Abstract

Twelve corresponding color data sets have been obtained using the long-term memory colors of familiar objects as target stimuli. Data were collected for familiar objects with neutral, red, yellow, green and blue hues under 4 approximately neutral illumination conditions on or near the blackbody locus. The advantages of the memory color matching method are discussed in light of other more traditional asymmetric matching techniques. Results were compared to eight corresponding color data sets available in literature. The corresponding color data was used to test several linear (von Kries, RLAB, etc.) and nonlinear (Hunt & Nayatani) chromatic adaptation transforms (CAT). It was found that a simple two-step von Kries, whereby the degree of adaptation D is optimized to minimize the DEu’v’ prediction errors, outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color sets. The predictive errors were substantially smaller than the standard uncertainty on the average observer and were comparable to what are considered just-noticeable-differences in the CIE u’v’ chromaticity diagram, supporting the use of memory color based internal references to study chromatic adaptation mechanisms.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of chromatic adaptation using memory color matches, Part II: colored illuminants

Kevin A. G. Smet, Qiyan Zhai, Ming R. Luo, and Peter Hanselaer
Opt. Express 25(7) 8350-8365 (2017)

Study of chromatic adaptation via neutral white matches on different viewing media

Qiyan Zhai and Ming R. Luo
Opt. Express 26(6) 7724-7739 (2018)

Impact of the starting point chromaticity on memory color matching accuracy

Shining Ma, Peter Hanselaer, Kees Teunissen, and Kevin A. G. Smet
Opt. Express 27(24) 35308-35324 (2019)

References

  • View by:
  • |
  • |
  • |

  1. CIE160–2004, “A review of chromatic adaptation transforms” (CIE, Vienna, 2004).
  2. N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), p. 23.
  3. H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Transactions of the Illuminating Engineering Society 7, 11 (1912).
  4. H. Helson, “Some factors and implications of color constancy*,” J. Opt. Soc. Am. 33(10), 555–567 (1943).
    [Crossref]
  5. D. H. Foster, “Color constancy,” Vision Res. 51(7), 674–700 (2011).
    [Crossref] [PubMed]
  6. I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
    [Crossref] [PubMed]
  7. L. M. Hurvich and D. Jameson, “A psychophysical study of white. I. Neutral adaptation,” J. Opt. Soc. Am. 41(8), 521–527 (1951).
    [Crossref] [PubMed]
  8. K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
    [Crossref] [PubMed]
  9. A. G. Kevin, D. Geert, and H. Peter, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
    [Crossref] [PubMed]
  10. M. D. Fairchild, “Formulation and testing of an incomplete-chromatic-adaptation model,” Color Res. Appl. 16(4), 243–250 (1991).
    [Crossref]
  11. R. W. G. Hunt, “Revised colour-appearance model for related and unrelated colours,” Color Res. Appl. 16(3), 146–165 (1991).
    [Crossref]
  12. M. D. Fairchild, Color Appearance Models, 2 ed. (John Wiley & Sons, 2005), p. 408.
  13. K. M. Lam, “Metamerism and colour constancy. Ph.D. thesis,” (University of Bradford, 1985).
  14. G. D. Finlayson and S. Susstrunk, “Spectral sharpening and the Bradford transform,” in Proc.of the Color Imaging Symposium2000, 236 −242.
  15. C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
    [Crossref]
  16. G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11(5), 1553–1563 (1994).
    [Crossref] [PubMed]
  17. F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449(7162), 603–606 (2007).
    [Crossref] [PubMed]
  18. P. B. Delahunt and D. H. Brainard, “Control of chromatic adaptation: signals from separate cone classes interact,” Vision Res. 40(21), 2885–2903 (2000).
    [Crossref] [PubMed]
  19. M. Kamermans, D. A. Kraaij, and H. Spekreijse, “The cone/horizontal cell network: a possible site for color constancy,” Vis. Neurosci. 15(05), 787–797 (1998).
    [Crossref] [PubMed]
  20. D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9(9), 1433–1448 (1992).
    [Crossref] [PubMed]
  21. D. Jameson and L. M. Hurvich, “Color adaptation: sensitivity control, contrast, after-images,” in Handbook of Sensory Physiology, L. M. H. D. Jameson, ed. (Springer, 1972), pp. 568–581.
  22. S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18(12), 1649–1661 (1978).
    [Crossref] [PubMed]
  23. J. Walraven, “Discounting the background--the missing link in the explanation of chromatic induction,” Vision Res. 16(3), 289–295 (1976).
    [Crossref] [PubMed]
  24. J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schnapf, “5 - The control of visual sensitivity: receptoral and postreceptoral Processes A2 - Spillmann, Lothar,” in Visual Perception, J. S. Werner, ed. (Academic Press, 1990), pp. 53–101.
  25. M. M. Hayhoe, “Spatial interactions and models of adaptation,” Vision Res. 30(6), 957–965 (1990).
    [Crossref] [PubMed]
  26. M. D. Fairchild, Color Appearance Models, 3 ed. (John Wiley & Sons, 2013), p. 450.
  27. W. S. Geisler, “Mechanisms of visual sensitivity: backgrounds and early dark adaptation,” Vision Res. 23(12), 1423–1432 (1983).
    [Crossref] [PubMed]
  28. P. T. Kortum and W. S. Geisler, “Adaptation mechanisms in spatial vision--II. Flash thresholds and background adaptation,” Vision Res. 35(11), 1595–1609 (1995).
    [Crossref] [PubMed]
  29. R. L. De Valois, “Neural coding of color,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2004), p. 1808.
  30. J. M. Valeton, “Photoreceptor light adaptation models: an evaluation,” Vision Res. 23(12), 1549–1554 (1983).
    [Crossref] [PubMed]
  31. M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373(6516), 694–698 (1995).
    [Crossref] [PubMed]
  32. K.-H. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vision Res. 39(8), 1531–1550 (1999).
    [Crossref] [PubMed]
  33. M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33(5-6), 739–757 (1993).
    [Crossref] [PubMed]
  34. J. S. Werner and J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22(8), 929–943 (1982).
    [Crossref] [PubMed]
  35. M. D’Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3(10), 1662–1672 (1986).
    [Crossref] [PubMed]
  36. J. A. Worthey and M. H. Brill, “Heuristic analysis of von Kries color constancy,” J. Opt. Soc. Am. A 3(10), 1708–1712 (1986).
    [Crossref] [PubMed]
  37. V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
    [Crossref] [PubMed]
  38. D. L. MacAdam, “Chromatic Adaptation. II. Nonlinear hypothesis*,” J. Opt. Soc. Am. 53(12), 1441–1445 (1963).
    [Crossref] [PubMed]
  39. Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform,” Color Res. Appl. 15(4), 210–221 (1990).
    [Crossref]
  40. Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
    [Crossref]
  41. L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in CIE 22nd Session (Melbourne, 1991), pp. 55–58.
  42. H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).
  43. M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance.1.LUTCHI color appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
    [Crossref]
  44. W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
    [Crossref]
  45. E. J. Breneman, “Corresponding chromaticities for different states of adaptation to complex visual fields,” J. Opt. Soc. Am. A 4(6), 1115–1129 (1987).
    [Crossref] [PubMed]
  46. K. M. Braun and M. D. Fairchild, “Psychophysical generation of matching images for cross-media color production,” in IS&T and SID's 4th Color Imaging Conference: Color Science, Systems, and Applications (IS&T, Springfield, USA, 1996), pp. 214–220.
  47. J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theory - comparison between theoretical predictions and observer responses to color Mondrian experiments,” Vision Res. 16, 445-& (1976).
    [Crossref]
  48. M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding-colour and magnitude-estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
    [Crossref]
  49. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1458), 1329–1346 (2005).
    [Crossref] [PubMed]
  50. J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46(3), 853–863 (2008).
    [Crossref] [PubMed]
  51. R. L. P. Vimal and S. K. Shevell, “A central binocular mechanism affects chromatic adaptation,” Vision Res. 27(3), 429–439 (1987).
    [Crossref] [PubMed]
  52. L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3(10), 1743–1751 (1986).
    [Crossref] [PubMed]
  53. C. L. Sanders, “Assessment of color rendition under an iIlluminant using color tolerances for natural objects,” J. Illum. Eng. 54, 640–646 (1959).
  54. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
    [Crossref]
  55. C. J. Bartleson, “Color in memory in relation to photographic reproduction,” Phot. Sci. Eng. 5, 327–331 (1961).
  56. S. Xue, M. Tan, A. McNamara, J. Dorsey, and H. Rushmeier, “Exploring the use of memory colors for image enhancement,” in SPIE. Human Vision and Electronic Imaging XIX, 901411 (2014).
  57. H. Zeng and R. Luo, “Modelling memory colour region for preference colour reproduction,” in SPIE: Color Imaging XV: Displaying, Processing, Hardcopy, and Applications, (2010), 752808.
  58. J. Roca-Vila, C. A. Parraga, and M. Vanrell, “Chromatic settings and the structural color constancy index,” J. Vis. 13(4), 3 (2013).
    [Crossref] [PubMed]
  59. T. Hansen, M. Olkkonen, S. Walter, and K. R. Gegenfurtner, “Memory modulates color appearance,” Nat. Neurosci. 9(11), 1367–1368 (2006).
    [Crossref] [PubMed]
  60. E. Kanematsu and D. H. Brainard, “No measured effect of a familiar contextual object on color constancy,” Color Res. Appl. 39(4), 347–359 (2014).
    [Crossref] [PubMed]
  61. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
    [Crossref]
  62. K. A. G. Smet, Y. Lin, B. V. Nagy, Z. Németh, G. L. Duque-Chica, J. M. Quintero, H.-S. Chen, R. M. Luo, M. Safi, and P. Hanselaer, “Cross-cultural variation of memory colors of familiar objects,” Opt. Express 22(26), 32308–32328 (2014).
    [Crossref] [PubMed]
  63. B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
    [Crossref] [PubMed]
  64. J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13), 6 (2008).
    [Crossref] [PubMed]
  65. M. D. Fairchild and L. Reniff, “Time course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
    [Crossref] [PubMed]
  66. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “A study of chromatic adaptation using memory colors. Part II: Colored illuminants,” Opt. Express, in press.
  67. P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
    [Crossref] [PubMed]
  68. P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
    [Crossref] [PubMed]
  69. Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
    [Crossref]
  70. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
    [Crossref]
  71. M. Melgosa, P. A. García, L. Gómez-Robledo, R. Shamey, D. Hinks, G. Cui, and M. R. Luo, “Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments,” J. Opt. Soc. Am. A 28(5), 949–953 (2011).
    [Crossref] [PubMed]
  72. H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
    [Crossref]
  73. H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19(6), 716–723 (1974).
    [Crossref]
  74. K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
    [Crossref] [PubMed]
  75. D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
    [Crossref] [PubMed]

2015 (1)

2014 (5)

A. G. Kevin, D. Geert, and H. Peter, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
[Crossref] [PubMed]

S. Xue, M. Tan, A. McNamara, J. Dorsey, and H. Rushmeier, “Exploring the use of memory colors for image enhancement,” in SPIE. Human Vision and Electronic Imaging XIX, 901411 (2014).

K. A. G. Smet, Y. Lin, B. V. Nagy, Z. Németh, G. L. Duque-Chica, J. M. Quintero, H.-S. Chen, R. M. Luo, M. Safi, and P. Hanselaer, “Cross-cultural variation of memory colors of familiar objects,” Opt. Express 22(26), 32308–32328 (2014).
[Crossref] [PubMed]

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

E. Kanematsu and D. H. Brainard, “No measured effect of a familiar contextual object on color constancy,” Color Res. Appl. 39(4), 347–359 (2014).
[Crossref] [PubMed]

2013 (1)

J. Roca-Vila, C. A. Parraga, and M. Vanrell, “Chromatic settings and the structural color constancy index,” J. Vis. 13(4), 3 (2013).
[Crossref] [PubMed]

2012 (2)

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

2011 (4)

M. Melgosa, P. A. García, L. Gómez-Robledo, R. Shamey, D. Hinks, G. Cui, and M. R. Luo, “Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments,” J. Opt. Soc. Am. A 28(5), 949–953 (2011).
[Crossref] [PubMed]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

D. H. Foster, “Color constancy,” Vision Res. 51(7), 674–700 (2011).
[Crossref] [PubMed]

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

2008 (2)

J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13), 6 (2008).
[Crossref] [PubMed]

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46(3), 853–863 (2008).
[Crossref] [PubMed]

2007 (2)

P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
[Crossref] [PubMed]

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449(7162), 603–606 (2007).
[Crossref] [PubMed]

2006 (2)

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

T. Hansen, M. Olkkonen, S. Walter, and K. R. Gegenfurtner, “Memory modulates color appearance,” Nat. Neurosci. 9(11), 1367–1368 (2006).
[Crossref] [PubMed]

2005 (1)

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1458), 1329–1346 (2005).
[Crossref] [PubMed]

2002 (3)

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
[Crossref] [PubMed]

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

2001 (1)

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
[Crossref]

2000 (1)

P. B. Delahunt and D. H. Brainard, “Control of chromatic adaptation: signals from separate cone classes interact,” Vision Res. 40(21), 2885–2903 (2000).
[Crossref] [PubMed]

1999 (1)

K.-H. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vision Res. 39(8), 1531–1550 (1999).
[Crossref] [PubMed]

1998 (2)

M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding-colour and magnitude-estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
[Crossref]

M. Kamermans, D. A. Kraaij, and H. Spekreijse, “The cone/horizontal cell network: a possible site for color constancy,” Vis. Neurosci. 15(05), 787–797 (1998).
[Crossref] [PubMed]

1995 (4)

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373(6516), 694–698 (1995).
[Crossref] [PubMed]

P. T. Kortum and W. S. Geisler, “Adaptation mechanisms in spatial vision--II. Flash thresholds and background adaptation,” Vision Res. 35(11), 1595–1609 (1995).
[Crossref] [PubMed]

M. D. Fairchild and L. Reniff, “Time course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
[Crossref] [PubMed]

1994 (2)

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
[Crossref] [PubMed]

G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11(5), 1553–1563 (1994).
[Crossref] [PubMed]

1993 (1)

M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33(5-6), 739–757 (1993).
[Crossref] [PubMed]

1992 (1)

1991 (3)

M. D. Fairchild, “Formulation and testing of an incomplete-chromatic-adaptation model,” Color Res. Appl. 16(4), 243–250 (1991).
[Crossref]

R. W. G. Hunt, “Revised colour-appearance model for related and unrelated colours,” Color Res. Appl. 16(3), 146–165 (1991).
[Crossref]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance.1.LUTCHI color appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

1990 (2)

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

M. M. Hayhoe, “Spatial interactions and models of adaptation,” Vision Res. 30(6), 957–965 (1990).
[Crossref] [PubMed]

1987 (3)

E. J. Breneman, “Corresponding chromaticities for different states of adaptation to complex visual fields,” J. Opt. Soc. Am. A 4(6), 1115–1129 (1987).
[Crossref] [PubMed]

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

R. L. P. Vimal and S. K. Shevell, “A central binocular mechanism affects chromatic adaptation,” Vision Res. 27(3), 429–439 (1987).
[Crossref] [PubMed]

1986 (3)

1983 (2)

J. M. Valeton, “Photoreceptor light adaptation models: an evaluation,” Vision Res. 23(12), 1549–1554 (1983).
[Crossref] [PubMed]

W. S. Geisler, “Mechanisms of visual sensitivity: backgrounds and early dark adaptation,” Vision Res. 23(12), 1423–1432 (1983).
[Crossref] [PubMed]

1982 (1)

J. S. Werner and J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22(8), 929–943 (1982).
[Crossref] [PubMed]

1979 (1)

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
[Crossref] [PubMed]

1978 (1)

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18(12), 1649–1661 (1978).
[Crossref] [PubMed]

1976 (1)

J. Walraven, “Discounting the background--the missing link in the explanation of chromatic induction,” Vision Res. 16(3), 289–295 (1976).
[Crossref] [PubMed]

1974 (1)

H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19(6), 716–723 (1974).
[Crossref]

1963 (1)

1961 (1)

C. J. Bartleson, “Color in memory in relation to photographic reproduction,” Phot. Sci. Eng. 5, 327–331 (1961).

1959 (1)

C. L. Sanders, “Assessment of color rendition under an iIlluminant using color tolerances for natural objects,” J. Illum. Eng. 54, 640–646 (1959).

1952 (1)

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

1951 (1)

1943 (1)

1912 (1)

H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Transactions of the Illuminating Engineering Society 7, 11 (1912).

Akaike, H.

H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19(6), 716–723 (1974).
[Crossref]

Arend, L.

Barbur, J. L.

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46(3), 853–863 (2008).
[Crossref] [PubMed]

Bartleson, C. J.

C. J. Bartleson, “Color in memory in relation to photographic reproduction,” Phot. Sci. Eng. 5, 327–331 (1961).

Bäuml, K.-H.

K.-H. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vision Res. 39(8), 1531–1550 (1999).
[Crossref] [PubMed]

Bez, H. E.

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

Brainard, D. H.

E. Kanematsu and D. H. Brainard, “No measured effect of a familiar contextual object on color constancy,” Color Res. Appl. 39(4), 347–359 (2014).
[Crossref] [PubMed]

P. B. Delahunt and D. H. Brainard, “Control of chromatic adaptation: signals from separate cone classes interact,” Vision Res. 40(21), 2885–2903 (2000).
[Crossref] [PubMed]

D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9(9), 1433–1448 (1992).
[Crossref] [PubMed]

Breneman, E. J.

Brill, M. H.

Chen, H.-S.

Clarke, A. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance.1.LUTCHI color appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Crichton, S.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

Cui, G.

D’Zmura, M.

Deconinck, G.

K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
[Crossref] [PubMed]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Delahunt, P. B.

P. B. Delahunt and D. H. Brainard, “Control of chromatic adaptation: signals from separate cone classes interact,” Vision Res. 40(21), 2885–2903 (2000).
[Crossref] [PubMed]

Dorsey, J.

S. Xue, M. Tan, A. McNamara, J. Dorsey, and H. Rushmeier, “Exploring the use of memory colors for image enhancement,” in SPIE. Human Vision and Electronic Imaging XIX, 901411 (2014).

Drew, M. S.

Dunn, F. A.

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449(7162), 603–606 (2007).
[Crossref] [PubMed]

Duque-Chica, G. L.

Ekroll, V.

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

Fairchild, M. D.

M. D. Fairchild and L. Reniff, “Time course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
[Crossref] [PubMed]

M. D. Fairchild, “Formulation and testing of an incomplete-chromatic-adaptation model,” Color Res. Appl. 16(4), 243–250 (1991).
[Crossref]

Faul, F.

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

Finlayson, G. D.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11(5), 1553–1563 (1994).
[Crossref] [PubMed]

G. D. Finlayson and S. Susstrunk, “Spectral sharpening and the Bradford transform,” in Proc.of the Color Imaging Symposium2000, 236 −242.

Fleiss, J. L.

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
[Crossref] [PubMed]

Foster, D. H.

D. H. Foster, “Color constancy,” Vision Res. 51(7), 674–700 (2011).
[Crossref] [PubMed]

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
[Crossref] [PubMed]

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
[Crossref] [PubMed]

Funt, B. V.

García, P. A.

Geert, D.

Gegenfurtner, K. R.

T. Hansen, M. Olkkonen, S. Walter, and K. R. Gegenfurtner, “Memory modulates color appearance,” Nat. Neurosci. 9(11), 1367–1368 (2006).
[Crossref] [PubMed]

Geisler, W. S.

P. T. Kortum and W. S. Geisler, “Adaptation mechanisms in spatial vision--II. Flash thresholds and background adaptation,” Vision Res. 35(11), 1595–1609 (1995).
[Crossref] [PubMed]

W. S. Geisler, “Mechanisms of visual sensitivity: backgrounds and early dark adaptation,” Vision Res. 23(12), 1423–1432 (1983).
[Crossref] [PubMed]

Golz, J.

J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13), 6 (2008).
[Crossref] [PubMed]

Gómez-Robledo, L.

Hanselaer, P.

K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
[Crossref] [PubMed]

K. A. G. Smet, Y. Lin, B. V. Nagy, Z. Németh, G. L. Duque-Chica, J. M. Quintero, H.-S. Chen, R. M. Luo, M. Safi, and P. Hanselaer, “Cross-cultural variation of memory colors of familiar objects,” Opt. Express 22(26), 32308–32328 (2014).
[Crossref] [PubMed]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “A study of chromatic adaptation using memory colors. Part II: Colored illuminants,” Opt. Express, in press.

Hansen, T.

T. Hansen, M. Olkkonen, S. Walter, and K. R. Gegenfurtner, “Memory modulates color appearance,” Nat. Neurosci. 9(11), 1367–1368 (2006).
[Crossref] [PubMed]

Hashimoto, K.

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

Hayhoe, M. M.

M. M. Hayhoe, “Spatial interactions and models of adaptation,” Vision Res. 30(6), 957–965 (1990).
[Crossref] [PubMed]

Helson, H.

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

H. Helson, “Some factors and implications of color constancy*,” J. Opt. Soc. Am. 33(10), 555–567 (1943).
[Crossref]

Hinks, D.

Huertas, R.

Hunt, R. W. G.

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding-colour and magnitude-estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
[Crossref]

R. W. G. Hunt, “Revised colour-appearance model for related and unrelated colours,” Color Res. Appl. 16(3), 146–165 (1991).
[Crossref]

Hurlbert, A.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

Hurvich, L. M.

Ihara, M.

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

Ikeda, K.

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in CIE 22nd Session (Melbourne, 1991), pp. 55–58.

Ives, H. E.

H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Transactions of the Illuminating Engineering Society 7, 11 (1912).

Jameson, D.

Judd, D. B.

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

Kamermans, M.

M. Kamermans, D. A. Kraaij, and H. Spekreijse, “The cone/horizontal cell network: a possible site for color constancy,” Vis. Neurosci. 15(05), 787–797 (1998).
[Crossref] [PubMed]

Kanematsu, E.

E. Kanematsu and D. H. Brainard, “No measured effect of a familiar contextual object on color constancy,” Color Res. Appl. 39(4), 347–359 (2014).
[Crossref] [PubMed]

Kevin, A. G.

Komatsubara, H.

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in CIE 22nd Session (Melbourne, 1991), pp. 55–58.

Kortum, P. T.

P. T. Kortum and W. S. Geisler, “Adaptation mechanisms in spatial vision--II. Flash thresholds and background adaptation,” Vision Res. 35(11), 1595–1609 (1995).
[Crossref] [PubMed]

Kraaij, D. A.

M. Kamermans, D. A. Kraaij, and H. Spekreijse, “The cone/horizontal cell network: a possible site for color constancy,” Vis. Neurosci. 15(05), 787–797 (1998).
[Crossref] [PubMed]

Kuo, W. G.

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

Kuriki, I.

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

Lankheet, M. J.

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449(7162), 603–606 (2007).
[Crossref] [PubMed]

Lennie, P.

Li, C.

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

Lin, Y.

Linnell, K. J.

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
[Crossref] [PubMed]

Lucassen, M. P.

M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33(5-6), 739–757 (1993).
[Crossref] [PubMed]

Luo, M. R.

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

M. Melgosa, P. A. García, L. Gómez-Robledo, R. Shamey, D. Hinks, G. Cui, and M. R. Luo, “Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments,” J. Opt. Soc. Am. A 28(5), 949–953 (2011).
[Crossref] [PubMed]

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
[Crossref]

M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding-colour and magnitude-estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
[Crossref]

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance.1.LUTCHI color appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “A study of chromatic adaptation using memory colors. Part II: Colored illuminants,” Opt. Express, in press.

Luo, R. M.

MacAdam, D. L.

Mackiewicz, M.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

McNamara, A.

S. Xue, M. Tan, A. McNamara, J. Dorsey, and H. Rushmeier, “Exploring the use of memory colors for image enhancement,” in SPIE. Human Vision and Electronic Imaging XIX, 901411 (2014).

Melgosa, M.

Mollon, J. D.

M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373(6516), 694–698 (1995).
[Crossref] [PubMed]

Mori, L.

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in CIE 22nd Session (Melbourne, 1991), pp. 55–58.

Nagy, B. V.

Nascimento, S. M. C.

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
[Crossref] [PubMed]

Nayatani, Y.

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

Németh, Z.

Olkkonen, M.

T. Hansen, M. Olkkonen, S. Walter, and K. R. Gegenfurtner, “Memory modulates color appearance,” Nat. Neurosci. 9(11), 1367–1368 (2006).
[Crossref] [PubMed]

Parraga, C. A.

J. Roca-Vila, C. A. Parraga, and M. Vanrell, “Chromatic settings and the structural color constancy index,” J. Vis. 13(4), 3 (2013).
[Crossref] [PubMed]

Pearce, B.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

Peter, H.

Pointer, M. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Quintero, J. M.

Reeves, A.

Reniff, L.

Rhodes, P. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance.1.LUTCHI color appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Rieke, F.

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449(7162), 603–606 (2007).
[Crossref] [PubMed]

Rigg, B.

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
[Crossref]

Roca-Vila, J.

J. Roca-Vila, C. A. Parraga, and M. Vanrell, “Chromatic settings and the structural color constancy index,” J. Vis. 13(4), 3 (2013).
[Crossref] [PubMed]

Rushmeier, H.

S. Xue, M. Tan, A. McNamara, J. Dorsey, and H. Rushmeier, “Exploring the use of memory colors for image enhancement,” in SPIE. Human Vision and Electronic Imaging XIX, 901411 (2014).

Ryckaert, W. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Safi, M.

Sanders, C. L.

C. L. Sanders, “Assessment of color rendition under an iIlluminant using color tolerances for natural objects,” J. Illum. Eng. 54, 640–646 (1959).

Schappo, A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance.1.LUTCHI color appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Scrivener, S. A. R.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance.1.LUTCHI color appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Shamey, R.

Shevell, S. K.

R. L. P. Vimal and S. K. Shevell, “A central binocular mechanism affects chromatic adaptation,” Vision Res. 27(3), 429–439 (1987).
[Crossref] [PubMed]

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18(12), 1649–1661 (1978).
[Crossref] [PubMed]

Shrout, P. E.

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
[Crossref] [PubMed]

Smet, K. A. G.

K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
[Crossref] [PubMed]

K. A. G. Smet, Y. Lin, B. V. Nagy, Z. Németh, G. L. Duque-Chica, J. M. Quintero, H.-S. Chen, R. M. Luo, M. Safi, and P. Hanselaer, “Cross-cultural variation of memory colors of familiar objects,” Opt. Express 22(26), 32308–32328 (2014).
[Crossref] [PubMed]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “A study of chromatic adaptation using memory colors. Part II: Colored illuminants,” Opt. Express, in press.

Smithson, H. E.

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1458), 1329–1346 (2005).
[Crossref] [PubMed]

Sobagaki, H.

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in CIE 22nd Session (Melbourne, 1991), pp. 55–58.

Spang, K.

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46(3), 853–863 (2008).
[Crossref] [PubMed]

Spekreijse, H.

M. Kamermans, D. A. Kraaij, and H. Spekreijse, “The cone/horizontal cell network: a possible site for color constancy,” Vis. Neurosci. 15(05), 787–797 (1998).
[Crossref] [PubMed]

Susstrunk, S.

G. D. Finlayson and S. Susstrunk, “Spectral sharpening and the Bradford transform,” in Proc.of the Color Imaging Symposium2000, 236 −242.

Tait, C. J.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance.1.LUTCHI color appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Takahama, K.

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

Tan, M.

S. Xue, M. Tan, A. McNamara, J. Dorsey, and H. Rushmeier, “Exploring the use of memory colors for image enhancement,” in SPIE. Human Vision and Electronic Imaging XIX, 901411 (2014).

Valeton, J. M.

J. M. Valeton, “Photoreceptor light adaptation models: an evaluation,” Vision Res. 23(12), 1549–1554 (1983).
[Crossref] [PubMed]

Vanrell, M.

J. Roca-Vila, C. A. Parraga, and M. Vanrell, “Chromatic settings and the structural color constancy index,” J. Vis. 13(4), 3 (2013).
[Crossref] [PubMed]

Vimal, R. L. P.

R. L. P. Vimal and S. K. Shevell, “A central binocular mechanism affects chromatic adaptation,” Vision Res. 27(3), 429–439 (1987).
[Crossref] [PubMed]

Walraven, J.

M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33(5-6), 739–757 (1993).
[Crossref] [PubMed]

J. S. Werner and J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22(8), 929–943 (1982).
[Crossref] [PubMed]

J. Walraven, “Discounting the background--the missing link in the explanation of chromatic induction,” Vision Res. 16(3), 289–295 (1976).
[Crossref] [PubMed]

Walter, S.

T. Hansen, M. Olkkonen, S. Walter, and K. R. Gegenfurtner, “Memory modulates color appearance,” Nat. Neurosci. 9(11), 1367–1368 (2006).
[Crossref] [PubMed]

Wandell, B. A.

Wang, H.

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

Warren, M. H.

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

Webster, M. A.

M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373(6516), 694–698 (1995).
[Crossref] [PubMed]

Wendt, G.

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

Werner, J. S.

J. S. Werner and J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22(8), 929–943 (1982).
[Crossref] [PubMed]

Worthey, J. A.

Xu, H.

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

Xue, S.

S. Xue, M. Tan, A. McNamara, J. Dorsey, and H. Rushmeier, “Exploring the use of memory colors for image enhancement,” in SPIE. Human Vision and Electronic Imaging XIX, 901411 (2014).

Yano, T.

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

Zhai, Q.

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “A study of chromatic adaptation using memory colors. Part II: Colored illuminants,” Opt. Express, in press.

Color Res. Appl. (13)

M. D. Fairchild, “Formulation and testing of an incomplete-chromatic-adaptation model,” Color Res. Appl. 16(4), 243–250 (1991).
[Crossref]

R. W. G. Hunt, “Revised colour-appearance model for related and unrelated colours,” Color Res. Appl. 16(3), 146–165 (1991).
[Crossref]

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance.1.LUTCHI color appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding-colour and magnitude-estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
[Crossref]

E. Kanematsu and D. H. Brainard, “No measured effect of a familiar contextual object on color constancy,” Color Res. Appl. 39(4), 347–359 (2014).
[Crossref] [PubMed]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
[Crossref]

Energy Build. (1)

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

IEEE Trans. Automat. Contr. (1)

H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19(6), 716–723 (1974).
[Crossref]

in SPIE. Human Vision and Electronic Imaging (1)

S. Xue, M. Tan, A. McNamara, J. Dorsey, and H. Rushmeier, “Exploring the use of memory colors for image enhancement,” in SPIE. Human Vision and Electronic Imaging XIX, 901411 (2014).

J. Illum. Eng. (2)

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

C. L. Sanders, “Assessment of color rendition under an iIlluminant using color tolerances for natural objects,” J. Illum. Eng. 54, 640–646 (1959).

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (9)

M. D’Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3(10), 1662–1672 (1986).
[Crossref] [PubMed]

J. A. Worthey and M. H. Brill, “Heuristic analysis of von Kries color constancy,” J. Opt. Soc. Am. A 3(10), 1708–1712 (1986).
[Crossref] [PubMed]

D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9(9), 1433–1448 (1992).
[Crossref] [PubMed]

G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11(5), 1553–1563 (1994).
[Crossref] [PubMed]

M. D. Fairchild and L. Reniff, “Time course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
[Crossref] [PubMed]

P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
[Crossref] [PubMed]

L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3(10), 1743–1751 (1986).
[Crossref] [PubMed]

E. J. Breneman, “Corresponding chromaticities for different states of adaptation to complex visual fields,” J. Opt. Soc. Am. A 4(6), 1115–1129 (1987).
[Crossref] [PubMed]

M. Melgosa, P. A. García, L. Gómez-Robledo, R. Shamey, D. Hinks, G. Cui, and M. R. Luo, “Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments,” J. Opt. Soc. Am. A 28(5), 949–953 (2011).
[Crossref] [PubMed]

J. Vis. (2)

J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13), 6 (2008).
[Crossref] [PubMed]

J. Roca-Vila, C. A. Parraga, and M. Vanrell, “Chromatic settings and the structural color constancy index,” J. Vis. 13(4), 3 (2013).
[Crossref] [PubMed]

Nat. Neurosci. (1)

T. Hansen, M. Olkkonen, S. Walter, and K. R. Gegenfurtner, “Memory modulates color appearance,” Nat. Neurosci. 9(11), 1367–1368 (2006).
[Crossref] [PubMed]

Nature (2)

F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and post-receptor sites,” Nature 449(7162), 603–606 (2007).
[Crossref] [PubMed]

M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373(6516), 694–698 (1995).
[Crossref] [PubMed]

Neuropsychologia (1)

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46(3), 853–863 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Perception (1)

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
[Crossref] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1458), 1329–1346 (2005).
[Crossref] [PubMed]

Phot. Sci. Eng. (1)

C. J. Bartleson, “Color in memory in relation to photographic reproduction,” Phot. Sci. Eng. 5, 327–331 (1961).

PLoS One (1)

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

Proc. Biol. Sci. (1)

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
[Crossref] [PubMed]

Psychol. Bull. (1)

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
[Crossref] [PubMed]

Transactions of the Illuminating Engineering Society (1)

H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Transactions of the Illuminating Engineering Society 7, 11 (1912).

Vis. Neurosci. (1)

M. Kamermans, D. A. Kraaij, and H. Spekreijse, “The cone/horizontal cell network: a possible site for color constancy,” Vis. Neurosci. 15(05), 787–797 (1998).
[Crossref] [PubMed]

Vision Res. (14)

P. B. Delahunt and D. H. Brainard, “Control of chromatic adaptation: signals from separate cone classes interact,” Vision Res. 40(21), 2885–2903 (2000).
[Crossref] [PubMed]

D. H. Foster, “Color constancy,” Vision Res. 51(7), 674–700 (2011).
[Crossref] [PubMed]

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

K.-H. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vision Res. 39(8), 1531–1550 (1999).
[Crossref] [PubMed]

M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33(5-6), 739–757 (1993).
[Crossref] [PubMed]

J. S. Werner and J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22(8), 929–943 (1982).
[Crossref] [PubMed]

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

J. M. Valeton, “Photoreceptor light adaptation models: an evaluation,” Vision Res. 23(12), 1549–1554 (1983).
[Crossref] [PubMed]

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18(12), 1649–1661 (1978).
[Crossref] [PubMed]

J. Walraven, “Discounting the background--the missing link in the explanation of chromatic induction,” Vision Res. 16(3), 289–295 (1976).
[Crossref] [PubMed]

M. M. Hayhoe, “Spatial interactions and models of adaptation,” Vision Res. 30(6), 957–965 (1990).
[Crossref] [PubMed]

W. S. Geisler, “Mechanisms of visual sensitivity: backgrounds and early dark adaptation,” Vision Res. 23(12), 1423–1432 (1983).
[Crossref] [PubMed]

P. T. Kortum and W. S. Geisler, “Adaptation mechanisms in spatial vision--II. Flash thresholds and background adaptation,” Vision Res. 35(11), 1595–1609 (1995).
[Crossref] [PubMed]

R. L. P. Vimal and S. K. Shevell, “A central binocular mechanism affects chromatic adaptation,” Vision Res. 27(3), 429–439 (1987).
[Crossref] [PubMed]

Other (14)

H. Zeng and R. Luo, “Modelling memory colour region for preference colour reproduction,” in SPIE: Color Imaging XV: Displaying, Processing, Hardcopy, and Applications, (2010), 752808.

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in CIE 22nd Session (Melbourne, 1991), pp. 55–58.

K. M. Braun and M. D. Fairchild, “Psychophysical generation of matching images for cross-media color production,” in IS&T and SID's 4th Color Imaging Conference: Color Science, Systems, and Applications (IS&T, Springfield, USA, 1996), pp. 214–220.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theory - comparison between theoretical predictions and observer responses to color Mondrian experiments,” Vision Res. 16, 445-& (1976).
[Crossref]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “A study of chromatic adaptation using memory colors. Part II: Colored illuminants,” Opt. Express, in press.

R. L. De Valois, “Neural coding of color,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2004), p. 1808.

M. D. Fairchild, Color Appearance Models, 3 ed. (John Wiley & Sons, 2013), p. 450.

J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schnapf, “5 - The control of visual sensitivity: receptoral and postreceptoral Processes A2 - Spillmann, Lothar,” in Visual Perception, J. S. Werner, ed. (Academic Press, 1990), pp. 53–101.

D. Jameson and L. M. Hurvich, “Color adaptation: sensitivity control, contrast, after-images,” in Handbook of Sensory Physiology, L. M. H. D. Jameson, ed. (Springer, 1972), pp. 568–581.

CIE160–2004, “A review of chromatic adaptation transforms” (CIE, Vienna, 2004).

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), p. 23.

M. D. Fairchild, Color Appearance Models, 2 ed. (John Wiley & Sons, 2005), p. 408.

K. M. Lam, “Metamerism and colour constancy. Ph.D. thesis,” (University of Bradford, 1985).

G. D. Finlayson and S. Susstrunk, “Spectral sharpening and the Bradford transform,” in Proc.of the Color Imaging Symposium2000, 236 −242.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Schematic of one-step and two-step chromatic adaptation transforms between corresponding colors under adaptive conditions and A and B. Adaptive condition 0 is baseline condition of Eq. (1).
Fig. 2
Fig. 2 (a) Illustration of the background scene under 4000 K illumination with the cube in a magenta starting chromaticity (see experimental procedure). (b) Side view schematic of the experimental setup.

Tables (1)

Tables Icon

Table 1 Prediction error in terms of DEu’v’, DE*ab and DE00 for the various tested models for corresponding color data based on memory colors (A) and from literature (B).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

( L 0 M 0 S 0 )=( k L k M k S )( L a M a S a )
k L = 1/ L w ; k M = 1/ M w ; k S = 1/ S w
k L = 1/ L vf ¯ ; k M = 1/ M vf ¯ ; k S = 1/ S vf ¯
( L a B M a B S a B )= ( k L B k M B k S B ) 1 ( k L A k M A k S A )( L a A M a A S a A )=( k L A / k L B k M A / k M B k S A / k S B )( L a A M a A S a A )
D=F( 1-( 1 3.6 ) exp -La-42 92 )D[ 0:1 ]
( L a B M a B S a B )=[ D( k L A / k L B k M A / k M B k S A / k S B )+(1D) ]( L a A M a A S a A )
a X = [ p X +D (1-p X ) ] / X n ( X=L,M,S )
p X = 1+ Y X v + x E 1+ Y X v + 1 x E
x E = 3( X n / X E ) / X=L S X n X E
R= R max I n I n + σ n
X B ' =( D A,B Λ AB +( 1 D A,B ) ) X A
Λ AB = X wB X wA
X B ' = ( D B,0 Λ B0 +( 1 D B,0 ) ) 1 ( D A,0 Λ A0 +( 1 D A,0 ) ) X A

Metrics