Abstract

The spatial distribution of the optical parametric fluorescence generated in a negative uniaxial nonlinear crystal is asymmetric with respect to the pump when the pump beam has a slight divergence angle. The formation mechanism of this phenomenon and the influence of parameters were analyzed and discussed from a theoretical standpoint. Moreover, two potential applications of this phenomenon were experimentally demonstrated, showing the temporal contrast improvement of ultra-intense lasers and the intensity enhancement of special light sources induced by the optical parametric generation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical parametric properties of ultraviolet-pumped cesium lithium borate crystals

Jing-yuan Zhang, Yufei Kong, Zuyan Xu, and Dezhong Shen
Appl. Opt. 41(3) 475-482 (2002)

Kilohertz femtosecond UV-pumped visible β-barium borate and lithium triborate optical parametric generator and amplifier

Hong Wang, Kam Sing Wong, Daoqun Deng, Zuyan Xu, George K. L. Wong, and Jingyuan Zhang
Appl. Opt. 36(9) 1889-1893 (1997)

Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses

Daniel Herrmann, Raphael Tautz, Franz Tavella, Ferenc Krausz, and Laszlo Veisz
Opt. Express 18(5) 4170-4183 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H.-J. Krause and W. Daum, “Efficient parametric generation of high-power coherent picosecond pulses in lithium borate tunable from 0.405 to 2.4 μm,” Appl. Phys. Lett. 60(18), 2180–2182 (1992).
    [Crossref]
  2. N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier,” Opt. Lett. 37(20), 4182–4184 (2012).
    [Crossref] [PubMed]
  3. L. Yu, X. Liang, L. Xu, W. Li, C. Peng, Z. Hu, C. Wang, X. Lu, Y. Chu, Z. Gan, X. Liu, Y. Liu, X. Wang, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm,” Opt. Lett. 40(14), 3412–3415 (2015).
    [Crossref] [PubMed]
  4. R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier (Singapore) Pte Ltd., 2010).
  5. F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8(1), 117–124 (2000).
    [Crossref]
  6. F. K. Hsu and C. W. Lai, “Absolute instrument spectral response measurements using angle-resolved parametric fluorescence,” Opt. Express 21(15), 18538–18552 (2013).
    [Crossref] [PubMed]
  7. G. Tamosauskas, J. Galinis, A. Dubietis, and A. Piskarskas, “Observation of spontaneous parametric down-conversion excited by high brightness blue LED,” Opt. Express 18(5), 4310–4315 (2010).
    [Crossref] [PubMed]
  8. R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23(5), 055204 (2013).
    [Crossref]
  9. T. Stanislauskas, I. Balčiūnas, V. Tamuliene, R. Budriūnas, and A. Varanavičius, “Analysis of Parametric fluorescence amplified in a noncollinear optical parametric amplifier pumped by the second harmonic of a femtosecond Yb:KGW laser,” Lith. J. Phys. 56(1), 1–8 (2016).
    [Crossref]
  10. F. Tavella, A. Marcinkevičius, and F. Krausz, “Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system,” New J. Phys. 8(10), 219 (2006).
    [Crossref]
  11. C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
    [Crossref]
  12. K. Kondo, H. Maeda, Y. Hama, S. Morita, A. Zoubir, R. Kodama, K. A. Tanaka, Y. Kitagawa, and Y. Izawa, “Control of amplified optical parametric fluorescence for hybrid chirped-pulse amplification,” J. Opt. Soc. Am. B 23(2), 231–235 (2006).
    [Crossref]
  13. J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34(11), 1639–1641 (2009).
    [Crossref] [PubMed]
  14. J. Wang, J. Ma, Y. Wang, P. Yuan, G. Xie, and L. Qian, “Noise filtering in parametric amplification by dressing the seed beam with spatial chirp,” Opt. Lett. 39(8), 2439–2442 (2014).
    [Crossref] [PubMed]
  15. H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A. S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P. R. Bolton, T. Tajima, and N. Miyanaga, “Temporal contrast enhancement of petawatt-class laser pulses,” Opt. Lett. 37(16), 3363–3365 (2012).
    [Crossref] [PubMed]
  16. S. G. Liang, H. J. Liu, N. Huang, Q. B. Sun, Y. S. Wang, and W. Zhao, “Temporal contrast enhancement of picosecond pulses based on phase-conjugate wave generation,” Opt. Lett. 37(2), 241–243 (2012).
    [Crossref] [PubMed]
  17. Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, and Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett. 36(6), 781–783 (2011).
    [Crossref] [PubMed]
  18. P. Yuan, G. Xie, D. Zhang, H. Zhong, and L. Qian, “High-contrast near-IR short pulses generated by a mid-IR optical parametric chirped-pulse amplifier with frequency doubling,” Opt. Lett. 35(11), 1878–1880 (2010).
    [Crossref] [PubMed]
  19. R. C. Shah, R. P. Johnson, T. Shimada, K. A. Flippo, J. C. Fernandez, and B. M. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34(15), 2273–2275 (2009).
    [Crossref] [PubMed]
  20. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J. P. Rousseau, J. P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005).
    [Crossref] [PubMed]
  21. N. Stuart, T. Robinson, D. Hillier, N. Hopps, B. Parry, I. Musgrave, G. Nersisyan, A. Sharba, M. Zepf, and R. A. Smith, “Comparative study on the temporal contrast of femtosecond mode-locked laser oscillators,” Opt. Lett. 41(14), 3221–3224 (2016).
    [Crossref] [PubMed]
  22. H. H. Lim, O. Prakash, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Ultra-broadband optical parametric generation and simultaneous RGB generation in periodically poled lithium niobate,” Opt. Express 15(26), 18294–18299 (2007).
    [Crossref] [PubMed]
  23. M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3.,” Opt. Express 19(5), 4121–4128 (2011).
    [Crossref] [PubMed]
  24. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31(1), 71–73 (2006).
    [Crossref] [PubMed]
  25. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B 14(2), 460–474 (1997).
    [Crossref]
  26. P. J. M. Johnson, V. I. Prokhorenko, R. J. D. Miller, and E. Philip, “Enhanced bandwidth noncollinear optical parametric amplification with a narrowband anamorphic pump,” Opt. Lett. 36(11), 2170–2172 (2011).
    [Crossref] [PubMed]

2016 (2)

T. Stanislauskas, I. Balčiūnas, V. Tamuliene, R. Budriūnas, and A. Varanavičius, “Analysis of Parametric fluorescence amplified in a noncollinear optical parametric amplifier pumped by the second harmonic of a femtosecond Yb:KGW laser,” Lith. J. Phys. 56(1), 1–8 (2016).
[Crossref]

N. Stuart, T. Robinson, D. Hillier, N. Hopps, B. Parry, I. Musgrave, G. Nersisyan, A. Sharba, M. Zepf, and R. A. Smith, “Comparative study on the temporal contrast of femtosecond mode-locked laser oscillators,” Opt. Lett. 41(14), 3221–3224 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (3)

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23(5), 055204 (2013).
[Crossref]

F. K. Hsu and C. W. Lai, “Absolute instrument spectral response measurements using angle-resolved parametric fluorescence,” Opt. Express 21(15), 18538–18552 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

2010 (2)

2009 (2)

2007 (1)

2006 (3)

2005 (1)

2000 (1)

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8(1), 117–124 (2000).
[Crossref]

1997 (1)

1992 (1)

H.-J. Krause and W. Daum, “Efficient parametric generation of high-power coherent picosecond pulses in lithium borate tunable from 0.405 to 2.4 μm,” Appl. Phys. Lett. 60(18), 2180–2182 (1992).
[Crossref]

Albert, O.

Alford, W. J.

Armstrong, D. J.

Augé-Rochereau, F.

Balciunas, I.

T. Stanislauskas, I. Balčiūnas, V. Tamuliene, R. Budriūnas, and A. Varanavičius, “Analysis of Parametric fluorescence amplified in a noncollinear optical parametric amplifier pumped by the second harmonic of a femtosecond Yb:KGW laser,” Lith. J. Phys. 56(1), 1–8 (2016).
[Crossref]

Benedick, A.

Bliss, D.

Bolger, J. A.

Bolton, P. R.

Bowers, M. S.

Budriunas, R.

T. Stanislauskas, I. Balčiūnas, V. Tamuliene, R. Budriūnas, and A. Varanavičius, “Analysis of Parametric fluorescence amplified in a noncollinear optical parametric amplifier pumped by the second harmonic of a femtosecond Yb:KGW laser,” Lith. J. Phys. 56(1), 1–8 (2016).
[Crossref]

Bulanov, S. V.

Burgy, F.

Cha, M.

Chambaret, J. P.

Chériaux, G.

Chu, Y.

Cruz-Ramírez, H.

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23(5), 055204 (2013).
[Crossref]

Daum, W.

H.-J. Krause and W. Daum, “Efficient parametric generation of high-power coherent picosecond pulses in lithium borate tunable from 0.405 to 2.4 μm,” Appl. Phys. Lett. 60(18), 2180–2182 (1992).
[Crossref]

Dergachev, A.

Devaux, F.

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8(1), 117–124 (2000).
[Crossref]

Dubietis, A.

Eggleton, B. J.

Etchepare, J.

Falcão-Filho, E. L.

Fejer, M. M.

Fernandez, J. C.

Flippo, K. A.

Fukuda, Y.

Galinis, J.

Gallo, K.

Gan, Z.

Hama, Y.

Hamoniaux, G.

Harris, J. S.

Hegelich, B. M.

Hillier, D.

Homann, C.

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

Hong, K.-H.

Hopps, N.

Hsu, F. K.

Hu, Z.

Huang, N.

Huang, S.-W.

Huang, Y.

Ilday, F. Ö.

Ishii, N.

Itatani, J.

Izawa, Y.

Johnson, P. J. M.

Johnson, R. P.

Jullien, A.

Kanai, T.

Kanazawa, S.

Kando, M.

Kaneshima, K.

Kärtner, F. X.

Kim, B. J.

Kiriyama, H.

Kitagawa, Y.

Kitano, K.

Kodama, R.

Kondo, K.

Kondo, S.

Krause, H.-J.

H.-J. Krause and W. Daum, “Efficient parametric generation of high-power coherent picosecond pulses in lithium borate tunable from 0.405 to 2.4 μm,” Appl. Phys. Lett. 60(18), 2180–2182 (1992).
[Crossref]

Krausz, F.

F. Tavella, A. Marcinkevičius, and F. Krausz, “Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system,” New J. Phys. 8(10), 219 (2006).
[Crossref]

Kuo, P. S.

Lai, C. W.

Lantz, E.

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8(1), 117–124 (2000).
[Crossref]

Laurell, F.

Leng, Y.

Levenius, M.

Li, D.

Li, R.

Li, W.

Liang, S. G.

Liang, X.

Lim, H. H.

Liu, H. J.

Liu, X.

Liu, Y.

Lu, H.

Lu, X.

Ma, J.

Maeda, H.

Marcinkevicius, A.

F. Tavella, A. Marcinkevičius, and F. Krausz, “Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system,” New J. Phys. 8(10), 219 (2006).
[Crossref]

Miller, R. J. D.

Minkovski, N.

Miyanaga, N.

Mori, M.

Morita, S.

Moses, J.

Mücke, O. D.

Musgrave, I.

Nagashima, K.

Nakai, Y.

Nersisyan, G.

Nishiuchi, M.

Pandiyan, K.

Parry, B.

Pasiskevicius, V.

Peng, C.

Philip, E.

Pirozhkov, A. S.

Piskarskas, A.

Prakash, O.

Prokhorenko, V. I.

Qian, L.

Ramírez-Alarcón, R.

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23(5), 055204 (2013).
[Crossref]

Raymond, T. D.

Rhee, B. K.

Riedle, E.

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

Robinson, T.

Rousseau, J. P.

Saltiel, S. M.

Sasao, H.

Shah, R. C.

Sharba, A.

Shimada, T.

Shimomura, T.

Simanovskii, D. M.

Smith, A. V.

Smith, R. A.

Stanislauskas, T.

T. Stanislauskas, I. Balčiūnas, V. Tamuliene, R. Budriūnas, and A. Varanavičius, “Analysis of Parametric fluorescence amplified in a noncollinear optical parametric amplifier pumped by the second harmonic of a femtosecond Yb:KGW laser,” Lith. J. Phys. 56(1), 1–8 (2016).
[Crossref]

Stuart, N.

Sugiyama, A.

Sun, Q. B.

Tajima, T.

Tamosauskas, G.

Tamuliene, V.

T. Stanislauskas, I. Balčiūnas, V. Tamuliene, R. Budriūnas, and A. Varanavičius, “Analysis of Parametric fluorescence amplified in a noncollinear optical parametric amplifier pumped by the second harmonic of a femtosecond Yb:KGW laser,” Lith. J. Phys. 56(1), 1–8 (2016).
[Crossref]

Tanaka, K. A.

Tanoue, M.

Tavella, F.

F. Tavella, A. Marcinkevičius, and F. Krausz, “Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system,” New J. Phys. 8(10), 219 (2006).
[Crossref]

U’Ren, A. B.

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23(5), 055204 (2013).
[Crossref]

Varanavicius, A.

T. Stanislauskas, I. Balčiūnas, V. Tamuliene, R. Budriūnas, and A. Varanavičius, “Analysis of Parametric fluorescence amplified in a noncollinear optical parametric amplifier pumped by the second harmonic of a femtosecond Yb:KGW laser,” Lith. J. Phys. 56(1), 1–8 (2016).
[Crossref]

Vodopyanov, K. L.

Wang, C.

Wang, J.

Wang, X.

Wang, Y.

Wang, Y. S.

Watanabe, S.

Weyburne, D.

Xie, G.

Xu, L.

Xu, Y.

Xu, Z.

Yamagiwa, M.

Yin, D.

Yu, L.

Yu, X.

Yuan, P.

Zepf, M.

Zhang, C.

Zhang, D.

Zhao, W.

Zhong, H.

Zoubir, A.

Appl. Phys. Lett. (1)

H.-J. Krause and W. Daum, “Efficient parametric generation of high-power coherent picosecond pulses in lithium borate tunable from 0.405 to 2.4 μm,” Appl. Phys. Lett. 60(18), 2180–2182 (1992).
[Crossref]

Eur. Phys. J. D (1)

F. Devaux and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8(1), 117–124 (2000).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

Laser Phys. (1)

R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Effects of crystal length on the angular spectrum of spontaneous parametric downconversion photon pairs,” Laser Phys. 23(5), 055204 (2013).
[Crossref]

Lith. J. Phys. (1)

T. Stanislauskas, I. Balčiūnas, V. Tamuliene, R. Budriūnas, and A. Varanavičius, “Analysis of Parametric fluorescence amplified in a noncollinear optical parametric amplifier pumped by the second harmonic of a femtosecond Yb:KGW laser,” Lith. J. Phys. 56(1), 1–8 (2016).
[Crossref]

New J. Phys. (1)

F. Tavella, A. Marcinkevičius, and F. Krausz, “Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system,” New J. Phys. 8(10), 219 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (13)

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31(1), 71–73 (2006).
[Crossref] [PubMed]

P. J. M. Johnson, V. I. Prokhorenko, R. J. D. Miller, and E. Philip, “Enhanced bandwidth noncollinear optical parametric amplification with a narrowband anamorphic pump,” Opt. Lett. 36(11), 2170–2172 (2011).
[Crossref] [PubMed]

N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier,” Opt. Lett. 37(20), 4182–4184 (2012).
[Crossref] [PubMed]

L. Yu, X. Liang, L. Xu, W. Li, C. Peng, Z. Hu, C. Wang, X. Lu, Y. Chu, Z. Gan, X. Liu, Y. Liu, X. Wang, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm,” Opt. Lett. 40(14), 3412–3415 (2015).
[Crossref] [PubMed]

J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34(11), 1639–1641 (2009).
[Crossref] [PubMed]

J. Wang, J. Ma, Y. Wang, P. Yuan, G. Xie, and L. Qian, “Noise filtering in parametric amplification by dressing the seed beam with spatial chirp,” Opt. Lett. 39(8), 2439–2442 (2014).
[Crossref] [PubMed]

H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A. S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P. R. Bolton, T. Tajima, and N. Miyanaga, “Temporal contrast enhancement of petawatt-class laser pulses,” Opt. Lett. 37(16), 3363–3365 (2012).
[Crossref] [PubMed]

S. G. Liang, H. J. Liu, N. Huang, Q. B. Sun, Y. S. Wang, and W. Zhao, “Temporal contrast enhancement of picosecond pulses based on phase-conjugate wave generation,” Opt. Lett. 37(2), 241–243 (2012).
[Crossref] [PubMed]

Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, and Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett. 36(6), 781–783 (2011).
[Crossref] [PubMed]

P. Yuan, G. Xie, D. Zhang, H. Zhong, and L. Qian, “High-contrast near-IR short pulses generated by a mid-IR optical parametric chirped-pulse amplifier with frequency doubling,” Opt. Lett. 35(11), 1878–1880 (2010).
[Crossref] [PubMed]

R. C. Shah, R. P. Johnson, T. Shimada, K. A. Flippo, J. C. Fernandez, and B. M. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34(15), 2273–2275 (2009).
[Crossref] [PubMed]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J. P. Rousseau, J. P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005).
[Crossref] [PubMed]

N. Stuart, T. Robinson, D. Hillier, N. Hopps, B. Parry, I. Musgrave, G. Nersisyan, A. Sharba, M. Zepf, and R. A. Smith, “Comparative study on the temporal contrast of femtosecond mode-locked laser oscillators,” Opt. Lett. 41(14), 3221–3224 (2016).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier (Singapore) Pte Ltd., 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of OPG with a (a) perfect collimated (plane wave) and (b) divergent (spherical wave) pump beam. α is the orientation angle in space measured from the z-axis, θ is the phase-matching angle measured from the optic axis to the z-axis, and δ is the deviation angle measured from the z-axis to a certain ray of the pump. FS: fluorescence signal, FI: fluorescence idler, P: pump beam, C: optic axis.
Fig. 2
Fig. 2 Characteristics of optical parametric fluorescence in a type I BBO crystal pumped by a 517 nm-wavelength light. The phase-matching angle θ is (a, b) 23.3° and (c, d) 23.1°. (a, c) Phase-matching curves in the x-z plane for −0.5, 0 and 0.5 mrad deviation angles (δx) . (b, d) Fluorescence intensity distributions in the x-z plane for the pump beam with a 1 mrad divergence angle.
Fig. 3
Fig. 3 3D fluorescence intensity distributions in the case of θ larger than the collinear phase-matching angle. (a) The pump divergence angle is 1 mrad, the pump intensity is 1 GW/cm2, the crystal length is 12 mm, and the phase-matching angle θ is 23.3°. Holding all other variables constant with those in (a), the intensity distributions in the case when (b) the pump divergence angle is increased to 2 mrad, (c) the fluorescence bandwidth is limited to 10 nm around 1034 nm, (d) the pump intensity is increased to 10 GW/cm2, (e) the crystal length is reduced to 2 mm, and (f) the phase-matching angle θ is increased to 23.34°.
Fig. 4
Fig. 4 In the case of θ larger than the collinear phase-matching angle, 2D fluorescence intensity distributions in the x-z plane for various (a) pump divergence angles, (b) fluorescence bandwidth limitations (centered at 1034 nm), (c) pump intensities, (d) crystal lengths and (e) phase-matching angles θ.
Fig. 5
Fig. 5 In the case of θ smaller than the collinear phase-matching angle, (a) 2D fluorescence intensity distributions in the x-z plane with and without fluorescence bandwidth limitations. Distributions with a limited fluorescence bandwidth centered at 1250 nm for various (a) pump divergence angles, (b) fluorescence bandwidths, (c) pump intensities, (d) crystal lengths and (e) phase-matching angles θ.
Fig. 6
Fig. 6 (a) Two-stage OPA setup schematic for AOPF comparison. (b) The signal direction within the two-stage OPA (first OPA & second OPA) was, respectively, along the (i) FWD & FWD, (ii) FWD & FED, (iii) FED & FWD, and (iv) FED & FED. (c) Detected far-field patterns of AOPF in the four kinds of arrangements. FED: fluorescence enhancement direction, FWD: fluorescence weakening direction, P: pump beam, S: signal beam, C: optic axis, AOPF: amplified optical parametric fluorescence, OPA: optical parametric amplification.
Fig. 7
Fig. 7 (a) Experimental setup for demonstration. (b) Schematics of and photographs showing the observed walk-off directions of the pump and asymmetrical fluorescence rings in the first (upper) and second (lower) experiments. The divergence angle of the pump beam is around 2 mrad, and the absolute value of θ is around 23.0°. C: optic axis, ω: angular frequency of fundamental at LBO.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δk( α x , α y , δ x , δ y , ω s , ω i , ω p )=| k p k s k i |,
Δk( α x , α y , δ x , δ y , ω s , ω i , ω p )= | k p 2 + k s 2 2 k p k s cos ( α x δ x ) 2 + ( α y δ y ) 2 k i 2 | .
1 n p 2 = sin 2 ( δ x θ ) 2 + δ y 2 n e 2 + cos 2 ( δ x θ ) 2 + δ y 2 n o 2 ,
G( α x , α y , δ x , δ y , ω s , ω i , ω p )={ Γ 2 Γ 2 ( Δk 2 ) 2 sin h 2 [ L Γ 2 ( Δk 2 ) 2 ], for Γ 2 ( Δk 2 ) 2 Γ 2 ( Δk 2 ) 2 Γ 2 sin h 2 [ L ( Δk 2 ) 2 Γ 2 ], for Γ 2 < ( Δk 2 ) 2 ,
Γ 2 = 2 ω s ω i d eff 2 I p n p n s n i ε o c 3 ,

Metrics