Abstract

Substrate temperature is an important parameter for controlling the properties of femtosecond laser induced surface structures besides traditional ways. The morphology on silicon surface at different temperatures are studied experimentally. Compared to those formed at 300 K, smoother ripples, micro-grooves and nano/micro-holes are formed at 700 K. A two temperature model and FDTD method are used to discuss the temperature dependence of surface structures. The results show that the increased light absorption at elevated temperature leads to the reduction of surface roughness. The type-g feature in the FDTD-η map at 700 K, which corresponds to the energy deposition modulation parallel to the laser polarization with a periodicity bigger than the wavelength, is the origin of the formation of grooves. This work can benefit both surface structures based applications and the study of femtosecond laser-matter interactions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon

Guoliang Deng, Guoying Feng, Kui Liu, and Shouhuan Zhou
Appl. Opt. 53(14) 3004-3009 (2014)

Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses

Go Obara, Hisashi Shimizu, Taira Enami, Eric Mazur, Mitsuhiro Terakawa, and Minoru Obara
Opt. Express 21(22) 26323-26334 (2013)

Surface structuring of rutile TiO2 (100) and (001) single crystals with femtosecond pulsed laser irradiation

Luc Museur, George D. Tsibidis, Alexandra Manousaki, Demetrios Anglos, and Andrei Kanaev
J. Opt. Soc. Am. B 35(10) 2600-2607 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [Crossref]
  2. J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures–a Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
    [Crossref]
  3. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1678 (1998).
    [Crossref]
  4. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
    [Crossref] [PubMed]
  5. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 75304 (2010).
    [Crossref] [PubMed]
  6. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
    [Crossref]
  7. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
    [Crossref] [PubMed]
  8. G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
    [Crossref]
  9. Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
    [Crossref]
  10. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [Crossref]
  11. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
    [Crossref] [PubMed]
  12. H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17(14), 12189–12196 (2009).
    [Crossref] [PubMed]
  13. Z. Ou, M. Huang, and F. Zhao, “Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples,” Opt. Express 22(14), 17254–17265 (2014).
    [Crossref] [PubMed]
  14. J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
    [Crossref]
  15. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
    [Crossref]
  16. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  17. T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258(23), 9487–9490 (2012).
    [Crossref]
  18. J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
    [Crossref]
  19. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
    [Crossref]
  20. M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [Crossref]
  21. J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  22. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  23. S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
    [Crossref] [PubMed]
  24. H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
    [Crossref]
  25. G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
    [Crossref]
  26. S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
    [Crossref]
  27. J. Z. P. Skolski, G. R. B. E. Römer, and J. V. Obona, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
    [Crossref]
  28. J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. H. in’t Veld, and J. T. M. D. Hosson, “Inhomogeneous absorption of laser radiation: trigger of LIPSS formation,” J. Laser Micro Nanoeng. 8(1), 1–5 (2013).
    [Crossref]
  29. G. Deng, G. Feng, K. Liu, and S. Zhou, “Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon,” Appl. Opt. 53(14), 3004–3009 (2014).
    [Crossref] [PubMed]
  30. G. Deng, X. Yang, G. Feng, and S. Zhou, “Crystalline micro/nanostructures fabrication on silicon using femtosecond laser,” Proc. SPIE 9255, 92553W (2015).
    [Crossref]
  31. J. S. Yahng, J. R. Nam, and S. C. Jeoung, “The influence of substrate temperature on femtosecond laser micro-processing of silicon, stainless steel and glass,” Opt. Lasers Eng. 47(7), 815–820 (2009).
    [Crossref]
  32. J. S. Yahng and S. C. Jeoung, “Silicon substrate temperature effects on surface roughness induced by ultrafast laser processing,” Opt. Lasers Eng. 49(8), 1040–1044 (2011).
    [Crossref]
  33. J. Thorstensen and S. Erik Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
    [Crossref]
  34. L. S. Jiao, S. K. Moon, E. Y. K. Ng, H. Y. Zheng, and H. S. Son, “Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon,” Appl. Phys. Lett. 104(18), 181902 (2014).
    [Crossref]
  35. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
    [Crossref]
  36. B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Transfer 40(7), 1591–1600 (1997).
    [Crossref]
  37. H. P. Chiang, Y. C. Wang, P. Leung, and W.-S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188(5), 283–289 (2001).
    [Crossref]
  38. H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
    [Crossref]
  39. C. W. Chen, C. H. Lin, H. P. Chiang, Y. C. Liu, P. T. Leung, and W. S. Tse, “Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor,” Appl. Phys., A Mater. Sci. Process. 89(2), 377–380 (2007).
    [Crossref]
  40. M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
    [Crossref]

2017 (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures–a Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

2016 (2)

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref] [PubMed]

2015 (5)

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

G. Deng, X. Yang, G. Feng, and S. Zhou, “Crystalline micro/nanostructures fabrication on silicon using femtosecond laser,” Proc. SPIE 9255, 92553W (2015).
[Crossref]

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

2014 (5)

Z. Ou, M. Huang, and F. Zhao, “Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples,” Opt. Express 22(14), 17254–17265 (2014).
[Crossref] [PubMed]

G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
[Crossref]

G. Deng, G. Feng, K. Liu, and S. Zhou, “Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon,” Appl. Opt. 53(14), 3004–3009 (2014).
[Crossref] [PubMed]

L. S. Jiao, S. K. Moon, E. Y. K. Ng, H. Y. Zheng, and H. S. Son, “Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon,” Appl. Phys. Lett. 104(18), 181902 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, and J. V. Obona, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

2013 (2)

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. H. in’t Veld, and J. T. M. D. Hosson, “Inhomogeneous absorption of laser radiation: trigger of LIPSS formation,” J. Laser Micro Nanoeng. 8(1), 1–5 (2013).
[Crossref]

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

2012 (5)

J. Thorstensen and S. Erik Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258(23), 9487–9490 (2012).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

2011 (1)

J. S. Yahng and S. C. Jeoung, “Silicon substrate temperature effects on surface roughness induced by ultrafast laser processing,” Opt. Lasers Eng. 49(8), 1040–1044 (2011).
[Crossref]

2010 (2)

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 75304 (2010).
[Crossref] [PubMed]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

2009 (4)

H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17(14), 12189–12196 (2009).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. S. Yahng, J. R. Nam, and S. C. Jeoung, “The influence of substrate temperature on femtosecond laser micro-processing of silicon, stainless steel and glass,” Opt. Lasers Eng. 47(7), 815–820 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

2008 (2)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

2007 (2)

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
[Crossref]

C. W. Chen, C. H. Lin, H. P. Chiang, Y. C. Liu, P. T. Leung, and W. S. Tse, “Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor,” Appl. Phys., A Mater. Sci. Process. 89(2), 377–380 (2007).
[Crossref]

2005 (2)

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

2001 (2)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

H. P. Chiang, Y. C. Wang, P. Leung, and W.-S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188(5), 283–289 (2001).
[Crossref]

2000 (1)

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

1998 (1)

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1678 (1998).
[Crossref]

1997 (1)

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Transfer 40(7), 1591–1600 (1997).
[Crossref]

1983 (1)

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Amoruso, S.

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref] [PubMed]

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Anoop, K. K.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Audouard, E.

Bai, F.

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

Barberoglou, M.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Birnbaum, M.

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Bonse, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures–a Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Bruzzese, R.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Chen, C. W.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
[Crossref]

C. W. Chen, C. H. Lin, H. P. Chiang, Y. C. Liu, P. T. Leung, and W. S. Tse, “Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor,” Appl. Phys., A Mater. Sci. Process. 89(2), 377–380 (2007).
[Crossref]

Cheng, G.

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Cheng, Y.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Chiang, H. P.

C. W. Chen, C. H. Lin, H. P. Chiang, Y. C. Liu, P. T. Leung, and W. S. Tse, “Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor,” Appl. Phys., A Mater. Sci. Process. 89(2), 377–380 (2007).
[Crossref]

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
[Crossref]

H. P. Chiang, Y. C. Wang, P. Leung, and W.-S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188(5), 283–289 (2001).
[Crossref]

Chu, J.

G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
[Crossref]

Colombier, J. P.

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

De Hosson, J. T. M.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1678 (1998).
[Crossref]

Deng, G.

G. Deng, X. Yang, G. Feng, and S. Zhou, “Crystalline micro/nanostructures fabrication on silicon using femtosecond laser,” Proc. SPIE 9255, 92553W (2015).
[Crossref]

G. Deng, G. Feng, K. Liu, and S. Zhou, “Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon,” Appl. Opt. 53(14), 3004–3009 (2014).
[Crossref] [PubMed]

Derrien, T. J. Y.

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258(23), 9487–9490 (2012).
[Crossref]

Dusser, B.

Erik Foss, S.

J. Thorstensen and S. Erik Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

Fan, W.

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Faure, N.

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

Feng, G.

G. Deng, X. Yang, G. Feng, and S. Zhou, “Crystalline micro/nanostructures fabrication on silicon using femtosecond laser,” Proc. SPIE 9255, 92553W (2015).
[Crossref]

G. Deng, G. Feng, K. Liu, and S. Zhou, “Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon,” Appl. Opt. 53(14), 3004–3009 (2014).
[Crossref] [PubMed]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1678 (1998).
[Crossref]

Fotakis, C.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Grigoropoulos, C. P.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Transfer 40(7), 1591–1600 (1997).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Hartelt, M.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

He, S.

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref] [PubMed]

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1678 (1998).
[Crossref]

Höhm, S.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures–a Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Hosson, J. T. M. D.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. H. in’t Veld, and J. T. M. D. Hosson, “Inhomogeneous absorption of laser radiation: trigger of LIPSS formation,” J. Laser Micro Nanoeng. 8(1), 1–5 (2013).
[Crossref]

Hu, M.

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref] [PubMed]

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Hu, Y.

G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
[Crossref]

Huang, M.

Z. Ou, M. Huang, and F. Zhao, “Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples,” Opt. Express 22(14), 17254–17265 (2014).
[Crossref] [PubMed]

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Huang, W.

G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
[Crossref]

Huis in ’t Veld, A. J.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Huo, H.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 75304 (2010).
[Crossref] [PubMed]

in’t Veld, A. J. H.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. H. in’t Veld, and J. T. M. D. Hosson, “Inhomogeneous absorption of laser radiation: trigger of LIPSS formation,” J. Laser Micro Nanoeng. 8(1), 1–5 (2013).
[Crossref]

Itina, T. E.

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258(23), 9487–9490 (2012).
[Crossref]

Jeoung, S. C.

J. S. Yahng and S. C. Jeoung, “Silicon substrate temperature effects on surface roughness induced by ultrafast laser processing,” Opt. Lasers Eng. 49(8), 1040–1044 (2011).
[Crossref]

J. S. Yahng, J. R. Nam, and S. C. Jeoung, “The influence of substrate temperature on femtosecond laser micro-processing of silicon, stainless steel and glass,” Opt. Lasers Eng. 47(7), 815–820 (2009).
[Crossref]

Jiao, L. S.

L. S. Jiao, S. K. Moon, E. Y. K. Ng, H. Y. Zheng, and H. S. Son, “Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon,” Appl. Phys. Lett. 104(18), 181902 (2014).
[Crossref]

Johnson, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 75304 (2010).
[Crossref] [PubMed]

Jourlin, M.

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Kirner, S. V.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures–a Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Koter, R.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

Krüger, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures–a Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Leung, P.

H. P. Chiang, Y. C. Wang, P. Leung, and W.-S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188(5), 283–289 (2001).
[Crossref]

Leung, P. T.

C. W. Chen, C. H. Lin, H. P. Chiang, Y. C. Liu, P. T. Leung, and W. S. Tse, “Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor,” Appl. Phys., A Mater. Sci. Process. 89(2), 377–380 (2007).
[Crossref]

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
[Crossref]

Levinson, J. A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Li, C.

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Li, G.

G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
[Crossref]

Li, H. L.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
[Crossref]

Li, J.

G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
[Crossref]

Li, X.

G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
[Crossref]

Li, Y.

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

Lin, C. H.

C. W. Chen, C. H. Lin, H. P. Chiang, Y. C. Liu, P. T. Leung, and W. S. Tse, “Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor,” Appl. Phys., A Mater. Sci. Process. 89(2), 377–380 (2007).
[Crossref]

Lin, T. Y.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
[Crossref]

Liu, K.

Liu, Y. C.

C. W. Chen, C. H. Lin, H. P. Chiang, Y. C. Liu, P. T. Leung, and W. S. Tse, “Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor,” Appl. Phys., A Mater. Sci. Process. 89(2), 377–380 (2007).
[Crossref]

Lochbihler, H.

Loukakos, P. A.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Mazur, E.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 75304 (2010).
[Crossref] [PubMed]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1678 (1998).
[Crossref]

Moon, S. K.

L. S. Jiao, S. K. Moon, E. Y. K. Ng, H. Y. Zheng, and H. S. Son, “Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon,” Appl. Phys. Lett. 104(18), 181902 (2014).
[Crossref]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Nam, J. R.

J. S. Yahng, J. R. Nam, and S. C. Jeoung, “The influence of substrate temperature on femtosecond laser micro-processing of silicon, stainless steel and glass,” Opt. Lasers Eng. 47(7), 815–820 (2009).
[Crossref]

Ng, E. Y. K.

L. S. Jiao, S. K. Moon, E. Y. K. Ng, H. Y. Zheng, and H. S. Son, “Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon,” Appl. Phys. Lett. 104(18), 181902 (2014).
[Crossref]

Nivas, J. J.

Nivas, J. J. J.

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Obona, J. V.

J. Z. P. Skolski, G. R. B. E. Römer, and J. V. Obona, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. H. in’t Veld, and J. T. M. D. Hosson, “Inhomogeneous absorption of laser radiation: trigger of LIPSS formation,” J. Laser Micro Nanoeng. 8(1), 1–5 (2013).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Ocelik, V.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. H. in’t Veld, and J. T. M. D. Hosson, “Inhomogeneous absorption of laser radiation: trigger of LIPSS formation,” J. Laser Micro Nanoeng. 8(1), 1–5 (2013).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Ou, Z.

Pentzien, S.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

Preston, J.

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Qian, J.

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

Römer, G. R. B. E.

J. Z. P. Skolski, G. R. B. E. Römer, and J. V. Obona, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. H. in’t Veld, and J. T. M. D. Hosson, “Inhomogeneous absorption of laser radiation: trigger of LIPSS formation,” J. Laser Micro Nanoeng. 8(1), 1–5 (2013).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Rosenfeld, A.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures–a Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Sagan, Z.

Sánchez, E. J.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
[Crossref]

Sarnet, T.

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258(23), 9487–9490 (2012).
[Crossref]

Sentis, M.

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258(23), 9487–9490 (2012).
[Crossref]

Shen, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 75304 (2010).
[Crossref] [PubMed]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

Sipe, J.

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Skolski, J. Z. P.

J. Z. P. Skolski, G. R. B. E. Römer, and J. V. Obona, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. H. in’t Veld, and J. T. M. D. Hosson, “Inhomogeneous absorption of laser radiation: trigger of LIPSS formation,” J. Laser Micro Nanoeng. 8(1), 1–5 (2013).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

Soder, H.

Son, H. S.

L. S. Jiao, S. K. Moon, E. Y. K. Ng, H. Y. Zheng, and H. S. Son, “Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon,” Appl. Phys. Lett. 104(18), 181902 (2014).
[Crossref]

Spaltmann, D.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

Stoian, R.

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Stratakis, E.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Sun, B. K.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Transfer 40(7), 1591–1600 (1997).
[Crossref]

Thorstensen, J.

J. Thorstensen and S. Erik Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

Torres, R.

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258(23), 9487–9490 (2012).
[Crossref]

Tse, W. S.

C. W. Chen, C. H. Lin, H. P. Chiang, Y. C. Liu, P. T. Leung, and W. S. Tse, “Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor,” Appl. Phys., A Mater. Sci. Process. 89(2), 377–380 (2007).
[Crossref]

Tse, W.-S.

H. P. Chiang, Y. C. Wang, P. Leung, and W.-S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188(5), 283–289 (2001).
[Crossref]

Tsibidis, G. D.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Van Driel, H.

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Vecchione, A.

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref] [PubMed]

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Wang, C.

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 75304 (2010).
[Crossref] [PubMed]

Wang, Y. C.

H. P. Chiang, Y. C. Wang, P. Leung, and W.-S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188(5), 283–289 (2001).
[Crossref]

Wang, Z.

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1678 (1998).
[Crossref]

Wu, J. J.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Yahng, J. S.

J. S. Yahng and S. C. Jeoung, “Silicon substrate temperature effects on surface roughness induced by ultrafast laser processing,” Opt. Lasers Eng. 49(8), 1040–1044 (2011).
[Crossref]

J. S. Yahng, J. R. Nam, and S. C. Jeoung, “The influence of substrate temperature on femtosecond laser micro-processing of silicon, stainless steel and glass,” Opt. Lasers Eng. 47(7), 815–820 (2009).
[Crossref]

Yang, X.

G. Deng, X. Yang, G. Feng, and S. Zhou, “Crystalline micro/nanostructures fabrication on silicon using femtosecond laser,” Proc. SPIE 9255, 92553W (2015).
[Crossref]

Young, J. F.

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Younkin, R.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Zhang, C.

G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
[Crossref]

Zhang, H.

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

Zhang, X.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Transfer 40(7), 1591–1600 (1997).
[Crossref]

Zhang, Y.

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

Zhao, F.

Z. Ou, M. Huang, and F. Zhao, “Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples,” Opt. Express 22(14), 17254–17265 (2014).
[Crossref] [PubMed]

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zhao, L.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Zhao, Q.

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

Zheng, H. Y.

L. S. Jiao, S. K. Moon, E. Y. K. Ng, H. Y. Zheng, and H. S. Son, “Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon,” Appl. Phys. Lett. 104(18), 181902 (2014).
[Crossref]

Zhou, S.

G. Deng, X. Yang, G. Feng, and S. Zhou, “Crystalline micro/nanostructures fabrication on silicon using femtosecond laser,” Proc. SPIE 9255, 92553W (2015).
[Crossref]

G. Deng, G. Feng, K. Liu, and S. Zhou, “Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon,” Appl. Opt. 53(14), 3004–3009 (2014).
[Crossref] [PubMed]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Ann. Phys. (1)

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

L. S. Jiao, S. K. Moon, E. Y. K. Ng, H. Y. Zheng, and H. S. Son, “Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon,” Appl. Phys. Lett. 104(18), 181902 (2014).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1678 (1998).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, and W. Huang, “Femtosecond laser color marking stainless steel surface with different wavelengths,” Appl. Phys., A Mater. Sci. Process. 118(4), 1189–1196 (2014).
[Crossref]

Y. Li, J. Qian, F. Bai, Z. Wang, C. Wang, W. Fan, Y. Zhang, and Q. Zhao, “Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 122(4), 282 (2016).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[Crossref]

C. W. Chen, C. H. Lin, H. P. Chiang, Y. C. Liu, P. T. Leung, and W. S. Tse, “Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor,” Appl. Phys., A Mater. Sci. Process. 89(2), 377–380 (2007).
[Crossref]

Appl. Surf. Sci. (3)

S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: Formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258(23), 9487–9490 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures–a Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Int. J. Heat Mass Transfer (1)

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Transfer 40(7), 1591–1600 (1997).
[Crossref]

J. Appl. Phys. (5)

J. Z. P. Skolski, G. R. B. E. Römer, and J. V. Obona, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Thorstensen and S. Erik Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Laser Micro Nanoeng. (1)

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. H. in’t Veld, and J. T. M. D. Hosson, “Inhomogeneous absorption of laser radiation: trigger of LIPSS formation,” J. Laser Micro Nanoeng. 8(1), 1–5 (2013).
[Crossref]

Nano Lett. (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 75304 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

H. P. Chiang, Y. C. Wang, P. Leung, and W.-S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188(5), 283–289 (2001).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (2)

J. S. Yahng, J. R. Nam, and S. C. Jeoung, “The influence of substrate temperature on femtosecond laser micro-processing of silicon, stainless steel and glass,” Opt. Lasers Eng. 47(7), 815–820 (2009).
[Crossref]

J. S. Yahng and S. C. Jeoung, “Silicon substrate temperature effects on surface roughness induced by ultrafast laser processing,” Opt. Lasers Eng. 49(8), 1040–1044 (2011).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (5)

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: Fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

H. Zhang, J. P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, “Coherence in ultrafast laser-induced periodic surface structures,” Phys. Rev. B 92(17), 174109 (2015).
[Crossref]

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

J. Sipe, J. F. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Proc. SPIE (1)

G. Deng, X. Yang, G. Feng, and S. Zhou, “Crystalline micro/nanostructures fabrication on silicon using femtosecond laser,” Proc. SPIE 9255, 92553W (2015).
[Crossref]

Thin Solid Films (1)

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515(17), 6953–6961 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scanning electron micrographs of structures formed with 4 laser shots at: (a) and (c) 300 K; (b) and (d) 700 K. The insets in (a) and (b) are the Fourier transforms of Fig. 1(a) and 1(b) respectively. The black circles correspond to the radius with normalized wave vector equal to one. The arrow indicates the direction of the laser polarization.
Fig. 2
Fig. 2 Scanning electron micrograph of structures formed with 50 laser shots: (a) Half of the crater and its (b) edge and (c) center formed at 300 K; (d) Half of the crater and its (e) edge and (f) center formed at 700 K. The arrow indicates the direction of the laser polarization.
Fig. 3
Fig. 3 Scanning electron micrograph of structures formed at different temperature and magnification with 500 laser shots with a viewing angle at 30°: (a), (c) and (d) 300 K; (b), (e) and (f) 700 K. The arrow indicates the direction of the laser polarization.
Fig. 4
Fig. 4 Morphology chart versus pulse number and fluence
Fig. 5
Fig. 5 FDTD-η maps of silicon irradiated with 1.5 kJ/m2 femtosecond laser at different substrate temperatures and collision frequencies: 300 K, υ = 1.5 × 10−14 s−1 (a) Z = 0, (b) Z = −140 nm; 700 K, υ = 1.5 × 10−14 s−1 (c) Z = 0, (d) Z = −140 nm; 700 K, υ = 3.3 × 10−14 s−1 (e) Z = 0, (f) Z = −140 nm. A linear scale was used ranging from blue (lowest value) to red (highest value) to present the normalized intensity in FDTD-η maps. The white dotted circles correspond to the position with a normalized wave vector equal to one. The arrow indicates the direction of the laser polarization.
Fig. 6
Fig. 6 The intensity distribution of the FDTD-η maps shown in Fig. 5: (a) horizontal (b) vertical direction at Z = 0; (c) horizontal (d) vertical direction at Z = −140 nm.
Fig. 7
Fig. 7 (a) Groove and nanometer size holes formed at 700 K with 100 laser shots; (b) The normalized electric field when the laser light irradiates the surface presented in Fig. 7(a). The arrow indicates the direction of the laser polarization.

Metrics