Abstract

We demonstrate a flexible RF photonics down-converter that enables spectral folding of a 2-18 GHz RF band into a common 2 GHz wide intermediate frequency (IF) band for identification of specific signals of interest. The system can then be reconfigured for selective down-conversion of a given sub-band to a common IF output. We present an analysis of the performance of the down-converter and experimentally demonstrate both the spectral folding and selective modes. A sensitivity of −42 dBm in an IF bandwidth of 2 GHz and a spurious free dynamic range of 103 dB.Hz2/3 is achieved in the spectral folding mode.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microwave photonic RF front-end for co-frequency co-time full duplex 5G communication with integrated RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion

Linbojie Huang, Yucheng Zhang, Xiaolei Li, Lei Deng, Mengfan Cheng, Songnian Fu, Ming Tang, and Deming Liu
Opt. Express 27(22) 32147-32157 (2019)

Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator

Hongchen Yu, Minghua Chen, Hongbiao Gao, Cheng Lei, Heng Zhang, Sigang Yang, Hongwei Chen, and Shizhong Xie
Photon. Res. 2(4) B1-B4 (2014)

Down-conversion RF/photonic link with a monolithically integrated ACP-OPLL phase demodulator

Longtao Xu, Shilei Jin, and Yifei Li
Opt. Express 25(18) 21705-21710 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  2. A. Wiberg, D. J. Esman, L. Liu, J. R. Adleman, S. Zlatanovic, V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, E. W. Jacobs, and S. Radic, “Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers,” J. Lightwave Technol. 32(20), 3609–3617 (2014).
    [Crossref]
  3. X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
    [Crossref]
  4. T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
    [Crossref]
  5. A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightwave Technol. 29(16), 2394–2401 (2011).
    [Crossref]
  6. C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic-based low phase noise frequency synthesis for RF-to-millimeter wave carriers and wideband RF-to-IF down-conversion,” in Military Communications Conference (IEEE, 2011), pp. 51–54.
    [Crossref]
  7. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol.in press.
  8. J. D. McKinney and V. J. Urick, “Radio-frequency down-conversion via sampled analog optical links,” Photonics Tech. Branch, Naval Research Laboratory, NRL/MR/5650–10–9275 (2010).
  9. S. R. Harmon and J. D. McKinney, “Precision broadband RF signal recovery in subsampled analog optical links,” IEEE Photonics Technol. Lett. 27(6), 620–623 (2015).
    [Crossref]
  10. P. Toliver, A. Agarwal, J. M. Dailey, and T. C. Banwell, “Photonics-based spectral folding and selective down-conversion of RF Signals,” in Microwave Photonics (MWP), IEEE International Topical Meeting on (IEEE, 2016), pp. 69–72.
  11. C. Cox, Analog Optical Links (Cambridge University, 2004).
  12. W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
    [Crossref]
  13. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
    [Crossref]

2015 (1)

S. R. Harmon and J. D. McKinney, “Precision broadband RF signal recovery in subsampled analog optical links,” IEEE Photonics Technol. Lett. 27(6), 620–623 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (1)

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
[Crossref]

2011 (1)

2007 (1)

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

1996 (1)

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

Adleman, J. R.

Agarwal, A.

Alic, N.

Ataie, V.

Banwell, T.

Burns, W. K.

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

Capmany, J.

Clark, T. R.

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

Dai, Y.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
[Crossref]

Dennis, M. L.

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

DeSalvo, R.

C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic-based low phase noise frequency synthesis for RF-to-millimeter wave carriers and wideband RF-to-IF down-conversion,” in Military Communications Conference (IEEE, 2011), pp. 51–54.
[Crossref]

Esman, D. J.

Gasulla, I.

Gopalakrishnan, G. K.

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

Harmon, S. R.

S. R. Harmon and J. D. McKinney, “Precision broadband RF signal recovery in subsampled analog optical links,” IEEE Photonics Technol. Lett. 27(6), 620–623 (2015).
[Crossref]

Jacobs, E. W.

Kuo, B. P.-P.

Lin, J.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
[Crossref]

Liu, L.

Lloret, J.

McKinney, J. D.

S. R. Harmon and J. D. McKinney, “Precision broadband RF signal recovery in subsampled analog optical links,” IEEE Photonics Technol. Lett. 27(6), 620–623 (2015).
[Crossref]

Meredith, S.

C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic-based low phase noise frequency synthesis for RF-to-millimeter wave carriers and wideband RF-to-IF down-conversion,” in Military Communications Conference (IEEE, 2011), pp. 51–54.
[Crossref]

Middleton, C.

C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic-based low phase noise frequency synthesis for RF-to-millimeter wave carriers and wideband RF-to-IF down-conversion,” in Military Communications Conference (IEEE, 2011), pp. 51–54.
[Crossref]

Moeller, R. P.

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

Mora, J.

Myslivets, E.

Niu, J.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
[Crossref]

Pan, S.

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol.in press.

Peach, R.

C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic-based low phase noise frequency synthesis for RF-to-millimeter wave carriers and wideband RF-to-IF down-conversion,” in Military Communications Conference (IEEE, 2011), pp. 51–54.
[Crossref]

Radic, S.

Sales, S.

Sancho, J.

Torres-Company, V.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Wang, R.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
[Crossref]

Weiner, A. M.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Wiberg, A.

Woodward, T. K.

Xie, X.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
[Crossref]

Xu, K.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
[Crossref]

Yan, L.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
[Crossref]

Yao, J.

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol.in press.

Zlatanovic, S.

IEEE Photonics J. (1)

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics J. 4(4), 1196–1202 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (3)

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

S. R. Harmon and J. D. McKinney, “Precision broadband RF signal recovery in subsampled analog optical links,” IEEE Photonics Technol. Lett. 27(6), 620–623 (2015).
[Crossref]

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photonics Technol. Lett. 8(1), 130–132 (1996).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Other (5)

C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic-based low phase noise frequency synthesis for RF-to-millimeter wave carriers and wideband RF-to-IF down-conversion,” in Military Communications Conference (IEEE, 2011), pp. 51–54.
[Crossref]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol.in press.

J. D. McKinney and V. J. Urick, “Radio-frequency down-conversion via sampled analog optical links,” Photonics Tech. Branch, Naval Research Laboratory, NRL/MR/5650–10–9275 (2010).

P. Toliver, A. Agarwal, J. M. Dailey, and T. C. Banwell, “Photonics-based spectral folding and selective down-conversion of RF Signals,” in Microwave Photonics (MWP), IEEE International Topical Meeting on (IEEE, 2016), pp. 69–72.

C. Cox, Analog Optical Links (Cambridge University, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Conceptual system diagram of dual-mode down-converter and (b) illustration of optical and IF spectra in folding and selective modes.
Fig. 2
Fig. 2 Illustration of the frequency dithering technique used to identify the location of RF signals in various frequency sub-bands.
Fig. 3
Fig. 3 Calculated sensitivity [dBm] for an IF bandwidth of 2 GHz (left) and SFDR [dB.Hz2/3] (right) of the downconverter as a function of modulator Vπ and input laser power in folding mode.
Fig. 4
Fig. 4 Calculated sensitivity [dBm] for an IF bandwidth of 2 GHz (left) and SFDR [dB.Hz2/3] (right) of the downconverter as a function of modulator Vπ and input laser power in selective mode.
Fig. 5
Fig. 5 Experimental setup of dual-mode photonic down-converter. MZM: Mach-Zehnder modulator, PM: Phase modulator, BPF: Bandpass filter, HJ: Hybrid junction, RF: Radio frequency, LO: Local oscillator, IF: Intermediate frequency.
Fig. 6
Fig. 6 Electrical and optical spectra at various measurement points of the photonic down-converter in both wideband and selective modes. (a) Two-tone RF input centered at fRF = 17.5 GHz with ± 1MHz offset, (b) 9.5 and 17.5 GHz two-tone input signal after upconversion to an optical carrier, (c) Optical LO in folding (4 GHz-spaced comb) and selective modes (16 GHz-offset sideband), (d) IF output in folding mode with down-conversion to fIF = 1.5 GHz.
Fig. 7
Fig. 7 Measured fundamental and IMD3 output power of the downconverter operating in folding mode using two-tone RF input centered at 17.5 GHz and down-converted to a 1.5 GHz IF.
Fig. 8
Fig. 8 Measured fundamental and IMD3 output power of the downconverter operating in selective mode using two-tone RF input centered at 17.5 GHz and down-converted to a 1.5 GHz IF.

Tables (1)

Tables Icon

Table 1 Measured system sensitivity and gain for photonic down-converter in folding and selective modes over a carrier frequency range of 2-18 GHz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Z(t)=ρ(t)sin( ω RF t+ϑ(t))
E 1 (t) E 0 (t) =cos(ϕ/2) even k= + J k (βρ(t)) e jk( ω RF t+ϑ(t)) + jsin(ϕ/2) odd k= + J k (βρ(t)) e jk( ω RF t+ϑ(t))
E 2 (t)=jsin(ϕ/2) E 0 (t) J k (βρ(t)) e jk( ω RF t+ϑ(t))
E 2 (t)= E 0 (t) J 1 (βρ(t)) e j( ω RF t+ϑ(t))
S(t)=a2ηRe( E 2 (t) E LO (t)) =a4η| E 0 E LO | J 1 (βρ(t))sin( ω IF t+ϑ(t))
N out = N shot + N RIN + N TIA
N shot =a2 q e I pd R L
N RIN =εRIN I pd 2 R L
N TIA = I N 2 R L

Metrics