Abstract

We demonstrate a simple and robust method to write a phase-shifted helical long-period fiber grating (HLPG), where an equivalent phase-shift is formed by changing the local period of the grating during the fabrication process. Furthermore, we propose and demonstrate a simple method to characterize the phase-shift formed in a HLPG, which is realized by directly analyzing the imaging pattern of the fabricated HLPG using a stereo microscope under a white light illumination. Unlike the previous methods which are indirectly realized either by measuring the transmission spectrum of the fabricated HLPG or by analyzing the differential interference contrast (DIC) microscopic images of the fabricated HLPG, the proposed method can be used to well estimate the grating period as well as the phase-shift inserted in the HLPG in situ, which could considerably facilitate the fabrication technique of the HLPG by using CO2 laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis for the phase-diffusion effect in a phase-shifted helical long-period fiber grating and its pre-compensation

Hua Zhao, Peng Wang, Chengliang Zhu, Ramanathan Subramanian, and Hongpu Li
Opt. Express 25(16) 19085-19093 (2017)

Optimal design and fabrication of multichannel helical long-period fiber gratings based on phase-only sampling method

Chengliang Zhu, Shoma Ishikami, Peng Wang, Hua Zhao, and Hongpu Li
Opt. Express 27(3) 2281-2291 (2019)

Flat-top band-rejection filter based on two successively-cascaded helical fiber gratings

Gen. Inoue, Peng Wang, and Hongpu Li
Opt. Express 24(5) 5442-5447 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
    [Crossref]
  2. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
    [Crossref] [PubMed]
  3. O. V. Ivanov, “Fabrication of long-period fiber gratings by twisting a standard single-mode fiber,” Opt. Lett. 30(24), 3290–3292 (2005).
    [Crossref] [PubMed]
  4. S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29(13), 1464–1466 (2004).
    [Crossref] [PubMed]
  5. W. Shin, B. A. Yu, Y. C. Noh, J. Lee, D. K. Ko, and K. Oh, “Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities,” Opt. Lett. 32(10), 1214–1216 (2007).
    [Crossref] [PubMed]
  6. L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
    [Crossref] [PubMed]
  7. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period twisted elliptical fibers,” Appl. Opt. 51(10), C193–C197 (2012).
    [Crossref] [PubMed]
  8. H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013).
    [Crossref] [PubMed]
  9. H. Ke, K. S. Chiang, and J. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
    [Crossref]
  10. Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
    [Crossref]
  11. L. R. Chen, “Design of flat-top bandpass filter based on symmetric multiple phase-shifted long-period fiber gratings,” Opt. Commun. 205(4–6), 271–276 (2002).
    [Crossref]
  12. K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett. 45(1), 18–21 (2005).
    [Crossref]
  13. R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt. 45(21), 5066–5072 (2006).
    [Crossref] [PubMed]
  14. M. Kulishov, D. Krcmarík, and R. Slavík, “Design of terahertz-bandwidth arbitrary-order temporal differentiators based on long-period fiber gratings,” Opt. Lett. 32(20), 2978–2980 (2007).
    [Crossref] [PubMed]
  15. J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
    [Crossref]
  16. P. Pilla, P. Foglia Manzillo, M. Giordano, M. L. Korwin-Pawlowski, W. J. Bock, and A. Cusano, “Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations,” Opt. Express 16(13), 9765–9780 (2008).
    [Crossref] [PubMed]
  17. K. Hishiki and H. Li, “Phase-shift formed in a long period fiber grating and its application to the measurements of temperature and refractive index,” Opt. Express 21(10), 11901–11912 (2013).
    [Crossref] [PubMed]
  18. P. Wang and H. Li, “Helical long-period grating formed in a thinned fiber and its application to a refractometric sensor,” Appl. Opt. 55(6), 1430–1434 (2016).
    [Crossref] [PubMed]
  19. G. Inoue, P. Wang, and H. Li, “Flat-top band-rejection filter based on two successively-cascaded helical fiber gratings,” Opt. Express 24(5), 5442–5447 (2016).
    [Crossref]
  20. P. Wang, L. Xian, and H. Li, “L. X, and H. Li, “Fabrication of phase-shifted long-period fiber grating and its application to strain measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
    [Crossref]
  21. K. Thyagarajan, M. Das, and M. N. Satyanarayan, “A simple and direct method to estimate long period grating parameters,” Opt. Commun. 218(1-3), 67–72 (2003).
    [Crossref]
  22. M. M. Ali, K. S. Lim, H. Z. Yang, W. Y. Chong, W. S. Lim, and H. Ahmad, “Direct period measurement for fiber Bragg grating using an optical imaging technique,” Appl. Opt. 52(22), 5393–5397 (2013).
    [Crossref] [PubMed]
  23. C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Imaging of various optical fiber Bragg gratings using differential interference contrast microscopy: analysis and comparison,” Appl. Opt. 55(4), 783–790 (2016).
    [Crossref] [PubMed]
  24. Y. Rao, Y. Wang, Z. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [Crossref]

2016 (3)

2015 (1)

P. Wang, L. Xian, and H. Li, “L. X, and H. Li, “Fabrication of phase-shifted long-period fiber grating and its application to strain measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
[Crossref]

2014 (1)

2013 (3)

2012 (1)

2008 (1)

2007 (2)

2006 (1)

2005 (2)

O. V. Ivanov, “Fabrication of long-period fiber gratings by twisting a standard single-mode fiber,” Opt. Lett. 30(24), 3290–3292 (2005).
[Crossref] [PubMed]

K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett. 45(1), 18–21 (2005).
[Crossref]

2004 (2)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29(13), 1464–1466 (2004).
[Crossref] [PubMed]

2003 (2)

K. Thyagarajan, M. Das, and M. N. Satyanarayan, “A simple and direct method to estimate long period grating parameters,” Opt. Commun. 218(1-3), 67–72 (2003).
[Crossref]

Y. Rao, Y. Wang, Z. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

2002 (1)

L. R. Chen, “Design of flat-top bandpass filter based on symmetric multiple phase-shifted long-period fiber gratings,” Opt. Commun. 205(4–6), 271–276 (2002).
[Crossref]

1999 (1)

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[Crossref]

1998 (1)

H. Ke, K. S. Chiang, and J. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

1994 (1)

J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[Crossref]

1991 (1)

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Ahmad, H.

Alexeyev, C. N.

Ali, M. M.

Baxter, G. W.

Bennion, I.

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[Crossref]

Bock, W. J.

Canning, J.

J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[Crossref]

Chao, N.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Chen, L. R.

L. R. Chen, “Design of flat-top bandpass filter based on symmetric multiple phase-shifted long-period fiber gratings,” Opt. Commun. 205(4–6), 271–276 (2002).
[Crossref]

Chiang, K. S.

H. Ke, K. S. Chiang, and J. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

Chong, W. Y.

Chung, K. W.

K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett. 45(1), 18–21 (2005).
[Crossref]

Chung, Y.

Churikov, V. M.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Collins, S. F.

Cusano, A.

Das, M.

K. Thyagarajan, M. Das, and M. N. Satyanarayan, “A simple and direct method to estimate long period grating parameters,” Opt. Commun. 218(1-3), 67–72 (2003).
[Crossref]

Fabris, J. L.

Fadeyeva, T. A.

Falate, R.

Foglia Manzillo, P.

Frazão, O.

Genack, A. Z.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Giordano, M.

Hishiki, K.

Inoue, G.

Ivanov, O. V.

Ke, H.

H. Ke, K. S. Chiang, and J. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

Ko, D. K.

Kopp, V. I.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Korwin-Pawlowski, M. L.

Krcmarík, D.

Kulishov, M.

Lapin, B. P.

Lee, J.

Lee, K. R.

Li, H.

Lim, K. S.

Lim, W. S.

Liu, Y.

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[Crossref]

Nelson, K. T.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Neugroschl, D.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Noh, Y. C.

Oh, K.

Oh, S.

Paek, U. C.

Peng, J.

H. Ke, K. S. Chiang, and J. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

Pilla, P.

Poole, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Ran, Z.

Rao, Y.

Rego, G.

Rollinson, C. M.

Santos, J. L.

Satyanarayan, M. N.

K. Thyagarajan, M. Das, and M. N. Satyanarayan, “A simple and direct method to estimate long period grating parameters,” Opt. Commun. 218(1-3), 67–72 (2003).
[Crossref]

Sceats, M.

J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[Crossref]

Shin, W.

Singer, J.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Slavík, R.

Thyagarajan, K.

K. Thyagarajan, M. Das, and M. N. Satyanarayan, “A simple and direct method to estimate long period grating parameters,” Opt. Commun. 218(1-3), 67–72 (2003).
[Crossref]

Townsend, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Wade, S. A.

Wang, P.

Wang, Y.

Williams, J. A. R.

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[Crossref]

Xian, L.

P. Wang, L. Xian, and H. Li, “L. X, and H. Li, “Fabrication of phase-shifted long-period fiber grating and its application to strain measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
[Crossref]

L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
[Crossref] [PubMed]

Xu, H.

Yang, H. Z.

Yang, L.

Yavorsky, M. A.

Yin, S.

K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett. 45(1), 18–21 (2005).
[Crossref]

Yu, B. A.

Zhang, L.

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[Crossref]

Zhu, T.

Appl. Opt. (5)

Electron. Lett. (1)

J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Ke, K. S. Chiang, and J. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

P. Wang, L. Xian, and H. Li, “L. X, and H. Li, “Fabrication of phase-shifted long-period fiber grating and its application to strain measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
[Crossref]

J. Lightwave Technol. (2)

Y. Rao, Y. Wang, Z. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Microw. Opt. Technol. Lett. (1)

K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett. 45(1), 18–21 (2005).
[Crossref]

Opt. Commun. (3)

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[Crossref]

L. R. Chen, “Design of flat-top bandpass filter based on symmetric multiple phase-shifted long-period fiber gratings,” Opt. Commun. 205(4–6), 271–276 (2002).
[Crossref]

K. Thyagarajan, M. Das, and M. N. Satyanarayan, “A simple and direct method to estimate long period grating parameters,” Opt. Commun. 218(1-3), 67–72 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Science (1)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for fabrication of the phase-shifted HLPG based on CO2 laser.
Fig. 2
Fig. 2 Principle scheme for the formation of a phase-shifted HLPG, where (a) an accumulated phase-shift is inserted at end of the local part L2. (b) Index-change profile without a phase-shift inserted.
Fig. 3
Fig. 3 Transmission spectra of three phase-shifted HLPGs, where the phase shifts inserted at middle part of the HLPG are (a) 0 and π, and (b) 0 and 1.5π, respectively.
Fig. 4
Fig. 4 Experimental setup for microscopic image of the fabricated phase-shifted HLPG.
Fig. 5
Fig. 5 Imaging pattern of one typical HLPG obtained by using the setup shown in Fig. 4, where (a) Imaging pattern, (b) XX’ line scanning intensity distribution of the Fig. 5(a).
Fig. 6
Fig. 6 Imaging patterns of the three kinds of HLPGs with (a) zero phase-shift, (b) π phase-shift, and (c) 1.5π phase-shift inserted at central part of the grating.
Fig. 7
Fig. 7 Line scanning intensity distributions of the three imaging patterns as shown in Fig. 6, where (a) 0 phase-shift, (b) π phase-shift, and (c) 1.5π phase-shift is inserted at central part of the grating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ=( L 2 L 1 )/Λ.

Metrics