
    [Crossref]
  48. N. S. Goel, “Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data,” Remote Sens. Rev. 4(1), 1–212 (1988).
    [Crossref]

2016 (2)

Y. Lv and Z. Sun, “Multi-angular spectral reflectance to characterize the particle size of surfaces of desert and cultivated soil,” Eur. J. Soil Sci. 67(3), 253–265 (2016).
[Crossref]

Z. Sun, Y. Lv, and Z. Tong, “Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces,” Opt. Express 24(6), A612–A634 (2016).
[Crossref] [PubMed]

2015 (2)

Z. Sun, Y. Lv, and S. Lu, “An assessment of the bidirectional reflectance models basing on laboratory experiment of natural particulate surfaces,” J. Quant. Spectrosc. Radiat. Transf. 163, 102–119 (2015).
[Crossref]

I. G. Renhorn, T. Hallberg, and G. D. Boreman, “Efficient polarimetric BRDF model,” Opt. Express 23(24), 31253–31273 (2015).
[Crossref] [PubMed]

2014 (4)

L. Meng and J. P. Kerekes, “An analytical model for optical polarimetric imaging systems,” IEEE Trans. Geosci. Remote Sens. 52(10), 6615–6626 (2014).
[Crossref]

L. Bai, Z. Wu, Y. Cao, and X. Huang, “Spectral scattering characteristics of space target in near-UV to visible bands,” Opt. Express 22(7), 8515–8524 (2014).
[Crossref] [PubMed]

Z. Q. Sun, Z. F. Wu, and Y. S. Zhao, “Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces,” Rev. Sci. Instrum. 85(1), 014503 (2014).
[Crossref] [PubMed]

Z. Sun, J. Zhang, Z. Tong, and Y. Zhao, “Particle size effects on the reflectance and negative polarization of light backscattered from natural surface particulate medium: Soil and sand,” J. Quant. Spectrosc. Radiat. Transf. 133, 1–12 (2014).
[Crossref]

2013 (1)

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett. 10(1), 170–173 (2013).
[Crossref]

2012 (4)

O. Svensen, M. Kildemo, J. Maria, J. J. Stamnes, and Ø. Frette, “Mueller matrix measurements and modeling pertaining to Spectralon white reflectance standards,” Opt. Express 20(14), 15045–15053 (2012).
[Crossref] [PubMed]

L. Bai, Z. Wu, X. Zou, and Y. Cao, “Seven-parameter statistical model for BRDF in the UV band,” Opt. Express 20(11), 12085–12094 (2012).
[Crossref] [PubMed]

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

M. Ottaviani, B. Cairns, R. Ferrare, and R. Rogers, “Iterative atmospheric correction scheme and the polarization color of alpine snow,” J. Quant. Spectrosc. Radiat. Transf. 113(10), 789–804 (2012).
[Crossref]

2011 (5)

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

L. Meng and J. P. Kerekes, “Adaptive target detection with a polarization-sensitive optical system,” Appl. Opt. 50(13), 1925–1932 (2011).
[Crossref] [PubMed]

M. W. Hyde, S. C. Cain, J. D. Schmidt, and M. J. Havrilla, “Material classification of an unknown object using turbulence-degraded polarimetric imagery,” IEEE Trans. Geosci. Remote Sens. 49(1), 264–276 (2011).
[Crossref]

Z. Sun and Y. Zhao, “The effects of grain size on bidirectional polarized reflectance factor measurements of snow,” J. Quant. Spectrosc. Radiat. Transf. 112(14), 2372–2383 (2011).
[Crossref]

I. G. E. Renhorn, T. Hallberg, D. Bergström, and G. D. Boreman, “Four-parameter model for polarization-resolved rough-surface BRDF,” Opt. Express 19(2), 1027–1036 (2011).
[Crossref] [PubMed]

2009 (6)

J. Suomalainen, T. Hakala, J. Peltoniemi, and E. Puttonen, “Polarised multiangular reflectance measurements using the finnish geodetic institute field goniospectrometer,” Sensors (Basel) 9(5), 3891–3907 (2009).
[Crossref] [PubMed]

J. Peltoniemi, T. Hakala, J. Suomalainen, and E. Puttonen, “Polarised bidirectional reflectance factor measurements from soil, stones, and snow,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1940–1953 (2009).
[Crossref]

J. Suomalainen, T. Hakala, E. Puttonen, and J. Peltoniemi, “Polarised bidirectional reflectance factor measurements from vegetated land surfaces,” J. Quant. Spectrosc. Radiat. Transf. 110(12), 1044–1056 (2009).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
[Crossref]

M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, “A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces,” Opt. Express 17(24), 22138–22153 (2009).
[Crossref] [PubMed]

Y. Zhao, L. Zhang, D. Zhang, and Q. Pan, “Object separation by polarimetric and spectral imagery fusion,” Comput. Vis. Image Underst. 113(8), 855–866 (2009).
[Crossref]

2008 (1)

2007 (2)

V. Thilak, D. G. Voelz, and C. D. Creusere, “Polarization-based index of refraction and reflection angle estimation for remote sensing applications,” Appl. Opt. 46(30), 7527–7536 (2007).
[Crossref] [PubMed]

G. A. Atkinson and E. R. Hancock, “Shape estimation using polarization and shading from two views,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2001–2017 (2007).
[Crossref] [PubMed]

2006 (4)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45(17), 4062–4068 (2006).
[Crossref] [PubMed]

G. A. Atkinson and E. R. Hancock, “Recovery of surface orientation from diffuse polarization,” IEEE Trans. Image Process. 15(6), 1653–1664 (2006).
[Crossref] [PubMed]

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

2002 (2)

Z. Wu, D. Xie, P. Xie, and Q. Wei, “Modeling reflectance function from roughn surface and algorithms,” Acta Opt. Sin. 22, 897–901 (2002).

R. G. Priest, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988 (2002).
[Crossref]

1999 (1)

B. Cairns, E. E. Russell, and L. D. Travis, “The Research Scanning Polarimeter: calibraton and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

1998 (1)

C. Pohl and J. L. Van Genderen, “Multisensor image fusion in remote sensing: Concepts, methods and applications,” Int. J. Remote Sens. 19(5), 823–854 (1998).
[Crossref]

1996 (1)

1995 (1)

F. M. Bréon, D. Tanré, P. Lecomte, and M. Herman, “Polarized reflectance of bare soils and vegetation: measurements and models,” IEEE Trans. Geosci. Remote Sens. 33(2), 487–499 (1995).
[Crossref]

1992 (2)

J.-L. Roujean, M. Leroy, and P.-Y. Deschamps, “A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97(D18), 20455–20468 (1992).
[Crossref]

S. Jacquemoud, F. Baret, and J. F. Hanocq, “Modeling spectral and bidirectional soil reflectance,” Remote Sens. Environ. 41(2-3), 123–132 (1992).
[Crossref]

1991 (1)

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
[Crossref]

1990 (1)

L. B. Wolff, “Polarization-based meterial classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
[Crossref]

1989 (1)

A. Singh, “Digital change detection techniques using remotely-sensed data,” Int. J. Remote Sens. 10(6), 989–1003 (1989).
[Crossref]

1988 (1)

N. S. Goel, “Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data,” Remote Sens. Rev. 4(1), 1–212 (1988).
[Crossref]

1986 (1)

D. A. Talmage and P. J. Curran, “Remote sensing using partially polarized light,” Int. J. Remote Sens. 7(1), 47–64 (1986).
[Crossref]

1982 (1)

D. S. Kimes and J. A. Kirchner, “Irradiance measurement errors due to the assumption of a Lambertian reference panel,” Remote Sens. Environ. 12(2), 141–149 (1982).
[Crossref]

1967 (1)

Atkinson, G. A.

G. A. Atkinson and E. R. Hancock, “Shape estimation using polarization and shading from two views,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2001–2017 (2007).
[Crossref] [PubMed]

G. A. Atkinson and E. R. Hancock, “Recovery of surface orientation from diffuse polarization,” IEEE Trans. Image Process. 15(6), 1653–1664 (2006).
[Crossref] [PubMed]

Bai, L.

Baret, F.

S. Jacquemoud, F. Baret, and J. F. Hanocq, “Modeling spectral and bidirectional soil reflectance,” Remote Sens. Environ. 41(2-3), 123–132 (1992).
[Crossref]

Bergström, D.

Boreman, G. D.

Boult, T. E.

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
[Crossref]

Bréon, F. M.

F. M. Bréon, D. Tanré, P. Lecomte, and M. Herman, “Polarized reflectance of bare soils and vegetation: measurements and models,” IEEE Trans. Geosci. Remote Sens. 33(2), 487–499 (1995).
[Crossref]

Cain, S. C.

M. W. Hyde, S. C. Cain, J. D. Schmidt, and M. J. Havrilla, “Material classification of an unknown object using turbulence-degraded polarimetric imagery,” IEEE Trans. Geosci. Remote Sens. 49(1), 264–276 (2011).
[Crossref]

Cairns, B.

M. Ottaviani, B. Cairns, R. Ferrare, and R. Rogers, “Iterative atmospheric correction scheme and the polarization color of alpine snow,” J. Quant. Spectrosc. Radiat. Transf. 113(10), 789–804 (2012).
[Crossref]

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
[Crossref]

B. Cairns, E. E. Russell, and L. D. Travis, “The Research Scanning Polarimeter: calibraton and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

Cao, Y.

Chenault, D. B.

Chipman, R.

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Chowdhary, J.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
[Crossref]

Creusere, C. D.

Curran, P. J.

D. A. Talmage and P. J. Curran, “Remote sensing using partially polarized light,” Int. J. Remote Sens. 7(1), 47–64 (1986).
[Crossref]

Dangel, S.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Davis, A.

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Deschamps, P.-Y.

J.-L. Roujean, M. Leroy, and P.-Y. Deschamps, “A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97(D18), 20455–20468 (1992).
[Crossref]

Diner, D.

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Engheta, N.

Ferrare, R.

M. Ottaviani, B. Cairns, R. Ferrare, and R. Rogers, “Iterative atmospheric correction scheme and the polarization color of alpine snow,” J. Quant. Spectrosc. Radiat. Transf. 113(10), 789–804 (2012).
[Crossref]

Frette, Ø.

Geier, S.

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Goel, N. S.

N. S. Goel, “Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data,” Remote Sens. Rev. 4(1), 1–212 (1988).
[Crossref]

Goldstein, D. L.

Gorria, P.

Hakala, T.

J. Suomalainen, T. Hakala, J. Peltoniemi, and E. Puttonen, “Polarised multiangular reflectance measurements using the finnish geodetic institute field goniospectrometer,” Sensors (Basel) 9(5), 3891–3907 (2009).
[Crossref] [PubMed]

J. Peltoniemi, T. Hakala, J. Suomalainen, and E. Puttonen, “Polarised bidirectional reflectance factor measurements from soil, stones, and snow,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1940–1953 (2009).
[Crossref]

J. Suomalainen, T. Hakala, E. Puttonen, and J. Peltoniemi, “Polarised bidirectional reflectance factor measurements from vegetated land surfaces,” J. Quant. Spectrosc. Radiat. Transf. 110(12), 1044–1056 (2009).
[Crossref]

Hallberg, T.

Hancock, E. R.

G. A. Atkinson and E. R. Hancock, “Shape estimation using polarization and shading from two views,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2001–2017 (2007).
[Crossref] [PubMed]

G. A. Atkinson and E. R. Hancock, “Recovery of surface orientation from diffuse polarization,” IEEE Trans. Image Process. 15(6), 1653–1664 (2006).
[Crossref] [PubMed]

Hanocq, J. F.

S. Jacquemoud, F. Baret, and J. F. Hanocq, “Modeling spectral and bidirectional soil reflectance,” Remote Sens. Environ. 41(2-3), 123–132 (1992).
[Crossref]

Hasekamp, O.

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

Havrilla, M. J.

M. W. Hyde, S. C. Cain, J. D. Schmidt, and M. J. Havrilla, “Material classification of an unknown object using turbulence-degraded polarimetric imagery,” IEEE Trans. Geosci. Remote Sens. 49(1), 264–276 (2011).
[Crossref]

M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, “A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces,” Opt. Express 17(24), 22138–22153 (2009).
[Crossref] [PubMed]

Herman, M.

F. M. Bréon, D. Tanré, P. Lecomte, and M. Herman, “Polarized reflectance of bare soils and vegetation: measurements and models,” IEEE Trans. Geosci. Remote Sens. 33(2), 487–499 (1995).
[Crossref]

Huang, X.

Hyde, M. W.

M. W. Hyde, S. C. Cain, J. D. Schmidt, and M. J. Havrilla, “Material classification of an unknown object using turbulence-degraded polarimetric imagery,” IEEE Trans. Geosci. Remote Sens. 49(1), 264–276 (2011).
[Crossref]

M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, “A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces,” Opt. Express 17(24), 22138–22153 (2009).
[Crossref] [PubMed]

Jacquemoud, S.

S. Jacquemoud, F. Baret, and J. F. Hanocq, “Modeling spectral and bidirectional soil reflectance,” Remote Sens. Environ. 41(2-3), 123–132 (1992).
[Crossref]

Jovanovic, V.

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Kerekes, J. P.

L. Meng and J. P. Kerekes, “An analytical model for optical polarimetric imaging systems,” IEEE Trans. Geosci. Remote Sens. 52(10), 6615–6626 (2014).
[Crossref]

L. Meng and J. P. Kerekes, “Adaptive target detection with a polarization-sensitive optical system,” Appl. Opt. 50(13), 1925–1932 (2011).
[Crossref] [PubMed]

Kildemo, M.

Kimes, D. S.

D. S. Kimes and J. A. Kirchner, “Irradiance measurement errors due to the assumption of a Lambertian reference panel,” Remote Sens. Environ. 12(2), 141–149 (1982).
[Crossref]

Kirchner, J. A.

D. S. Kimes and J. A. Kirchner, “Irradiance measurement errors due to the assumption of a Lambertian reference panel,” Remote Sens. Environ. 12(2), 141–149 (1982).
[Crossref]

Knobelspiesse, K.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
[Crossref]

Lecomte, P.

F. M. Bréon, D. Tanré, P. Lecomte, and M. Herman, “Polarized reflectance of bare soils and vegetation: measurements and models,” IEEE Trans. Geosci. Remote Sens. 33(2), 487–499 (1995).
[Crossref]

Leroy, M.

J.-L. Roujean, M. Leroy, and P.-Y. Deschamps, “A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97(D18), 20455–20468 (1992).
[Crossref]

Litvinov, P.

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

Lu, S.

Z. Sun, Y. Lv, and S. Lu, “An assessment of the bidirectional reflectance models basing on laboratory experiment of natural particulate surfaces,” J. Quant. Spectrosc. Radiat. Transf. 163, 102–119 (2015).
[Crossref]

Lv, Y.

Y. Lv and Z. Sun, “Multi-angular spectral reflectance to characterize the particle size of surfaces of desert and cultivated soil,” Eur. J. Soil Sci. 67(3), 253–265 (2016).
[Crossref]

Z. Sun, Y. Lv, and Z. Tong, “Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces,” Opt. Express 24(6), A612–A634 (2016).
[Crossref] [PubMed]

Z. Sun, Y. Lv, and S. Lu, “An assessment of the bidirectional reflectance models basing on laboratory experiment of natural particulate surfaces,” J. Quant. Spectrosc. Radiat. Transf. 163, 102–119 (2015).
[Crossref]

Maria, J.

Martonchik, J.

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Martonchik, J. V.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

McClain, S.

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Meng, L.

L. Meng and J. P. Kerekes, “An analytical model for optical polarimetric imaging systems,” IEEE Trans. Geosci. Remote Sens. 52(10), 6615–6626 (2014).
[Crossref]

L. Meng and J. P. Kerekes, “Adaptive target detection with a polarization-sensitive optical system,” Appl. Opt. 50(13), 1925–1932 (2011).
[Crossref] [PubMed]

Meriaudeau, F.

Mishchenko, M. I.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
[Crossref]

Morel, O.

Ottaviani, M.

M. Ottaviani, B. Cairns, R. Ferrare, and R. Rogers, “Iterative atmospheric correction scheme and the polarization color of alpine snow,” J. Quant. Spectrosc. Radiat. Transf. 113(10), 789–804 (2012).
[Crossref]

Painter, T. H.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Pan, Q.

Y. Zhao, L. Zhang, D. Zhang, and Q. Pan, “Object separation by polarimetric and spectral imagery fusion,” Comput. Vis. Image Underst. 113(8), 855–866 (2009).
[Crossref]

Peltoniemi, J.

J. Peltoniemi, T. Hakala, J. Suomalainen, and E. Puttonen, “Polarised bidirectional reflectance factor measurements from soil, stones, and snow,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1940–1953 (2009).
[Crossref]

J. Suomalainen, T. Hakala, J. Peltoniemi, and E. Puttonen, “Polarised multiangular reflectance measurements using the finnish geodetic institute field goniospectrometer,” Sensors (Basel) 9(5), 3891–3907 (2009).
[Crossref] [PubMed]

J. Suomalainen, T. Hakala, E. Puttonen, and J. Peltoniemi, “Polarised bidirectional reflectance factor measurements from vegetated land surfaces,” J. Quant. Spectrosc. Radiat. Transf. 110(12), 1044–1056 (2009).
[Crossref]

Pohl, C.

C. Pohl and J. L. Van Genderen, “Multisensor image fusion in remote sensing: Concepts, methods and applications,” Int. J. Remote Sens. 19(5), 823–854 (1998).
[Crossref]

Priest, R. G.

R. G. Priest, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988 (2002).
[Crossref]

Pugh, E. N.

Puttonen, E.

J. Suomalainen, T. Hakala, E. Puttonen, and J. Peltoniemi, “Polarised bidirectional reflectance factor measurements from vegetated land surfaces,” J. Quant. Spectrosc. Radiat. Transf. 110(12), 1044–1056 (2009).
[Crossref]

J. Peltoniemi, T. Hakala, J. Suomalainen, and E. Puttonen, “Polarised bidirectional reflectance factor measurements from soil, stones, and snow,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1940–1953 (2009).
[Crossref]

J. Suomalainen, T. Hakala, J. Peltoniemi, and E. Puttonen, “Polarised multiangular reflectance measurements using the finnish geodetic institute field goniospectrometer,” Sensors (Basel) 9(5), 3891–3907 (2009).
[Crossref] [PubMed]

Renhorn, I. G.

Renhorn, I. G. E.

Rheingans, B.

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Rogers, R.

M. Ottaviani, B. Cairns, R. Ferrare, and R. Rogers, “Iterative atmospheric correction scheme and the polarization color of alpine snow,” J. Quant. Spectrosc. Radiat. Transf. 113(10), 789–804 (2012).
[Crossref]

Roujean, J.-L.

J.-L. Roujean, M. Leroy, and P.-Y. Deschamps, “A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97(D18), 20455–20468 (1992).
[Crossref]

Rowe, M. P.

Russell, E. E.

B. Cairns, E. E. Russell, and L. D. Travis, “The Research Scanning Polarimeter: calibraton and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

Schaepman, M. E.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Schaepman-Strub, G.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Schmid, B.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
[Crossref]

Schmidt, J. D.

M. W. Hyde, S. C. Cain, J. D. Schmidt, and M. J. Havrilla, “Material classification of an unknown object using turbulence-degraded polarimetric imagery,” IEEE Trans. Geosci. Remote Sens. 49(1), 264–276 (2011).
[Crossref]

M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, “A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces,” Opt. Express 17(24), 22138–22153 (2009).
[Crossref] [PubMed]

Shaw, J. A.

Singh, A.

A. Singh, “Digital change detection techniques using remotely-sensed data,” Int. J. Remote Sens. 10(6), 989–1003 (1989).
[Crossref]

Sparrow, E. M.

Stamnes, J. J.

Stolz, C.

Sun, Z.

Z. Sun, Y. Lv, and Z. Tong, “Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces,” Opt. Express 24(6), A612–A634 (2016).
[Crossref] [PubMed]

Y. Lv and Z. Sun, “Multi-angular spectral reflectance to characterize the particle size of surfaces of desert and cultivated soil,” Eur. J. Soil Sci. 67(3), 253–265 (2016).
[Crossref]

Z. Sun, Y. Lv, and S. Lu, “An assessment of the bidirectional reflectance models basing on laboratory experiment of natural particulate surfaces,” J. Quant. Spectrosc. Radiat. Transf. 163, 102–119 (2015).
[Crossref]

Z. Sun, J. Zhang, Z. Tong, and Y. Zhao, “Particle size effects on the reflectance and negative polarization of light backscattered from natural surface particulate medium: Soil and sand,” J. Quant. Spectrosc. Radiat. Transf. 133, 1–12 (2014).
[Crossref]

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett. 10(1), 170–173 (2013).
[Crossref]

Z. Sun and Y. Zhao, “The effects of grain size on bidirectional polarized reflectance factor measurements of snow,” J. Quant. Spectrosc. Radiat. Transf. 112(14), 2372–2383 (2011).
[Crossref]

Sun, Z. Q.

Z. Q. Sun, Z. F. Wu, and Y. S. Zhao, “Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces,” Rev. Sci. Instrum. 85(1), 014503 (2014).
[Crossref] [PubMed]

Suomalainen, J.

J. Suomalainen, T. Hakala, E. Puttonen, and J. Peltoniemi, “Polarised bidirectional reflectance factor measurements from vegetated land surfaces,” J. Quant. Spectrosc. Radiat. Transf. 110(12), 1044–1056 (2009).
[Crossref]

J. Peltoniemi, T. Hakala, J. Suomalainen, and E. Puttonen, “Polarised bidirectional reflectance factor measurements from soil, stones, and snow,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1940–1953 (2009).
[Crossref]

J. Suomalainen, T. Hakala, J. Peltoniemi, and E. Puttonen, “Polarised multiangular reflectance measurements using the finnish geodetic institute field goniospectrometer,” Sensors (Basel) 9(5), 3891–3907 (2009).
[Crossref] [PubMed]

Svensen, O.

Talmage, D. A.

D. A. Talmage and P. J. Curran, “Remote sensing using partially polarized light,” Int. J. Remote Sens. 7(1), 47–64 (1986).
[Crossref]

Tanré, D.

F. M. Bréon, D. Tanré, P. Lecomte, and M. Herman, “Polarized reflectance of bare soils and vegetation: measurements and models,” IEEE Trans. Geosci. Remote Sens. 33(2), 487–499 (1995).
[Crossref]

Thilak, V.

Tong, Z.

Z. Sun, Y. Lv, and Z. Tong, “Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces,” Opt. Express 24(6), A612–A634 (2016).
[Crossref] [PubMed]

Z. Sun, J. Zhang, Z. Tong, and Y. Zhao, “Particle size effects on the reflectance and negative polarization of light backscattered from natural surface particulate medium: Soil and sand,” J. Quant. Spectrosc. Radiat. Transf. 133, 1–12 (2014).
[Crossref]

Torrance, K. E.

Travis, L. D.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
[Crossref]

B. Cairns, E. E. Russell, and L. D. Travis, “The Research Scanning Polarimeter: calibraton and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

Tyo, J. S.

Van Genderen, J. L.

C. Pohl and J. L. Van Genderen, “Multisensor image fusion in remote sensing: Concepts, methods and applications,” Int. J. Remote Sens. 19(5), 823–854 (1998).
[Crossref]

Voelz, D. G.

Waquet, F.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
[Crossref]

Wei, Q.

Z. Wu, D. Xie, P. Xie, and Q. Wei, “Modeling reflectance function from roughn surface and algorithms,” Acta Opt. Sin. 22, 897–901 (2002).

Wolff, L. B.

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
[Crossref]

L. B. Wolff, “Polarization-based meterial classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
[Crossref]

Wu, Z.

Wu, Z. F.

Z. Q. Sun, Z. F. Wu, and Y. S. Zhao, “Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces,” Rev. Sci. Instrum. 85(1), 014503 (2014).
[Crossref] [PubMed]

Xie, D.

Z. Wu, D. Xie, P. Xie, and Q. Wei, “Modeling reflectance function from roughn surface and algorithms,” Acta Opt. Sin. 22, 897–901 (2002).

Xie, P.

Z. Wu, D. Xie, P. Xie, and Q. Wei, “Modeling reflectance function from roughn surface and algorithms,” Acta Opt. Sin. 22, 897–901 (2002).

Xu, F.

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Zhang, D.

Y. Zhao, L. Zhang, D. Zhang, and Q. Pan, “Object separation by polarimetric and spectral imagery fusion,” Comput. Vis. Image Underst. 113(8), 855–866 (2009).
[Crossref]

Zhang, J.

Z. Sun, J. Zhang, Z. Tong, and Y. Zhao, “Particle size effects on the reflectance and negative polarization of light backscattered from natural surface particulate medium: Soil and sand,” J. Quant. Spectrosc. Radiat. Transf. 133, 1–12 (2014).
[Crossref]

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett. 10(1), 170–173 (2013).
[Crossref]

Zhang, L.

Y. Zhao, L. Zhang, D. Zhang, and Q. Pan, “Object separation by polarimetric and spectral imagery fusion,” Comput. Vis. Image Underst. 113(8), 855–866 (2009).
[Crossref]

Zhao, Y.

Z. Sun, J. Zhang, Z. Tong, and Y. Zhao, “Particle size effects on the reflectance and negative polarization of light backscattered from natural surface particulate medium: Soil and sand,” J. Quant. Spectrosc. Radiat. Transf. 133, 1–12 (2014).
[Crossref]

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett. 10(1), 170–173 (2013).
[Crossref]

Z. Sun and Y. Zhao, “The effects of grain size on bidirectional polarized reflectance factor measurements of snow,” J. Quant. Spectrosc. Radiat. Transf. 112(14), 2372–2383 (2011).
[Crossref]

Y. Zhao, L. Zhang, D. Zhang, and Q. Pan, “Object separation by polarimetric and spectral imagery fusion,” Comput. Vis. Image Underst. 113(8), 855–866 (2009).
[Crossref]

Zhao, Y. S.

Z. Q. Sun, Z. F. Wu, and Y. S. Zhao, “Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces,” Rev. Sci. Instrum. 85(1), 014503 (2014).
[Crossref] [PubMed]

Zou, X.

Acta Opt. Sin. (1)

Z. Wu, D. Xie, P. Xie, and Q. Wei, “Modeling reflectance function from roughn surface and algorithms,” Acta Opt. Sin. 22, 897–901 (2002).

Appl. Opt. (5)

Atmosphere (1)

D. Diner, F. Xu, J. Martonchik, B. Rheingans, S. Geier, V. Jovanovic, A. Davis, R. Chipman, and S. McClain, “Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Comput. Vis. Image Underst. (1)

Y. Zhao, L. Zhang, D. Zhang, and Q. Pan, “Object separation by polarimetric and spectral imagery fusion,” Comput. Vis. Image Underst. 113(8), 855–866 (2009).
[Crossref]

Eur. J. Soil Sci. (1)

Y. Lv and Z. Sun, “Multi-angular spectral reflectance to characterize the particle size of surfaces of desert and cultivated soil,” Eur. J. Soil Sci. 67(3), 253–265 (2016).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett. 10(1), 170–173 (2013).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (3)

F. M. Bréon, D. Tanré, P. Lecomte, and M. Herman, “Polarized reflectance of bare soils and vegetation: measurements and models,” IEEE Trans. Geosci. Remote Sens. 33(2), 487–499 (1995).
[Crossref]

M. W. Hyde, S. C. Cain, J. D. Schmidt, and M. J. Havrilla, “Material classification of an unknown object using turbulence-degraded polarimetric imagery,” IEEE Trans. Geosci. Remote Sens. 49(1), 264–276 (2011).
[Crossref]

L. Meng and J. P. Kerekes, “An analytical model for optical polarimetric imaging systems,” IEEE Trans. Geosci. Remote Sens. 52(10), 6615–6626 (2014).
[Crossref]

IEEE Trans. Image Process. (1)

G. A. Atkinson and E. R. Hancock, “Recovery of surface orientation from diffuse polarization,” IEEE Trans. Image Process. 15(6), 1653–1664 (2006).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (3)

L. B. Wolff, “Polarization-based meterial classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
[Crossref]

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991).
[Crossref]

G. A. Atkinson and E. R. Hancock, “Shape estimation using polarization and shading from two views,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2001–2017 (2007).
[Crossref] [PubMed]

Int. J. Remote Sens. (3)

A. Singh, “Digital change detection techniques using remotely-sensed data,” Int. J. Remote Sens. 10(6), 989–1003 (1989).
[Crossref]

C. Pohl and J. L. Van Genderen, “Multisensor image fusion in remote sensing: Concepts, methods and applications,” Int. J. Remote Sens. 19(5), 823–854 (1998).
[Crossref]

D. A. Talmage and P. J. Curran, “Remote sensing using partially polarized light,” Int. J. Remote Sens. 7(1), 47–64 (1986).
[Crossref]

J. Geophys. Res. (2)

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114(D1), D01206 (2009).
[Crossref]

J.-L. Roujean, M. Leroy, and P.-Y. Deschamps, “A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res. 97(D18), 20455–20468 (1992).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transf. (6)

M. Ottaviani, B. Cairns, R. Ferrare, and R. Rogers, “Iterative atmospheric correction scheme and the polarization color of alpine snow,” J. Quant. Spectrosc. Radiat. Transf. 113(10), 789–804 (2012).
[Crossref]

J. Peltoniemi, T. Hakala, J. Suomalainen, and E. Puttonen, “Polarised bidirectional reflectance factor measurements from soil, stones, and snow,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1940–1953 (2009).
[Crossref]

J. Suomalainen, T. Hakala, E. Puttonen, and J. Peltoniemi, “Polarised bidirectional reflectance factor measurements from vegetated land surfaces,” J. Quant. Spectrosc. Radiat. Transf. 110(12), 1044–1056 (2009).
[Crossref]

Z. Sun and Y. Zhao, “The effects of grain size on bidirectional polarized reflectance factor measurements of snow,” J. Quant. Spectrosc. Radiat. Transf. 112(14), 2372–2383 (2011).
[Crossref]

Z. Sun, J. Zhang, Z. Tong, and Y. Zhao, “Particle size effects on the reflectance and negative polarization of light backscattered from natural surface particulate medium: Soil and sand,” J. Quant. Spectrosc. Radiat. Transf. 133, 1–12 (2014).
[Crossref]

Z. Sun, Y. Lv, and S. Lu, “An assessment of the bidirectional reflectance models basing on laboratory experiment of natural particulate surfaces,” J. Quant. Spectrosc. Radiat. Transf. 163, 102–119 (2015).
[Crossref]

Opt. Eng. (1)

R. G. Priest, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988 (2002).
[Crossref]

Opt. Express (8)

L. Bai, Z. Wu, X. Zou, and Y. Cao, “Seven-parameter statistical model for BRDF in the UV band,” Opt. Express 20(11), 12085–12094 (2012).
[Crossref] [PubMed]

Z. Sun, Y. Lv, and Z. Tong, “Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces,” Opt. Express 24(6), A612–A634 (2016).
[Crossref] [PubMed]

I. G. Renhorn and G. D. Boreman, “Analytical fitting model for rough-surface BRDF,” Opt. Express 16(17), 12892–12898 (2008).
[Crossref] [PubMed]

M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, “A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces,” Opt. Express 17(24), 22138–22153 (2009).
[Crossref] [PubMed]

I. G. E. Renhorn, T. Hallberg, D. Bergström, and G. D. Boreman, “Four-parameter model for polarization-resolved rough-surface BRDF,” Opt. Express 19(2), 1027–1036 (2011).
[Crossref] [PubMed]

I. G. Renhorn, T. Hallberg, and G. D. Boreman, “Efficient polarimetric BRDF model,” Opt. Express 23(24), 31253–31273 (2015).
[Crossref] [PubMed]

L. Bai, Z. Wu, Y. Cao, and X. Huang, “Spectral scattering characteristics of space target in near-UV to visible bands,” Opt. Express 22(7), 8515–8524 (2014).
[Crossref] [PubMed]

O. Svensen, M. Kildemo, J. Maria, J. J. Stamnes, and Ø. Frette, “Mueller matrix measurements and modeling pertaining to Spectralon white reflectance standards,” Opt. Express 20(14), 15045–15053 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

B. Cairns, E. E. Russell, and L. D. Travis, “The Research Scanning Polarimeter: calibraton and ground-based measurements,” Proc. SPIE 3754, 186–196 (1999).
[Crossref]

Remote Sens. Environ. (4)

S. Jacquemoud, F. Baret, and J. F. Hanocq, “Modeling spectral and bidirectional soil reflectance,” Remote Sens. Environ. 41(2-3), 123–132 (1992).
[Crossref]

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

D. S. Kimes and J. A. Kirchner, “Irradiance measurement errors due to the assumption of a Lambertian reference panel,” Remote Sens. Environ. 12(2), 141–149 (1982).
[Crossref]

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Remote Sens. Rev. (1)

N. S. Goel, “Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data,” Remote Sens. Rev. 4(1), 1–212 (1988).
[Crossref]

Rev. Sci. Instrum. (1)

Z. Q. Sun, Z. F. Wu, and Y. S. Zhao, “Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces,” Rev. Sci. Instrum. 85(1), 014503 (2014).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. Suomalainen, T. Hakala, J. Peltoniemi, and E. Puttonen, “Polarised multiangular reflectance measurements using the finnish geodetic institute field goniospectrometer,” Sensors (Basel) 9(5), 3891–3907 (2009).
[Crossref] [PubMed]

Other (2)

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Nat. Bur. Stand. (U.S.) Monograph 160 (1977).
[Crossref]

J. R. Shell, “Polarimetric remote sensing in the visible to near infrared,” (Rochester Institute of Technology, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Measurement schematic diagram when the incident zenith angle was 40°; 0° refers to the backward scattering direction, and 180° corresponds to the forward scattering direction. The solid lines represent the measured azimuth directions.
Fig. 2
Fig. 2 The picture of the manmade target (a) and the spectrum curves of sample (b) at different viewing zenith angles in the forward scattering direction in the principal plane when the incident zenith angle was 40°.
Fig. 3
Fig. 3 The distribution of the BRFs of the manmade target for all viewing zenith angles at 560, 670 and 865 nm; the incident angle was 40°.
Fig. 4
Fig. 4 The comparison between the BRF and IpRF of our manmade target in the forward scattering directions in the principal plane: (a) without considering the absorption of the prism, and (b) considering the absorption of the prism, the incident zenith angle was 40°.
Fig. 5
Fig. 5 The DoLP of Spectral plane (a), and the absorption of the prism at different polarizer directions (b) at the nadir direction when the incident zenith angle was 20°.
Fig. 6
Fig. 6 The relative difference between the BRF and IpRF (without considering the absorption of the prism) ( | B R F I p R F | / B R F ) at selected wavelengths, the incident zenith angle was 40°.
Fig. 7
Fig. 7 The relative difference between the BRF and IpRF (considering the absorption of the prism) ( | B R F I p R F | / B R F ) at selected wavelengths, the incident zenith angle was 40°.
Fig. 8
Fig. 8 The (a) DoLP and (b) BPRF of the manmade target at different viewing zenith angles in the principal plane when the incident zenith angle was 40°.
Fig. 9
Fig. 9 The distribution of the (a) DoLP and (b) BPRF of the manmade target at 560 nm when the incident zenith angle was 40°.
Fig. 10
Fig. 10 The comparison between the measured and modeled (a) IpRFs and (b) BPRFs of the manmade target for all the selected wavelengths for the incident zenith angles of 40° and 60°.
Fig. 11
Fig. 11 The relative difference between the measured BPRF and modeled BPRF at 670 nm, the incident zenith angle was (a) 40° and (b) 60°.
Fig. 12
Fig. 12 The distribution of (a) the measured DoLP, (b) the modeled DoLP and (c) the relative difference between the measured and modeled DoLP of the manmade target at 670 nm when the incident zenith angle was 40°.
Fig. 13
Fig. 13 The distribution of (a) the measured DoLP, (b) the modeled DoLP and (c) the relative difference between the measured and modeled DoLP of the manmade target at 670 nm when the incident zenith angle was 60°.
Fig. 14
Fig. 14 The comparison between the measured and modeled DoLP of the manmade target for all the selected wavelengths over all the measurement directions in the incident zenith angle of (a) 40° and (b) 60°.

Tables (5)

Tables Icon

Table 1 The best-fitting model parameters of the BRDF model, which is inverted from the IpRF of the manmade target when the incident zenith angle was 40°. The ARD means the average relative difference over all the measured directions.

Tables Icon

Table 2 The best-fitting model parameters of the BPDF model for the manmade target, the incident zenith angle was 40°.

Tables Icon

Table 3 The best-fitting model parameters of the BRDF model, which is inverted from the IpRF of the manmade target when the incident zenith angle was 60°.

Tables Icon

Table 4 The best-fitting model parameters of the BPDF model for the manmade target, the incident zenith angle was 60°.

Tables Icon

Table 5 The average relative difference (ARD) between the modeled DoLP and measured DoLP of our sample at all selected wavelength over all the measured directions and half measured directions (in the forward scattering direction), when the incident angle are 40° and 60°.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I = ( L 0 ° + L 45 ° + L 90 ° + L 135 ° ) / 2
Q = L 0 ° L 90 °
U = L 45 ° L 135 °
I p = Q 2 + U 2
D o L P = Q 2 + U 2 I or D o L P = Q I
B R F ( λ , θ s , θ v ; ϕ s , ϕ v ) = d L s a m p l e ( λ , θ s , θ v ; ϕ s , ϕ v ) d L ( λ , θ s , θ v ; ϕ s , ϕ v ) ρ λ
B P R F ( λ , θ s , θ v ; ϕ s , ϕ v ) = π I p E cos ( θ s )
E cos ( θ s ) = π L ρ λ
B P R F m ( λ , θ s , θ v , ϕ s , ϕ v ) = d I p ( λ , θ s , θ v ; ϕ s , ϕ v ) d L ( λ , θ s , θ v ; ϕ s , ϕ v ) ρ λ
D o L P = Q 2 + U 2 I = B P R F m B R F
B R D F = k b k r 2 cos α 1 + ( k r 2 1 ) cos α exp [ b ( 1 cos γ ) a ] V ( λ , θ s , θ v , ϕ ) cos θ s cos θ v + k d cos θ s
cos 2 γ = 1 2 ( cos θ v cos θ s + sin θ v sin θ s cos ϕ + 1 )
cos α = cos θ v + cos θ s 2 cos γ
B P D F = f λ , v o l u m e t r i c ( θ s , θ v ; ϕ s , ϕ v ) + f m i c r o f a c e t ( θ s , θ v ; ϕ s , ϕ v )
f λ , v o l u m e t r i c ( θ s , θ v ; ϕ s , ϕ v ) = a λ π [ ( cos θ v + cos θ s ) cos θ v cos θ s ] k 1 exp ( g cos η ) D
cos η = cos θ s cos θ v sin θ s sin θ v cos ( ϕ s ϕ v )
f λ , m i c r o f a c e t ( θ s , θ v , ϕ v ) = ζ f ( σ , β ) 4 cos ( θ s ) cos ( θ v ) cos β M ( m ) P M ( m 0 )
R M S E = k = 1 n ( M m M ) 2 N f

Metrics