Abstract

This paper presents a proposal for a high-speed scrubbing method based on an optically reconfigurable gate array (ORGA) architecture. A salient concern for current field programmable gate arrays (FPGAs) used in high-radiation environments is the high frequency of soft-errors occurring on their configuration memories. Even if triple modular redundancy is used for implementations on FPGAs, soft-error tolerance issues on the configuration memories cannot be alleviated. This paper therefore presents a high-speed scrubbing method that is applicable to ORGA architectures, in addition to its experimental demonstration on an ORGA-VLSI. The mean time between soft-errors (MTBF) on the ORGA configuration memory has been analyzed theoretically: the MTBF can be extended to 1.35–1.89 million times longer than those of current FPGAs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Programmable optically reconfigurable gate array architecture and its writer

Shinya Kubota and Minoru Watanabe
Appl. Opt. 48(2) 302-308 (2009)

Optically reconfigurable gate array using a colored configuration

Takumi Fujimori and Minoru Watanabe
Appl. Opt. 57(29) 8625-8631 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ishigaki, Y. Matsumoto, R. Ichimiya, and K. Tanaka, “Development of Mobile Radiation Monitoring System Utilizing Smartphone and Its Field Tests in Fukushima,” IEEE Sens. J. 13(10), 3520–3526 (2013).
    [Crossref]
  2. I. Vintersved, L.E.D. Geer, B. Bjurrnan, R. Arntsing, S. Jakobsson, and H. Mellander, “Early Measurements of the Chernobyl Fallout in Sweden,” IEEE T. Nucl. Sci. 34(1), 590–594 (1987).
    [Crossref]
  3. M.A. Fischetti, “TMI plus 5: Nuclear power on the ropes: The 1979 accident at the Three Mile Island nuclear plant triggered a domino reaction that threatens the future of the U.S. nuclear power industry,” IEEE Spectrum 21(4), 26–27 (1984).
    [Crossref]
  4. H. Igarashi, K. Kon, and F. Matsuno, “Evaluation of sensors for mobile robots based on irradiation experiment,” in Proceedings of IEEE/SICE International Symposium on System Integration2012, pp. 517–522.
  5. H. Asama, “Plenary talk III: Robot & remote-controlled machine technology for response of disasters and accidents of nuclear power plants,” in Proceedings of SICE Annual Conference, 2012.
  6. J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
    [Crossref]
  7. L. Sterpone and M. Violante, “Analysis of the robustness of the TMR architecture in SRAM-based FPGAs,” IEEE T. Nucl. Sci. 52(5), 1545–1549 (2005).
    [Crossref]
  8. A. Ahmed, “New FPGA blind scrubbing technique,” in Proceedings of IEEE Aerospace Conference2016, pp. 1–9.
  9. J. Tonfat, F. Kastensmidt, and R. Reis, “Energy efficient frame-level redundancy scrubbing technique for SRAM-based FPGAs,” in Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems2015, pp. 1–8.
  10. D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and L. Gong, “Reconfiguration Control Networks for TMR Systems with Module-Based Recovery,” in Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines2016, pp. 88–91.
  11. M. Watanabe and T. Fujimori, “Holographic scrubbing technique for a programmable gate array,” in Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems2015, pp. 1–5.
  12. N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for optically reconfigurable gate arrays,” Appl. Optics 47(28), 4692–4700, (2008).
    [Crossref]
  13. S. Kubota and M. Watanabe, “A four-context programmable optically reconfigurable gate array with a reflective silver-halide holographic memory,” IEEE Photonics J. 3(4), 665–675 (2011).
    [Crossref]
  14. D. Seto, M. Nakajima, and M. Watanabe, “Dynamic optically reconfigurable gate array very large-scale integration with partial reconfiguration capability,” Appl. Optics 49(36), 6986–6994 (2010).
    [Crossref]
  15. H. Morita and M. Watanabe, “Microelectromechanical Configuration of an Optically Reconfigurable Gate Array,” IEEE J. Quantum Elect. 46(9), 1288–1294 (2010).
    [Crossref]
  16. R. Moriwaki, H. Ito, K. Akagi, M. Watanabe, and A. Ogiwara, “Total ionizing dose effects of optical components on an optically reconfigurable gate array,” in Proceedings of International Symposium on Applied Reconfigurable Computing, 2015.
  17. Y. Ito, M. Watanabe, and A. Ogiwara, “A 200 Mrad radiation tolerance of a polymer-dispersed liquid crystal holographic memory,” in Proceedings of IEEE International Conference on Data Science and Systems, 2016.
  18. J. M. Kirkpatrick and B. M. Young, “Poisson Statistical Methods for the Analysis of Low-Count Gamma Spectra,” IEEE T. Nucl. Sci. 56(3), 1278–1282 (2009).
    [Crossref]

2013 (2)

Y. Ishigaki, Y. Matsumoto, R. Ichimiya, and K. Tanaka, “Development of Mobile Radiation Monitoring System Utilizing Smartphone and Its Field Tests in Fukushima,” IEEE Sens. J. 13(10), 3520–3526 (2013).
[Crossref]

J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
[Crossref]

2011 (1)

S. Kubota and M. Watanabe, “A four-context programmable optically reconfigurable gate array with a reflective silver-halide holographic memory,” IEEE Photonics J. 3(4), 665–675 (2011).
[Crossref]

2010 (2)

D. Seto, M. Nakajima, and M. Watanabe, “Dynamic optically reconfigurable gate array very large-scale integration with partial reconfiguration capability,” Appl. Optics 49(36), 6986–6994 (2010).
[Crossref]

H. Morita and M. Watanabe, “Microelectromechanical Configuration of an Optically Reconfigurable Gate Array,” IEEE J. Quantum Elect. 46(9), 1288–1294 (2010).
[Crossref]

2009 (1)

J. M. Kirkpatrick and B. M. Young, “Poisson Statistical Methods for the Analysis of Low-Count Gamma Spectra,” IEEE T. Nucl. Sci. 56(3), 1278–1282 (2009).
[Crossref]

2008 (1)

N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for optically reconfigurable gate arrays,” Appl. Optics 47(28), 4692–4700, (2008).
[Crossref]

2005 (1)

L. Sterpone and M. Violante, “Analysis of the robustness of the TMR architecture in SRAM-based FPGAs,” IEEE T. Nucl. Sci. 52(5), 1545–1549 (2005).
[Crossref]

1987 (1)

I. Vintersved, L.E.D. Geer, B. Bjurrnan, R. Arntsing, S. Jakobsson, and H. Mellander, “Early Measurements of the Chernobyl Fallout in Sweden,” IEEE T. Nucl. Sci. 34(1), 590–594 (1987).
[Crossref]

1984 (1)

M.A. Fischetti, “TMI plus 5: Nuclear power on the ropes: The 1979 accident at the Three Mile Island nuclear plant triggered a domino reaction that threatens the future of the U.S. nuclear power industry,” IEEE Spectrum 21(4), 26–27 (1984).
[Crossref]

Agiakatsikas, D.

D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and L. Gong, “Reconfiguration Control Networks for TMR Systems with Module-Based Recovery,” in Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines2016, pp. 88–91.

Ahmed, A.

A. Ahmed, “New FPGA blind scrubbing technique,” in Proceedings of IEEE Aerospace Conference2016, pp. 1–9.

Akagi, K.

R. Moriwaki, H. Ito, K. Akagi, M. Watanabe, and A. Ogiwara, “Total ionizing dose effects of optical components on an optically reconfigurable gate array,” in Proceedings of International Symposium on Applied Reconfigurable Computing, 2015.

Arntsing, R.

I. Vintersved, L.E.D. Geer, B. Bjurrnan, R. Arntsing, S. Jakobsson, and H. Mellander, “Early Measurements of the Chernobyl Fallout in Sweden,” IEEE T. Nucl. Sci. 34(1), 590–594 (1987).
[Crossref]

Asama, H.

H. Asama, “Plenary talk III: Robot & remote-controlled machine technology for response of disasters and accidents of nuclear power plants,” in Proceedings of SICE Annual Conference, 2012.

Azambuja, J.R.

J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
[Crossref]

Bjurrnan, B.

I. Vintersved, L.E.D. Geer, B. Bjurrnan, R. Arntsing, S. Jakobsson, and H. Mellander, “Early Measurements of the Chernobyl Fallout in Sweden,” IEEE T. Nucl. Sci. 34(1), 590–594 (1987).
[Crossref]

Carro, L.

J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
[Crossref]

Cetin, E.

D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and L. Gong, “Reconfiguration Control Networks for TMR Systems with Module-Based Recovery,” in Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines2016, pp. 88–91.

Diessel, O.

D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and L. Gong, “Reconfiguration Control Networks for TMR Systems with Module-Based Recovery,” in Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines2016, pp. 88–91.

Fairbanks, T.

J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
[Crossref]

Fischetti, M.A.

M.A. Fischetti, “TMI plus 5: Nuclear power on the ropes: The 1979 accident at the Three Mile Island nuclear plant triggered a domino reaction that threatens the future of the U.S. nuclear power industry,” IEEE Spectrum 21(4), 26–27 (1984).
[Crossref]

Fujimori, T.

M. Watanabe and T. Fujimori, “Holographic scrubbing technique for a programmable gate array,” in Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems2015, pp. 1–5.

Geer, L.E.D.

I. Vintersved, L.E.D. Geer, B. Bjurrnan, R. Arntsing, S. Jakobsson, and H. Mellander, “Early Measurements of the Chernobyl Fallout in Sweden,” IEEE T. Nucl. Sci. 34(1), 590–594 (1987).
[Crossref]

Gong, L.

D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and L. Gong, “Reconfiguration Control Networks for TMR Systems with Module-Based Recovery,” in Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines2016, pp. 88–91.

Ichimiya, R.

Y. Ishigaki, Y. Matsumoto, R. Ichimiya, and K. Tanaka, “Development of Mobile Radiation Monitoring System Utilizing Smartphone and Its Field Tests in Fukushima,” IEEE Sens. J. 13(10), 3520–3526 (2013).
[Crossref]

Igarashi, H.

H. Igarashi, K. Kon, and F. Matsuno, “Evaluation of sensors for mobile robots based on irradiation experiment,” in Proceedings of IEEE/SICE International Symposium on System Integration2012, pp. 517–522.

Ishigaki, Y.

Y. Ishigaki, Y. Matsumoto, R. Ichimiya, and K. Tanaka, “Development of Mobile Radiation Monitoring System Utilizing Smartphone and Its Field Tests in Fukushima,” IEEE Sens. J. 13(10), 3520–3526 (2013).
[Crossref]

Ito, H.

R. Moriwaki, H. Ito, K. Akagi, M. Watanabe, and A. Ogiwara, “Total ionizing dose effects of optical components on an optically reconfigurable gate array,” in Proceedings of International Symposium on Applied Reconfigurable Computing, 2015.

Ito, Y.

Y. Ito, M. Watanabe, and A. Ogiwara, “A 200 Mrad radiation tolerance of a polymer-dispersed liquid crystal holographic memory,” in Proceedings of IEEE International Conference on Data Science and Systems, 2016.

Jakobsson, S.

I. Vintersved, L.E.D. Geer, B. Bjurrnan, R. Arntsing, S. Jakobsson, and H. Mellander, “Early Measurements of the Chernobyl Fallout in Sweden,” IEEE T. Nucl. Sci. 34(1), 590–594 (1987).
[Crossref]

Kastensmidt, F.

J. Tonfat, F. Kastensmidt, and R. Reis, “Energy efficient frame-level redundancy scrubbing technique for SRAM-based FPGAs,” in Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems2015, pp. 1–8.

Kastensmidt, F.L.

J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
[Crossref]

Kirkpatrick, J. M.

J. M. Kirkpatrick and B. M. Young, “Poisson Statistical Methods for the Analysis of Low-Count Gamma Spectra,” IEEE T. Nucl. Sci. 56(3), 1278–1282 (2009).
[Crossref]

Kon, K.

H. Igarashi, K. Kon, and F. Matsuno, “Evaluation of sensors for mobile robots based on irradiation experiment,” in Proceedings of IEEE/SICE International Symposium on System Integration2012, pp. 517–522.

Kubota, S.

S. Kubota and M. Watanabe, “A four-context programmable optically reconfigurable gate array with a reflective silver-halide holographic memory,” IEEE Photonics J. 3(4), 665–675 (2011).
[Crossref]

Matsumoto, Y.

Y. Ishigaki, Y. Matsumoto, R. Ichimiya, and K. Tanaka, “Development of Mobile Radiation Monitoring System Utilizing Smartphone and Its Field Tests in Fukushima,” IEEE Sens. J. 13(10), 3520–3526 (2013).
[Crossref]

Matsuno, F.

H. Igarashi, K. Kon, and F. Matsuno, “Evaluation of sensors for mobile robots based on irradiation experiment,” in Proceedings of IEEE/SICE International Symposium on System Integration2012, pp. 517–522.

Mellander, H.

I. Vintersved, L.E.D. Geer, B. Bjurrnan, R. Arntsing, S. Jakobsson, and H. Mellander, “Early Measurements of the Chernobyl Fallout in Sweden,” IEEE T. Nucl. Sci. 34(1), 590–594 (1987).
[Crossref]

Morita, H.

H. Morita and M. Watanabe, “Microelectromechanical Configuration of an Optically Reconfigurable Gate Array,” IEEE J. Quantum Elect. 46(9), 1288–1294 (2010).
[Crossref]

Moriwaki, R.

R. Moriwaki, H. Ito, K. Akagi, M. Watanabe, and A. Ogiwara, “Total ionizing dose effects of optical components on an optically reconfigurable gate array,” in Proceedings of International Symposium on Applied Reconfigurable Computing, 2015.

Nakajima, M.

D. Seto, M. Nakajima, and M. Watanabe, “Dynamic optically reconfigurable gate array very large-scale integration with partial reconfiguration capability,” Appl. Optics 49(36), 6986–6994 (2010).
[Crossref]

Nazar, G.

J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
[Crossref]

Nguyen, N.T.H.

D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and L. Gong, “Reconfiguration Control Networks for TMR Systems with Module-Based Recovery,” in Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines2016, pp. 88–91.

Ogiwara, A.

R. Moriwaki, H. Ito, K. Akagi, M. Watanabe, and A. Ogiwara, “Total ionizing dose effects of optical components on an optically reconfigurable gate array,” in Proceedings of International Symposium on Applied Reconfigurable Computing, 2015.

Y. Ito, M. Watanabe, and A. Ogiwara, “A 200 Mrad radiation tolerance of a polymer-dispersed liquid crystal holographic memory,” in Proceedings of IEEE International Conference on Data Science and Systems, 2016.

Quinn, H.

J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
[Crossref]

Rech, P.

J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
[Crossref]

Reis, R.

J. Tonfat, F. Kastensmidt, and R. Reis, “Energy efficient frame-level redundancy scrubbing technique for SRAM-based FPGAs,” in Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems2015, pp. 1–8.

Seto, D.

D. Seto, M. Nakajima, and M. Watanabe, “Dynamic optically reconfigurable gate array very large-scale integration with partial reconfiguration capability,” Appl. Optics 49(36), 6986–6994 (2010).
[Crossref]

Sterpone, L.

L. Sterpone and M. Violante, “Analysis of the robustness of the TMR architecture in SRAM-based FPGAs,” IEEE T. Nucl. Sci. 52(5), 1545–1549 (2005).
[Crossref]

Tanaka, K.

Y. Ishigaki, Y. Matsumoto, R. Ichimiya, and K. Tanaka, “Development of Mobile Radiation Monitoring System Utilizing Smartphone and Its Field Tests in Fukushima,” IEEE Sens. J. 13(10), 3520–3526 (2013).
[Crossref]

Tonfat, J.

J. Tonfat, F. Kastensmidt, and R. Reis, “Energy efficient frame-level redundancy scrubbing technique for SRAM-based FPGAs,” in Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems2015, pp. 1–8.

Vintersved, I.

I. Vintersved, L.E.D. Geer, B. Bjurrnan, R. Arntsing, S. Jakobsson, and H. Mellander, “Early Measurements of the Chernobyl Fallout in Sweden,” IEEE T. Nucl. Sci. 34(1), 590–594 (1987).
[Crossref]

Violante, M.

L. Sterpone and M. Violante, “Analysis of the robustness of the TMR architecture in SRAM-based FPGAs,” IEEE T. Nucl. Sci. 52(5), 1545–1549 (2005).
[Crossref]

Watanabe, M.

S. Kubota and M. Watanabe, “A four-context programmable optically reconfigurable gate array with a reflective silver-halide holographic memory,” IEEE Photonics J. 3(4), 665–675 (2011).
[Crossref]

D. Seto, M. Nakajima, and M. Watanabe, “Dynamic optically reconfigurable gate array very large-scale integration with partial reconfiguration capability,” Appl. Optics 49(36), 6986–6994 (2010).
[Crossref]

H. Morita and M. Watanabe, “Microelectromechanical Configuration of an Optically Reconfigurable Gate Array,” IEEE J. Quantum Elect. 46(9), 1288–1294 (2010).
[Crossref]

N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for optically reconfigurable gate arrays,” Appl. Optics 47(28), 4692–4700, (2008).
[Crossref]

R. Moriwaki, H. Ito, K. Akagi, M. Watanabe, and A. Ogiwara, “Total ionizing dose effects of optical components on an optically reconfigurable gate array,” in Proceedings of International Symposium on Applied Reconfigurable Computing, 2015.

Y. Ito, M. Watanabe, and A. Ogiwara, “A 200 Mrad radiation tolerance of a polymer-dispersed liquid crystal holographic memory,” in Proceedings of IEEE International Conference on Data Science and Systems, 2016.

M. Watanabe and T. Fujimori, “Holographic scrubbing technique for a programmable gate array,” in Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems2015, pp. 1–5.

Wu, T.

D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and L. Gong, “Reconfiguration Control Networks for TMR Systems with Module-Based Recovery,” in Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines2016, pp. 88–91.

Yamaguchi, N.

N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for optically reconfigurable gate arrays,” Appl. Optics 47(28), 4692–4700, (2008).
[Crossref]

Young, B. M.

J. M. Kirkpatrick and B. M. Young, “Poisson Statistical Methods for the Analysis of Low-Count Gamma Spectra,” IEEE T. Nucl. Sci. 56(3), 1278–1282 (2009).
[Crossref]

Zhao, Z.

D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and L. Gong, “Reconfiguration Control Networks for TMR Systems with Module-Based Recovery,” in Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines2016, pp. 88–91.

Appl. Optics (2)

D. Seto, M. Nakajima, and M. Watanabe, “Dynamic optically reconfigurable gate array very large-scale integration with partial reconfiguration capability,” Appl. Optics 49(36), 6986–6994 (2010).
[Crossref]

N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for optically reconfigurable gate arrays,” Appl. Optics 47(28), 4692–4700, (2008).
[Crossref]

IEEE J. Quantum Elect. (1)

H. Morita and M. Watanabe, “Microelectromechanical Configuration of an Optically Reconfigurable Gate Array,” IEEE J. Quantum Elect. 46(9), 1288–1294 (2010).
[Crossref]

IEEE Photonics J. (1)

S. Kubota and M. Watanabe, “A four-context programmable optically reconfigurable gate array with a reflective silver-halide holographic memory,” IEEE Photonics J. 3(4), 665–675 (2011).
[Crossref]

IEEE Sens. J. (1)

Y. Ishigaki, Y. Matsumoto, R. Ichimiya, and K. Tanaka, “Development of Mobile Radiation Monitoring System Utilizing Smartphone and Its Field Tests in Fukushima,” IEEE Sens. J. 13(10), 3520–3526 (2013).
[Crossref]

IEEE Spectrum (1)

M.A. Fischetti, “TMI plus 5: Nuclear power on the ropes: The 1979 accident at the Three Mile Island nuclear plant triggered a domino reaction that threatens the future of the U.S. nuclear power industry,” IEEE Spectrum 21(4), 26–27 (1984).
[Crossref]

IEEE T. Nucl. Sci. (4)

I. Vintersved, L.E.D. Geer, B. Bjurrnan, R. Arntsing, S. Jakobsson, and H. Mellander, “Early Measurements of the Chernobyl Fallout in Sweden,” IEEE T. Nucl. Sci. 34(1), 590–594 (1987).
[Crossref]

J.R. Azambuja, G. Nazar, P. Rech, L. Carro, F.L. Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluating Neutron Induced SEE in SRAM-Based FPGA Protected by Hardware- and Software-Based Fault Tolerant Techniques,” IEEE T. Nucl. Sci. 60(6), 4243–4250 (2013).
[Crossref]

L. Sterpone and M. Violante, “Analysis of the robustness of the TMR architecture in SRAM-based FPGAs,” IEEE T. Nucl. Sci. 52(5), 1545–1549 (2005).
[Crossref]

J. M. Kirkpatrick and B. M. Young, “Poisson Statistical Methods for the Analysis of Low-Count Gamma Spectra,” IEEE T. Nucl. Sci. 56(3), 1278–1282 (2009).
[Crossref]

Other (8)

R. Moriwaki, H. Ito, K. Akagi, M. Watanabe, and A. Ogiwara, “Total ionizing dose effects of optical components on an optically reconfigurable gate array,” in Proceedings of International Symposium on Applied Reconfigurable Computing, 2015.

Y. Ito, M. Watanabe, and A. Ogiwara, “A 200 Mrad radiation tolerance of a polymer-dispersed liquid crystal holographic memory,” in Proceedings of IEEE International Conference on Data Science and Systems, 2016.

A. Ahmed, “New FPGA blind scrubbing technique,” in Proceedings of IEEE Aerospace Conference2016, pp. 1–9.

J. Tonfat, F. Kastensmidt, and R. Reis, “Energy efficient frame-level redundancy scrubbing technique for SRAM-based FPGAs,” in Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems2015, pp. 1–8.

D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and L. Gong, “Reconfiguration Control Networks for TMR Systems with Module-Based Recovery,” in Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines2016, pp. 88–91.

M. Watanabe and T. Fujimori, “Holographic scrubbing technique for a programmable gate array,” in Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems2015, pp. 1–5.

H. Igarashi, K. Kon, and F. Matsuno, “Evaluation of sensors for mobile robots based on irradiation experiment,” in Proceedings of IEEE/SICE International Symposium on System Integration2012, pp. 517–522.

H. Asama, “Plenary talk III: Robot & remote-controlled machine technology for response of disasters and accidents of nuclear power plants,” in Proceedings of SICE Annual Conference, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Basic construction of an optically reconfigurable gate array (ORGA).
Fig. 2
Fig. 2 Gate array structure of an optical field programmable gate array.
Fig. 3
Fig. 3 Chip microphotograph.
Fig. 4
Fig. 4 Block diagram of the optical reconfigurable gate array.
Fig. 5
Fig. 5 Experimental system of the optical reconfigurable gate array.
Fig. 6
Fig. 6 Holographic memory pattern of an AND circuit. It consists of 1,000 × 1,000 pixels.
Fig. 7
Fig. 7 Holographic memory pattern of a 2-bit adder and a 2-bit multiplier circuits. They consist of 1,000 × 1,000 pixels.
Fig. 8
Fig. 8 CCD-captured configuration context patterns of the 2-bit adder and the 2-bit multiplier circuits.
Fig. 9
Fig. 9 Gate array implementations of the 2-bit adder and the 2-bit multiplier circuits.
Fig. 10
Fig. 10 Waveform of the 2-bit adder and the 2-bit multiplier circuits captured using a logic analyzer (16950A; Agilent Technologies Inc.).

Tables (1)

Tables Icon

Table 1 Specifications summary.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P ( m ) = N ¯ m m ! e N ¯ ,
P TMR ( 0 ) + P TMR ( 1 ) = P ( 0 ) + P ( 1 ) = 1 0 ! e N ¯ + N ¯ 1 ! e N ¯ .
P TMR ( 2 ) = 1 3 P ( 2 ) = 1 3 N ¯ 2 2 ! e N ¯ .
P TMR ( 3 ) = ( 1 3 ) 2 P ( 3 ) = ( 1 3 ) 2 N ¯ 3 3 ! e N ¯ .
P TMR = [ 1 + i = 1 1 i ! ( 1 3 ) i 1 N ¯ i ] e N ¯ .
MTBF = T scrubbing 1 P TMR .

Metrics