Abstract

We propose a new structured illumination scheme for achieving depth resolved wide-field pump-probe microscopy with sub-diffraction limit resolution. By acquiring coherent pump-probe images using a set of 3D structured light illumination patterns, a 3D super-resolution pump-probe image can be reconstructed. We derive the theoretical framework to describe the coherent image formation and reconstruction scheme for this structured illumination pump-probe imaging system and carry out numerical simulations to investigate its imaging performance. The results demonstrate a lateral resolution improvement by a factor of three and providing 0.5 µm level axial optical sectioning.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Yang-Hyo Kim and Peter T. C. So, "Three-dimensional wide-field pump-probe structured illumination microscopy: erratum," Opt. Express 25, 31423-31430 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-25-31423

OSA Recommended Articles
A method for super-resolved CARS microscopy with structured illumination in two dimensions

Joo Hyun Park, Sang-Won Lee, Eun Seong Lee, and Jae Yong Lee
Opt. Express 22(8) 9854-9870 (2014)

Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation

Tomáš Lukeš, Pavel Křížek, Zdeněk Švindrych, Jakub Benda, Martin Ovesný, Karel Fliegel, Miloš Klíma, and Guy M. Hagen
Opt. Express 22(24) 29805-29817 (2014)

Super-resolution algorithm based on Richardson–Lucy deconvolution for three-dimensional structured illumination microscopy

Yanwei Zhang, Song Lang, Hongwei Wang, Jiasheng Liao, and Yan Gong
J. Opt. Soc. Am. A 36(2) 173-178 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
    [Crossref] [PubMed]
  2. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  3. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
    [Crossref] [PubMed]
  4. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1959).
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  6. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  7. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref] [PubMed]
  8. S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
    [Crossref]
  9. S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  10. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
    [Crossref] [PubMed]
  11. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation,” Nature 366(6450), 44–48 (1993).
    [Crossref] [PubMed]
  12. E. Chung, Y. H. Kim, W. T. Tang, C. J. R. Sheppard, and P. T. C. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
    [Crossref] [PubMed]
  13. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
    [Crossref] [PubMed]
  14. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]
  15. L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
    [Crossref] [PubMed]
  16. P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
    [Crossref] [PubMed]
  17. W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward Label-Free Super-Resolution Microscopy,” ACS Photonics 3(1), 79–86 (2016).
    [Crossref]
  18. J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
    [Crossref] [PubMed]
  19. J. Zheng, D. Akimov, S. Heuke, M. Schmitt, B. Yao, T. Ye, M. Lei, P. Gao, and J. Popp, “Vibrational phase imaging in wide-field CARS for nonresonant background suppression,” Opt. Express 23(8), 10756–10763 (2015).
    [Crossref] [PubMed]
  20. C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
    [Crossref]
  21. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination,” Opt. Lett. 32(13), 1941–1943 (2007).
    [Crossref] [PubMed]
  22. E. S. Massaro, A. H. Hill, C. L. Kennedy, and E. M. Grumstrup, “Imaging theory of structured pump-probe microscopy,” Opt. Express 24(18), 20868–20880 (2016).
    [Crossref] [PubMed]
  23. J. H. Park, S. W. Lee, E. S. Lee, and J. Y. Lee, “A method for super-resolved CARS microscopy with structured illumination in two dimensions,” Opt. Express 22(8), 9854–9870 (2014).
    [Crossref] [PubMed]
  24. K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
    [Crossref] [PubMed]
  25. E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump-Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
    [Crossref]
  26. I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
    [Crossref] [PubMed]
  27. Cell Image Library, “Z-focal series of HeLa cells at metaphase” (2016), retrieved 15 Nov, 2016, http://www.cellimagelibrary.org/images/13378 .
  28. Wikimedia Commons, “Resolution test charts” (2016), retrieved 15 Nov, 2016, https://commons.wikimedia.org/wiki/File:USAF-1951.svg .
  29. P. T. C. So, T. French, and E. Gratton, “A frequency-domain time-resolved microscope using a fast-scan CCD camera,” Proc. SPIE 2137, 83–92 (1994).
    [Crossref]
  30. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  31. E. Chung, D. Kim, Y. Cui, Y. H. Kim, and P. T. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
    [Crossref] [PubMed]
  32. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  33. S. Chowdhury, A. H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express 3(8), 1841–1854 (2012).
    [Crossref] [PubMed]
  34. P. T. C. So, H. S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A 18(11), 2833–2845 (2001).
    [Crossref] [PubMed]
  35. D. G. Voelz, Computational Fourier Optics: a MATLAB Tutorial (SPIE Press, 2011), pp. xv, 232 p.
  36. K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
    [Crossref] [PubMed]
  37. Defense Technical Information Center, “MIL-STD-150A”, retrieved 15 Nov, 2016, www.dtic.mil/dtic/tr/fulltext/u2/a345623.pdf .
  38. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  39. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

2016 (4)

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward Label-Free Super-Resolution Microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

E. S. Massaro, A. H. Hill, C. L. Kennedy, and E. M. Grumstrup, “Imaging theory of structured pump-probe microscopy,” Opt. Express 24(18), 20868–20880 (2016).
[Crossref] [PubMed]

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump-Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

2015 (2)

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

J. Zheng, D. Akimov, S. Heuke, M. Schmitt, B. Yao, T. Ye, M. Lei, P. Gao, and J. Popp, “Vibrational phase imaging in wide-field CARS for nonresonant background suppression,” Opt. Express 23(8), 10756–10763 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

2010 (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

2009 (2)

E. Chung, Y. H. Kim, W. T. Tang, C. J. R. Sheppard, and P. T. C. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

2008 (3)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

2007 (3)

E. Chung, D. Kim, Y. Cui, Y. H. Kim, and P. T. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[Crossref] [PubMed]

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination,” Opt. Lett. 32(13), 1941–1943 (2007).
[Crossref] [PubMed]

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

2006 (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

2005 (1)

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

2004 (1)

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[Crossref]

2001 (1)

2000 (1)

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

1997 (1)

1995 (1)

S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[Crossref]

1994 (2)

S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

P. T. C. So, T. French, and E. Gratton, “A frequency-domain time-resolved microscope using a fast-scan CCD camera,” Proc. SPIE 2137, 83–92 (1994).
[Crossref]

1993 (1)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation,” Nature 366(6450), 44–48 (1993).
[Crossref] [PubMed]

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Akimov, D.

Andersen, J. S.

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

Bailey, B.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation,” Nature 366(6450), 44–48 (1993).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Bernet, S.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Blow, J. J.

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Cheng, J. X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Chiu, L. D.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Chowdhury, S.

Chung, E.

E. Chung, Y. H. Kim, W. T. Tang, C. J. R. Sheppard, and P. T. C. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

E. Chung, D. Kim, Y. Cui, Y. H. Kim, and P. T. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[Crossref] [PubMed]

Cohn, K.

Conchello, J. A.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Cui, Y.

E. Chung, D. Kim, Y. Cui, Y. H. Kim, and P. T. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Dhalla, A. H.

Dong, C. Y.

Eggeling, C.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Farkas, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation,” Nature 366(6450), 44–48 (1993).
[Crossref] [PubMed]

Fischer, M. C.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

French, T.

P. T. C. So, T. French, and E. Gratton, “A frequency-domain time-resolved microscope using a fast-scan CCD camera,” Proc. SPIE 2137, 83–92 (1994).
[Crossref]

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Frohn, J. T.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

Frontiera, R. R.

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward Label-Free Super-Resolution Microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

Fujita, K.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Gao, P.

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Graefe, C. T.

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward Label-Free Super-Resolution Microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

Gratton, E.

P. T. C. So, T. French, and E. Gratton, “A frequency-domain time-resolved microscope using a fast-scan CCD camera,” Proc. SPIE 2137, 83–92 (1994).
[Crossref]

Grumstrup, E. M.

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump-Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

E. S. Massaro, A. H. Hill, C. L. Kennedy, and E. M. Grumstrup, “Imaging theory of structured pump-probe microscopy,” Opt. Express 24(18), 20868–20880 (2016).
[Crossref] [PubMed]

Gustafsson, M. G. L.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Hamada, K.

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Hashimoto, H.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Heinrich, C.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[Crossref]

Hell, S. W.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Heuke, S.

Hill, A. H.

E. S. Massaro, A. H. Hill, C. L. Kennedy, and E. M. Grumstrup, “Imaging theory of structured pump-probe microscopy,” Opt. Express 24(18), 20868–20880 (2016).
[Crossref] [PubMed]

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump-Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hunter, C. J.

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

Inouye, Y.

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Izatt, J.

Jakobs, S.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kasai, A.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Kawata, S.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Kennedy, C. L.

Khoudoli, G. A.

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

Kim, D.

E. Chung, D. Kim, Y. Cui, Y. H. Kim, and P. T. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[Crossref] [PubMed]

Kim, Y. H.

E. Chung, Y. H. Kim, W. T. Tang, C. J. R. Sheppard, and P. T. C. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
[Crossref] [PubMed]

E. Chung, D. Kim, Y. Cui, Y. H. Kim, and P. T. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[Crossref] [PubMed]

Knapp, H. F.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

Kner, P.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Kobayashi, M.

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Kroug, M.

S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[Crossref]

Kwon, H. S.

Lanni, F.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation,” Nature 366(6450), 44–48 (1993).
[Crossref] [PubMed]

Lee, E. S.

Lee, J. Y.

Lee, S. W.

Lei, M.

Lichtman, J. W.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lu, J.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Massaro, E. S.

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump-Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

E. S. Massaro, A. H. Hill, C. L. Kennedy, and E. M. Grumstrup, “Imaging theory of structured pump-probe microscopy,” Opt. Express 24(18), 20868–20880 (2016).
[Crossref] [PubMed]

Matthews, T. E.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

McAinsh, A. D.

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

McClelland, S. E.

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

Min, W.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Mitchell, J.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Palanker, D.

Palonpon, A. F.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Park, J. H.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Piletic, I. R.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Popp, J.

Porter, I. M.

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

Potma, E. O.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Rego, E. H.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Ritsch-Marte, M.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[Crossref]

Robles, F. E.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Schmitt, M.

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Selim, M. A.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Shao, L.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Sheppard, C. J. R.

Silva, W. R.

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward Label-Free Super-Resolution Microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

Simanovskii, D.

Simpson, M. J.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Slipchenko, M. N.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Smith, N. I.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

Smith, T.

So, P. T.

E. Chung, D. Kim, Y. Cui, Y. H. Kim, and P. T. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[Crossref] [PubMed]

So, P. T. C.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Stemmer, A.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

Swedlow, J. R.

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

Tang, W. T.

Taylor, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation,” Nature 366(6450), 44–48 (1993).
[Crossref] [PubMed]

Toytman, I.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Wang, P.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Warren, W. S.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Watanabe, K.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Wichmann, J.

Wilson, J. W.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

Xie, X. S.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Xu, X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Yamaguchi, I.

Yang, C.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Yao, B.

Ye, T.

Zhang, T.

Zheng, J.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

ACS Photonics (2)

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward Label-Free Super-Resolution Microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump-Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Appl. Phys. B (1)

S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[Crossref]

Appl. Phys. Lett. (1)

C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (3)

E. Chung, D. Kim, Y. Cui, Y. H. Kim, and P. T. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13(4), 044027 (2008).
[Crossref] [PubMed]

J. Cell Biol. (1)

I. M. Porter, S. E. McClelland, G. A. Khoudoli, C. J. Hunter, J. S. Andersen, A. D. McAinsh, J. J. Blow, and J. R. Swedlow, “Bod1, a novel kinetochore protein required for chromosome biorientation,” J. Cell Biol. 179(2), 187–197 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-Resolution Laser Scanning Microscopy through Spatiotemporal Modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
[Crossref] [PubMed]

Nat. Methods (2)

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Nature (1)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of Axial Resolution in Fluorescence Microscopy by Standing-Wave Excitation,” Nature 366(6450), 44–48 (1993).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).
[Crossref] [PubMed]

Proc. SPIE (1)

P. T. C. So, T. French, and E. Gratton, “A frequency-domain time-resolved microscope using a fast-scan CCD camera,” Proc. SPIE 2137, 83–92 (1994).
[Crossref]

Rev. Sci. Instrum. (1)

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Science (3)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Other (7)

D. G. Voelz, Computational Fourier Optics: a MATLAB Tutorial (SPIE Press, 2011), pp. xv, 232 p.

Cell Image Library, “Z-focal series of HeLa cells at metaphase” (2016), retrieved 15 Nov, 2016, http://www.cellimagelibrary.org/images/13378 .

Wikimedia Commons, “Resolution test charts” (2016), retrieved 15 Nov, 2016, https://commons.wikimedia.org/wiki/File:USAF-1951.svg .

Defense Technical Information Center, “MIL-STD-150A”, retrieved 15 Nov, 2016, www.dtic.mil/dtic/tr/fulltext/u2/a345623.pdf .

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1959).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Wide-field pump-probe structured illumination microscope (ppSIM) design (a) Schematic diagram of an optical setup (b) Synchronous sampling of probe beam signal at four points per sinusoidal wave form in each pixel of the camera (directly applicable to 50% duty ratio on-off modulation).
Fig. 2
Fig. 2 Pump beam configuration and probe beam extended transfer function for pump-probe structured illumination microscopy (ppSIM). (a) The five wave vectors corresponding to the each pump beam direction. All five wave vectors have the same magnitude k = 2 π / λ . (b, c) The resulting spatial frequency components of the illumination intensity for the ppSIM with (b) a single grating period and (c) grating period scanning. (d-e) The transfer function for (d) the conventional wide-field microscopy, (e) the single grating period ppSIM, and (f) grating period scanning ppSIM in (1) 3D, (2) mn plane, and (3) ms plane. The color in 3D transfer function represents the position in s axis, not a weighting.
Fig. 3
Fig. 3 Numerical simulation results of USAF 1951 test chart: a whole image data for (a) conventional wide-field microscope, (b) ppSIM with a single grating period, and (c) ppSIM with grating period scanning in (1) xy (2) xz, (3) mn, and (4) ms planes. The image spectra (logarithmic scale) are displayed for amplitude with their axes normalized with the lateral cut-off frequency of the conventional microscope. An isolated three bar pattern simulation results comparing the conventional microscope and ppSIM with grating period scanning in (d, e) lateral and (f, g) axial dimensions: (d, f) cross-sectional profiles in space and (e, g) field amplitude modulations according to the spatial frequency. For the conventional wide-field imaging, the three bar patterns inside the dashed red rectangle in (a1) appear blurred and they are barely resolvable where the period of element 1 (the most coarse set) is close to the coherent Abbe diffraction limit λ/NA (1.177 µm in this study). For the ppSIM imaging, on the other hand, three bars inside the dashed rectangles in (b1, c1) are clearly distinguished with more sharply defined edges.
Fig. 4
Fig. 4 3D MIT logo image simulation result: (a) original 3D object and (b) the image from the conventional wide-field microscope and (c) the image from ppSIM with grating period scanning in (1) xy plane and (2) xz plane. xy plane passes through the middle of the letter ‘i' (z = 0 µm) and xz plane cuts only the legs of each letter (y = 0 µm).
Fig. 5
Fig. 5 The HEC1 (a–d) and DNA (e–h) in HeLa cells. (a, e) Original 3D data, (b, f) conventional wide-field microscope with 0.68 NA objective, (c, g) grating period scanning ppSIM with 0.68 NA objective, and (d, h) grating scanning ppSIM with 0.9 NA objective in (1) xy plane, (2) xz plane, and (3) ms plane. The image spectra (logarithmic scale) are displayed for amplitude with their axes normalized with the lateral cut-off frequency of the conventional wide-field microscope with 0.68 NA objective. m = 0 and n = 0 axes lines are added to help analyzing the CTF support change. ppSIM with 0.9 NA shows the axial cut-off frequency of ~2.48 (which gives ~0.48 µm sectioning capability).
Fig. 6
Fig. 6 Definition of the diffraction plane (the x 1 y 1 plane) and the observation plane (the x 2 y 2 plane).
Fig. 7
Fig. 7 4f optical imaging system with a thin object.
Fig. 8
Fig. 8 4f optical imaging system with a thick object.
Fig. 9
Fig. 9 4f optical imaging system with a shifted thick object.
Fig. 10
Fig. 10 Schematic diagram of the 3D coherent transfer function for coherent imaging with a circular lens in 4f system.
Fig. 11
Fig. 11 (a) The two wave vectors corresponding to the each pump beam direction. Two wave vectors have the same magnitude. (b) Three complex numbers equally distributed on the circle whose center is located in the origin. (c) Arbitrary number of complex numbers equally distributed on the circle whose center is located in the origin.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ; ϕ R ) = | U R ( ϕ R ) + U ( x , y ) | 2 = A R 2 + A 2 + 2 A R A cos ( ϕ R ϕ ) .
ϕ ( x , y ) = tan 1 I ( x , y ; 3 π / 2 ) I ( x , y ; π / 2 ) I ( x , y ; 0 ) I ( x , y ; π )
u ( x , y , z ) = [ o ( x , y , z ) e ( x , y , z ) ] h ( x , y , z )
U ( m , n , s ) = [ O ( m , n , s ) E ( m , n , s ) ] H ( m , n , s )
e 1 ( x , z ) = y ^ exp [ i ( k sin θ x + k cos θ z + ϕ 1 ) ] e 2 ( x , z ) = y ^ exp [ i ( k sin θ x + k cos θ z + ϕ 2 ) ] e 3 ( y , z ) = y ^ cos θ exp [ i ( k sin θ y + k cos θ z + ϕ 3 ) ] + z ^ sin θ exp [ i ( k sin θ y + k cos θ z + ϕ 3 ) ] e 4 ( y , z ) = y ^ cos θ exp [ i ( k sin θ y + k cos θ z + ϕ 4 ) ] + z ^ sin θ exp [ i ( k sin θ y + k cos θ z + ϕ 4 ) ] e 5 ( z ) = y ^ exp [ i ( k z + ϕ 5 ) ]
e ( x , y , z ) = | E 1 + E 2 + E 3 + E 4 + E 5 | 2 = [ 5 + 2 cos ( 2 k sin θ x + Δ ϕ 12 ) 2 cos θ cos ( k sin θ x k sin θ y + Δ ϕ 13 ) + 2 cos θ cos ( k sin θ x + k sin θ y + Δ ϕ 14 ) + 2 cos ( k sin θ x + k cos θ z k z + Δ ϕ 15 ) 2 cos θ cos ( k sin θ x k sin θ y + Δ ϕ 23 ) + 2 cos θ cos ( k sin θ x + k sin θ y + Δ ϕ 24 ) + 2 cos ( k sin θ x + k cos θ z k z + Δ ϕ 25 ) 2 cos 2 θ cos ( 2 k sin θ y + Δ ϕ 34 ) 2 cos θ cos ( k sin θ y + k cos θ z k z + Δ ϕ 35 ) + 2 cos θ cos ( k sin θ y + k cos θ z k z + Δ ϕ 45 ) ]
E ( m , n , s ) = { e ( x , y , z ) } = 5 δ ( m , n , s ) + exp ( i Δ ϕ 12 ) δ ( m + 2 k m n , n , s ) + exp ( i Δ ϕ 12 ) δ ( m 2 k m n , n , s ) cos θ { exp ( i Δ ϕ 13 ) exp ( i Δ ϕ 24 ) } δ ( m + k m n , n k m n , s ) cos θ { exp ( i Δ ϕ 13 ) exp ( i Δ ϕ 24 ) } δ ( m k m n , n + k m n , s ) + cos θ { exp ( i Δ ϕ 14 ) exp ( i Δ ϕ 23 ) } δ ( m + k m n , n + k m n , s ) + cos θ { exp ( i Δ ϕ 14 ) exp ( i Δ ϕ 23 ) } δ ( m k m n , n k m n , s ) + { exp ( i Δ ϕ 15 ) δ ( m + k m n , n , s + k s ) + exp ( i Δ ϕ 15 ) δ ( m k m n , n , s k s ) } + { exp ( i Δ ϕ 25 ) δ ( m k m n , n , s + k s ) + exp ( i Δ ϕ 25 ) δ ( m + k m n , n , s k s ) } cos 2 θ { exp ( i Δ ϕ 34 ) δ ( m , n + 2 k m n , s ) + exp ( i Δ ϕ 34 ) δ ( m , n 2 k m n , s ) } cos θ { exp ( i Δ ϕ 35 ) δ ( m , n + k m n , s + k s ) + exp ( i Δ ϕ 35 ) δ ( m , n k m n , s k s ) } + cos θ { exp ( i Δ ϕ 45 ) δ ( m , n k m n , s + k s ) + exp ( i Δ ϕ 45 ) δ ( m , n + k m n , s k s ) }
U ( m , n , s ) = [ 5 O ( m , n , s ) + exp ( i Δ ϕ 12 ) O ( m + 2 k m n , n , s ) + exp ( i Δ ϕ 12 ) O ( m 2 k m n , n , s ) cos θ { exp ( i Δ ϕ 13 ) exp ( i Δ ϕ 24 ) } O ( m + k m n , n k m n , s ) cos θ { exp ( i Δ ϕ 13 ) exp ( i Δ ϕ 24 ) } O ( m k m n , n + k m n , s ) + cos θ { exp ( i Δ ϕ 14 ) exp ( i Δ ϕ 23 ) } O ( m + k m n , n + k m n , s ) + cos θ { exp ( i Δ ϕ 14 ) exp ( i Δ ϕ 23 ) } O ( m k m n , n k m n , s ) + exp ( i Δ ϕ 15 ) O ( m + k m n , n , s + k s ) + exp ( i Δ ϕ 15 ) O ( m k m n , n , s k s ) + exp ( i Δ ϕ 25 ) O ( m k m n , n , s + k s ) + exp ( i Δ ϕ 25 ) O ( m + k m n , n , s k s ) cos 2 θ exp ( i Δ ϕ 34 ) O ( m , n + 2 k m n , s ) cos 2 θ exp ( i Δ ϕ 34 ) O ( m , n 2 k m n , s ) cos θ exp ( i Δ ϕ 35 ) O ( m , n + k m n , s + k s ) cos θ exp ( i Δ ϕ 35 ) O ( m , n k m n , s k s ) + cos θ exp ( i Δ ϕ 45 ) O ( m , n k m n , s + k s ) + cos θ exp ( i Δ ϕ 45 ) O ( m , n + k m n , s k s ) ] H ( m , n , s )
U ( m , n , s ) = j = 0 16 w j O j ( m , n , s ) H ( m , n , s )
m = A max A min A max + A min .
d ( r ) = | [ o ( r ) e ( r ) ] h ( r ) | 2
D ( ω ) = a u t o c o r r ( [ O ( ω ) E ( ω ) ] H ( ω ) )
H E T ( ω ) = j = 1 N F H ( ω ω j )
D E T ( ω ) = a u t o c o r r ( O ( ω ) j = 1 N F H ( ω ω j ) ) = i = 1 N F j = 1 N F O ( ω ) H ( ω ω i ) O ( ω ) H ( ω ω j ) = l = 1 M F G l ( ω )
e ( r ) = j = 1 N cos ( ω j r + ϕ j )
D S I ( ω ) = a u t o c o r r ( ( j = 1 N F O ( ω ω j ) ) H ( ω ) ) = i = 1 N F j = 1 N F exp ( i Φ i j ) O ( ω ω i ) H ( ω ) O ( ω ω j ) H ( ω ) = l = 1 M F exp ( i Φ l ) F l ( ω )
{ r = ( x 2 + y 2 ) 1 / 2 , x = r cos θ , y = r sin θ l = ( m 2 + n 2 ) 1 / 2 , m = l cos φ , n = l sin φ
x y z { f ( x , y , z ) } = f ( x , y , z ) exp [ i 2 π ( m x + n y + s z ) ] d x d y d z
U 2 ( x 2 , y 2 ) = exp ( i k z ) i λ z U 1 ( x 1 , y 1 ) exp { i k 2 z [ ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 ] } d x 1 d y 1
t ( x , y ) = exp [ i k ( x 2 + y 2 ) 2 f ] .
U 4 ( x 4 , y 4 ) = exp [ 2 i k ( f 1 + f 2 ) ] λ 2 f 1 f 2 exp ( i k z 1 ) o ( x 1 , y 1 ) h ( x 1 + M x 4 , y 1 + M y 4 , z 1 ) d x 1 d y 1
{ h ( x , y , z ) = P ( 1 λ f 1 x , 1 λ f 1 y , z ) M = x 1 x 4
U 4 ( x 4 , y 4 ) = exp [ 2 i k ( f 1 + f 2 ) ] λ 2 f 1 f 2 o ( x 1 , y 1 , z 1 ) exp ( i k z 1 ) h ( x 1 + M x 4 , y 1 + M y 4 , z 1 ) d x 1 d y 1 d z 1
U 4 ( x 4 , y 4 ) = exp [ 2 i k ( f 1 + f 2 ) ] λ 2 f 1 f 2 o ( x 1 , y 1 , z 1 z 5 ) exp ( i k z 1 ) h ( x 1 + M x 4 , y 1 + M y 4 , z 1 ) d x 1 d y 1 d z 1 = exp [ 2 i k ( f 1 + f 2 ) ] λ 2 f 1 f 2 o ( x 1 , y 1 , z 1 ) h ( x 1 + M x 5 , y 1 + M y 5 , z 1 + z 5 ) d x 1 d y 1 d z 1
c ( m , n , s ) = h ( x , y , z ) exp [ i 2 π ( m x + n y + s z ) ] d x d y d z = [ h ( x , y , z ) exp [ i 2 π ( m x + n y ) ] d x d y ] exp ( i 2 π z ) d z .
c ( l , s ) = ( λ f 1 ) 2 p ( l ) δ ( s + 1 λ λ l 2 2 )
e 1 ( x , z ) = y ^ exp [ i ( k sin θ x + k cos θ z + ϕ 1 ) ] e 2 ( x , z ) = y ^ exp [ i ( k sin θ x + k cos θ z + ϕ 2 ) ] .
e ( x , y , z ) = | E 1 + E 2 | 2 = 1 + 2 cos ( 2 k sin θ x + Δ ϕ 12 )
E ( m , n , s ) = δ ( m , n ) + exp ( i Δ ϕ 12 ) δ ( m + 2 k m n , n , s ) + exp ( i Δ ϕ 12 ) δ ( m 2 k m n , n , s )
i = 0 2 1 + 2 i = 0 2 cos ( 2 k sin θ x + ( Δ ϕ 12 ) i ) .
{ Φ i ( Δ ϕ 12 ) i | i = 0 , 1 , 2 } = { 0 , 2 π 3 , 4 π 3 } .
i = 0 N 1 cos ( C + i 2 M π N ) = 0
i = 0 16 5 + 2 i = 0 16 cos ( 2 k sin θ x + Δ ϕ 12 ) 2 cos θ i = 0 16 cos ( k sin θ x k sin θ y + Δ ϕ 13 ) . + + 2 cos θ i = 0 16 cos ( k sin θ y + k cos θ z k z + Δ ϕ 45 )
{ Φ i ( Δ ϕ 12 , Δ ϕ 13 , , Δ ϕ 45 ) i | i = 0 , 1 , , 16 } = { ( i 2 M 12 π 17 , i 2 M 13 π 17 , , i 2 M 45 π 17 ) i | i = 0 , 1 , , 16 , M j k ( { 0 } ) } .
{ ( ϕ 1 , ϕ 2 , , ϕ 5 ) i | i = 0 , 1 , , 16 } = { ( i 2 M 1 π 17 , i 2 M 2 π 17 , , i 2 M 5 π 17 ) i | i = 0 , 1 , , 16 , M j }
{ ( ϕ 1 , ϕ 2 , , ϕ 5 ) i | i = 0 , 1 , , 16 } = { ( 0 , i 2 π 17 , i 4 π 17 , i 8 π 17 , i 16 π 17 ) i | i = 0 , 1 , , 16 } .

Metrics