Abstract

The control of laser-induced periodic ripple microstructures on 4H-SiC crystal surface is studied using temporally delayed collinear three femtosecond laser pulse trains linearly polarized in different directions. The ripple orientation appears to develop independent of the individual laser polarizations and exhibits non-monotonical change with variable time delays, whose variation tendency is also affected by the polarization intersection angles. Remarkably, the ripple period is observed to transfer from high- to low-spatial-frequency regions, accompanied by distinctly improved morphological uniformity and clearness. The results are satisfactorily interpreted based on a physical model of the surface wave excitation on a transient index metasurface, which is confirmed by further experiments. Our investigations indicate that transient noneqilibrium dynamics of the material surface provides an effective way to manipulate the laser-induced microstructures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast dynamics of the thin surface plasma layer and the periodic ripples formation on GaP crystal irradiated by a single femtosecond laser pulse

Jukun Liu, Hua Zhao, Ke Cheng, Jiaqi Ju, Donghai Feng, Shian Zhang, Zhenrong Sun, and Tianqing Jia
Opt. Express 27(26) 37859-37876 (2019)

Control of periodic ripples growth on metals by femtosecond laser ellipticity

Yanfu Tang, Jianjun Yang, Bo Zhao, Mingwei Wang, and Xiaonong Zhu
Opt. Express 20(23) 25826-25833 (2012)

Femtosecond laser eraser for controllable removing periodic microstructures on Fe-based metallic glass surfaces

Yuhao Lei, Nan Zhang, Jianjun Yang, and Chunlei Guo
Opt. Express 26(5) 5102-5110 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [Crossref]
  2. Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
    [Crossref] [PubMed]
  3. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
    [Crossref]
  4. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  5. Y. Tang, J. Yang, B. Zhao, M. Wang, and X. Zhu, “Control of periodic ripples growth on metals by femtosecond laser ellipticity,” Opt. Express 20(23), 25826–25833 (2012).
    [Crossref] [PubMed]
  6. L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett. 34(12), 1846–1848 (2009).
    [Crossref] [PubMed]
  7. R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252(24), 8576–8579 (2006).
    [Crossref]
  8. R. Kuladeep, C. Sahoo, and D. N. Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104(22), 222103 (2014).
    [Crossref]
  9. L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
    [Crossref]
  10. A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
    [Crossref]
  11. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
    [Crossref]
  12. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  13. J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  14. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
    [Crossref] [PubMed]
  15. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
    [Crossref]
  16. X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
    [Crossref]
  17. J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
    [Crossref]
  18. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
    [Crossref]
  19. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
    [Crossref]
  20. Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
    [Crossref]
  21. X. Li, W. Rong, L. Jiang, K. Zhang, C. Li, Q. Cao, G. Zhang, and Y. Lu, “Generation and elimination of polarization-dependent ablation of cubic crystals by femtosecond laser radiation,” Opt. Express 22(24), 30170–30176 (2014).
    [Crossref] [PubMed]
  22. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
    [Crossref]
  23. M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
    [Crossref] [PubMed]
  24. X. Li, C. Li, L. Jiang, X. Shi, N. Zhang, and Y. Lu, “Ablation area quasiperiodic oscillations in semiconductors with femtosecond laser double-pulse delay,” Opt. Lett. 39(8), 2382–2385 (2014).
    [Crossref] [PubMed]
  25. H. Qiao, J. Yang, F. Wang, Y. Yang, and J. Sun, “Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces,” Opt. Express 23(20), 26617–26627 (2015).
    [Crossref] [PubMed]
  26. J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
    [Crossref]
  27. M. Gedvilas, J. Mikšys, and G. Račiukaitis, “Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation,” RSC Advances 5(92), 75075–75080 (2015).
    [Crossref]
  28. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica uponcross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
    [Crossref]
  29. V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
    [Crossref]
  30. M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
    [Crossref]
  31. Y. Ma, V. Khuat, and A. Pan, “A simple method for well-defined and clean all-SiC nano-ripples in ambient air,” Opt. Lasers Eng. 82, 141–147 (2016).
    [Crossref]
  32. G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
    [Crossref] [PubMed]
  33. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
    [Crossref]
  34. M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
    [Crossref]
  35. V. Khuat, J. Si, T. Chen, and X. Hou, “Deep-subwavelength nanohole arrays embedded in nanoripples fabricated by femtosecond laser irradiation,” Opt. Lett. 40(2), 209–212 (2015).
    [Crossref] [PubMed]
  36. W. He and J. Yang, “Evidencing ultrafast non-equilibrium dynamics in SiC crystal by femtosecond laser induced slanting surface nanostructures,” J. Appl. Phys. (to be published).
  37. J. Cong, J. Yang, B. Zhao, and X. Xu, “Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams,” Opt. Express 23(4), 5357–5367 (2015).
    [Crossref] [PubMed]
  38. S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B Condens. Matter 44(12), 6393–6400 (1991).
    [Crossref] [PubMed]
  39. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  40. J. Chen, W. K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” Proc. Natl. Acad. Sci. U.S.A. 108(47), 18887–18892 (2011).
    [Crossref] [PubMed]
  41. S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
    [Crossref]

2016 (2)

M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
[Crossref]

Y. Ma, V. Khuat, and A. Pan, “A simple method for well-defined and clean all-SiC nano-ripples in ambient air,” Opt. Lasers Eng. 82, 141–147 (2016).
[Crossref]

2015 (5)

2014 (3)

2013 (5)

2012 (2)

Y. Tang, J. Yang, B. Zhao, M. Wang, and X. Zhu, “Control of periodic ripples growth on metals by femtosecond laser ellipticity,” Opt. Express 20(23), 25826–25833 (2012).
[Crossref] [PubMed]

L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[Crossref]

2011 (2)

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref] [PubMed]

J. Chen, W. K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” Proc. Natl. Acad. Sci. U.S.A. 108(47), 18887–18892 (2011).
[Crossref] [PubMed]

2010 (3)

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

2009 (5)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett. 34(12), 1846–1848 (2009).
[Crossref] [PubMed]

2008 (5)

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

2007 (2)

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
[Crossref]

2006 (2)

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252(24), 8576–8579 (2006).
[Crossref]

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

2005 (1)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

1991 (1)

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B Condens. Matter 44(12), 6393–6400 (1991).
[Crossref] [PubMed]

1973 (1)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Barberoglou, M.

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Bonse, J.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica uponcross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Bounhalli, M.

Bryan-Brown, G. P.

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B Condens. Matter 44(12), 6393–6400 (1991).
[Crossref] [PubMed]

Cao, Q.

Chang, W.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Chen, J.

J. Chen, W. K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” Proc. Natl. Acad. Sci. U.S.A. 108(47), 18887–18892 (2011).
[Crossref] [PubMed]

Chen, T.

Chen, W. K.

J. Chen, W. K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” Proc. Natl. Acad. Sci. U.S.A. 108(47), 18887–18892 (2011).
[Crossref] [PubMed]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Cho, S.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Colombier, J. P.

Cong, J.

Costache, F.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Das, S. K.

Debroy, A.

Elston, S. J.

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B Condens. Matter 44(12), 6393–6400 (1991).
[Crossref] [PubMed]

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Enami, T.

Faure, N.

Fotakis, C.

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Garrelie, F.

Gedvilas, M.

M. Gedvilas, J. Mikšys, and G. Račiukaitis, “Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation,” RSC Advances 5(92), 75075–75080 (2015).
[Crossref]

Gottmann, J.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252(24), 8576–8579 (2006).
[Crossref]

Gray, D.

Grunwald, R.

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Guo, Y.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Hashida, M.

M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Hashimoto, S.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

He, W.

W. He and J. Yang, “Evidencing ultrafast non-equilibrium dynamics in SiC crystal by femtosecond laser induced slanting surface nanostructures,” J. Appl. Phys. (to be published).

Hergenröder, R.

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

Herzlieb, M.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica uponcross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

Höhm, S.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica uponcross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

Hommes, V.

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

Horn, A.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252(24), 8576–8579 (2006).
[Crossref]

Hou, X.

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
[Crossref]

Inoue, S.

M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
[Crossref]

Jia, T.

X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
[Crossref]

Jiang, L.

Khuat, V.

Y. Ma, V. Khuat, and A. Pan, “A simple method for well-defined and clean all-SiC nano-ripples in ambient air,” Opt. Lasers Eng. 82, 141–147 (2016).
[Crossref]

V. Khuat, J. Si, T. Chen, and X. Hou, “Deep-subwavelength nanohole arrays embedded in nanoripples fabricated by femtosecond laser irradiation,” Opt. Lett. 40(2), 209–212 (2015).
[Crossref] [PubMed]

Kim, J.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Kinoshita, K.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

Kreutz, E. W.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252(24), 8576–8579 (2006).
[Crossref]

Kruger, J.

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Krüger, J.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica uponcross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Kuladeep, R.

R. Kuladeep, C. Sahoo, and D. N. Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104(22), 222103 (2014).
[Crossref]

Kumai, R.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

Kuroda, H.

X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
[Crossref]

Li, C.

Li, X.

Liang, C.

Loukakos, P. A.

Lu, Y.

Ma, Y.

Y. Ma, V. Khuat, and A. Pan, “A simple method for well-defined and clean all-SiC nano-ripples in ambient air,” Opt. Lasers Eng. 82, 141–147 (2016).
[Crossref]

Magoulakis, E.

Martín-Moreno, L.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Matsuo, S.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

Mazur, E.

McGlynn, E.

Messaoudi, H.

Miclea, M.

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

Mikšys, J.

M. Gedvilas, J. Mikšys, and G. Račiukaitis, “Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation,” RSC Advances 5(92), 75075–75080 (2015).
[Crossref]

Miyasaka, Y.

M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
[Crossref]

Murai, T.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

Na, S.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Namba, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Namba, Y.

Nishii, K.

Nishii, T.

M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
[Crossref]

Obara, G.

Obara, M.

Okamuro, K.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Pan, A.

Y. Ma, V. Khuat, and A. Pan, “A simple method for well-defined and clean all-SiC nano-ripples in ambient air,” Opt. Lasers Eng. 82, 141–147 (2016).
[Crossref]

Parriaux, O.

Pendry, J. B.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Pigeon, F.

Qi, L.

Qiao, H.

Raciukaitis, G.

M. Gedvilas, J. Mikšys, and G. Račiukaitis, “Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation,” RSC Advances 5(92), 75075–75080 (2015).
[Crossref]

Rao, D. N.

R. Kuladeep, C. Sahoo, and D. N. Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104(22), 222103 (2014).
[Crossref]

Reif, J.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Rentzepis, P. M.

J. Chen, W. K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” Proc. Natl. Acad. Sci. U.S.A. 108(47), 18887–18892 (2011).
[Crossref] [PubMed]

Reynaud, S.

Rong, W.

Rosenfeld, A.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica uponcross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Sahoo, C.

R. Kuladeep, C. Sahoo, and D. N. Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104(22), 222103 (2014).
[Crossref]

Sakabe, S.

M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Sakagami, H.

M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
[Crossref]

Sambles, J. R.

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B Condens. Matter 44(12), 6393–6400 (1991).
[Crossref] [PubMed]

Shi, X.

Shimizu, H.

Shimizu, M.

M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
[Crossref]

Si, J.

Spanakis, E.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

Stratakis, E.

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

Sun, J.

Tang, J.

J. Chen, W. K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” Proc. Natl. Acad. Sci. U.S.A. 108(47), 18887–18892 (2011).
[Crossref] [PubMed]

Tang, Y.

Terakawa, M.

Tokita, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Tomita, T.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

Tonchev, S.

Tzanetakis, P.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

Ueno, S.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

Varlamova, O.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Wagner, R.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252(24), 8576–8579 (2006).
[Crossref]

Wang, F.

Wang, H.

Wang, M.

Wang, Y.

L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[Crossref]

Whang, K.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Wu, X.

X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
[Crossref]

Xu, X.

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
[Crossref]

Xue, L.

L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Yamaguchi, M.

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

Yang, J.

Yang, Y.

H. Qiao, J. Yang, F. Wang, Y. Yang, and J. Sun, “Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces,” Opt. Express 23(20), 26617–26627 (2015).
[Crossref] [PubMed]

L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[Crossref] [PubMed]

Zhang, G.

Zhang, K.

Zhang, N.

Zhao, B.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
[Crossref]

Zhu, X.

L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[Crossref]

Y. Tang, J. Yang, B. Zhao, M. Wang, and X. Zhu, “Control of periodic ripples growth on metals by femtosecond laser ellipticity,” Opt. Express 20(23), 25826–25833 (2012).
[Crossref] [PubMed]

Zorba, V.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

R. Kuladeep, C. Sahoo, and D. N. Rao, “Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser,” Appl. Phys. Lett. 104(22), 222103 (2014).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (6)

M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process. 99(1), 23–27 (2010).
[Crossref]

M. Hashida, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, and S. Sakabe, “Orientation of periodic grating structures controlled by double-pulse irradiation,” Appl. Phys., A Mater. Sci. Process. 122(4), 1–5 (2016).
[Crossref]

L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[Crossref]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

X. Wu, T. Jia, F. Zhao, M. Huang, N. Xu, H. Kuroda, and Z. Xu, “Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 86(4), 491–495 (2007).
[Crossref]

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Appl. Surf. Sci. (3)

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252(24), 8576–8579 (2006).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica uponcross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

J. Appl. Phys. (4)

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Laser Photonics Rev. (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Opt. Express (8)

Y. Tang, J. Yang, B. Zhao, M. Wang, and X. Zhu, “Control of periodic ripples growth on metals by femtosecond laser ellipticity,” Opt. Express 20(23), 25826–25833 (2012).
[Crossref] [PubMed]

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[Crossref] [PubMed]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref] [PubMed]

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[Crossref] [PubMed]

H. Qiao, J. Yang, F. Wang, Y. Yang, and J. Sun, “Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces,” Opt. Express 23(20), 26617–26627 (2015).
[Crossref] [PubMed]

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

X. Li, W. Rong, L. Jiang, K. Zhang, C. Li, Q. Cao, G. Zhang, and Y. Lu, “Generation and elimination of polarization-dependent ablation of cubic crystals by femtosecond laser radiation,” Opt. Express 22(24), 30170–30176 (2014).
[Crossref] [PubMed]

J. Cong, J. Yang, B. Zhao, and X. Xu, “Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams,” Opt. Express 23(4), 5357–5367 (2015).
[Crossref] [PubMed]

Opt. Lasers Eng. (2)

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Y. Ma, V. Khuat, and A. Pan, “A simple method for well-defined and clean all-SiC nano-ripples in ambient air,” Opt. Lasers Eng. 82, 141–147 (2016).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (2)

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B Condens. Matter 44(12), 6393–6400 (1991).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Chen, W. K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” Proc. Natl. Acad. Sci. U.S.A. 108(47), 18887–18892 (2011).
[Crossref] [PubMed]

RSC Advances (1)

M. Gedvilas, J. Mikšys, and G. Račiukaitis, “Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation,” RSC Advances 5(92), 75075–75080 (2015).
[Crossref]

Other (1)

W. He and J. Yang, “Evidencing ultrafast non-equilibrium dynamics in SiC crystal by femtosecond laser induced slanting surface nanostructures,” J. Appl. Phys. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup. Abbreviation: BS1, BS2, BS3 and BS4: beam splitter; fs: femtosecond; E1, E2 and E3: electric fields of the laser beams P1, P2 and P3, respectively; τ: pulse width; λ: center wavelength of the laser; L: microscope objective lens. An inset diagram illustrates the relationships among the linear polarizations of three laser beams P1, P2 and P3.
Fig. 2
Fig. 2 (a)-(c) SEM images of the HSF ripple structures formed on the surface of 4H-SiC crystal using three isolated individual femtosecond laser beams, which have different linear polarizations with the same peak fluence of 0.24 J/cm2. Here the yellow double solid arrows denote directions of the electric field (or linear polarization) of the laser beams; while the red dashed lines (O1, O2 and O3) represent the orientations of the laser-induced ripple structures.
Fig. 3
Fig. 3 (a) SEM images of the LSF ripple structures on the surface of 4H-SiC crystal using three temporally delayed (Δt1 = 10 ps and Δt2 = 42 ps) collinear femtosecond laser beams, where the peak fluence of each laser beam is 0.07 J/cm2, and the intersection angles among three laser polarizations are θ1 = θ2 = 30°. The red solid line (O123) denotes the ripple orientation induced by three femtosecond laser beams; (b)-(c) AFM image of the LSF periodic surface structures and its cross-section profile line; (d) An image of the fast Fourier transformation (FFT) of Fig. 3 (a).
Fig. 4
Fig. 4 Observed LSF ripple structures on the surface of 4H-SiC crystal using three femtosecond laser pulse beams with several time delays of Δt2, where other laser parameters are adopted as θ1 = θ2 = 30° and Δt1 = 10 ps.
Fig. 5
Fig. 5 (a)-(c) Measured ripple orientation angle, spatial period and the duty ratio, and groove depth as a function of the second time delay Δt2, respectively, with three time-delayed femtosecond laser beams irradiating on the surface of 4H-SiC crystal, where the time delay Δt1 is fixed at 10 ps; (d) Measured second time delay (Δt2) dependence of the ripple orientation angle at the fixed time delay Δt1 = 60 ps. In all these cases the intersection angles among three laser polarizations are θ1 = θ2 = 30°.
Fig. 6
Fig. 6 Proposed physical model for slanting orientation of the ripple structures formed on the surface of 4H-SiC crystal upon irradiation of three time-delayed femtosecond laser pulse beams linearly polarized in different directions. (a) In the case of Δt1 = 10 ps; (b) In the case of Δt1 = 60 ps. Here k10, k20 and k30 are the wave vectors of the laser beams P1, P2 and P3 projected on the sample surface, respectively; k1g and k2g are the grating vectors of the transient index metasurfaces induced by the laser beams P1 and P2, respectively; Δk2g is a time-dependent variation in the magnitude of k2g.
Fig. 7
Fig. 7 Observed LSF ripple structures on the surface of 4H-SiC crystal induced by three femtosecond laser pulse beams with several time delays of Δt2, where other laser parameters are adopted as θ1 = θ2 = 45° and Δt1 = 10 ps.
Fig. 8
Fig. 8 Measured ripple orientation angles as a function of the second time delay Δt2 for the irradiation of three time-delayed femtosecond laser pulse beams on the surface of 4H-SiC crystal, where the polarization intersection angles of three laser beams are θ1 = θ2 = 45°. (a) Δt1 = 10 ps; (b) Δt1 = 60 ps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 2 g = k 20 1 + a 2 d 2 tan 2 ( k 20 h )
Λ = λ ( 1 ε d + 1 ε m ) 1 / 2

Metrics