Abstract

The ability to actively shift the primary resonance of a 2D scanning micromirror allows the user to set the scanning direction, set the scanning frequency, and lift otherwise degenerate modes in a symmetrically designed system. In most cases, resonant scanning micromirrors require frequency stability in order to perform imaging and projection functions properly. This paper suggests a method to tune the tip and tilt resonant frequencies in real time while actively suppressing or allowing degeneracy of the two modes in a symmetric electrothermal micromirror. We show resonant frequency tuning with a range of degeneracy separation of 470 Hz or by approximately ±15% and controllable coupling.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3 degree-of-freedom resonant scanner with full-circumferential range and large out-of-plane displacement

Haijun Li, Kenn R. Oldham, and Thomas D. Wang
Opt. Express 27(11) 16296-16307 (2019)

Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability

Jessica Morrison, Matthias Imboden, Thomas D.C. Little, and D. J. Bishop
Opt. Express 23(7) 9555-9566 (2015)

Extreme angle, tip-tilt MEMS micromirror enabling full hemispheric, quasi-static optical coverage

C. Pollock, J. Javor, A. Stange, L. K. Barrett, and D. J. Bishop
Opt. Express 27(11) 15318-15326 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J.-S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Express 12, 557–563 (2004).
    [Crossref] [PubMed]
  2. M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the big picture (with a small device),” Opt. Photonics News 20, 28–34 (2009).
    [Crossref]
  3. Y. Gong and S. Zhang, “Ultrafast 3-D shape measurement with an off-the-shelf DLP projector,” Opt. Express 18, 19743–19754 (2010).
    [Crossref] [PubMed]
  4. D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
    [Crossref]
  5. C.-D. Chen, Y.-J. Wang, and P. Chang, “A novel two-axis MEMS scanning mirror with a PZT actuator for laser scanning projection,” Opt. Express 20, 27003–27017 (2012).
    [Crossref] [PubMed]
  6. H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators, A 103, 237–241 (2003).
    [Crossref]
  7. L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
    [Crossref]
  8. L. Lin and E. Keeler, “Progress of MEMS scanning micromirrors for optical bio-imaging,” Micromachines 6, 1675–1689 (2015).
    [Crossref]
  9. S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. Syst. 23, 259–275 (2014).
    [Crossref]
  10. D. L. Dickensheets and G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21, 764–766 (1996).
    [Crossref] [PubMed]
  11. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
    [Crossref]
  12. M. Strathman, Y. Liu, X. Li, and L. Y. Lin,“Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging,” Opt. Express 21, 23934–23941 (2013).
    [Crossref] [PubMed]
  13. H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22, 5818–5825 (2014).
    [Crossref] [PubMed]
  14. Y.-H. Seo, K. Hwang, H.-C. Park, and K.-H. Jeong, “Electrothermal MEMS fiber scanner for optical endomicroscopy,” Opt. Express 24, 3903–3909 (2016).
    [Crossref] [PubMed]
  15. H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).
  16. C. Jeong, S. Seok, B. Lee, H. Kim, and K. Chun, “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” J. Micromech. Microeng. 14, 1530–1536 (2004).
    [Crossref]
  17. J.-I. Lee, S. Park, Y. Eun, B. Jeong, and J. Kim, “Resonant frequency tuning of torsional microscanner by mechanical restriction using MEMS actuator,” in “2009 IEEE 22nd Int. Conf. Micro Electro Mech. Syst.” (IEEE, 2009), pp. 164–167.
  18. W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).
    [Crossref] [PubMed]
  19. R. Bauer, Li Li, and D. Uttamchandani, “Dynamic properties of angular vertical comb-drive scanning micromirrors with electrothermally controlled variable offset,” J. Microelectromech. Syst. 23, 999–1008 (2014).
    [Crossref]
  20. J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
    [Crossref] [PubMed]
  21. A. Cowen, B. Hardy, R. Mahadevan, and S. Wilcenski, PolyMUMPs Design Handbook a MUMPs process (MEMSCAP Inc., 2011), 13th ed.
  22. K. B. Lee, Principles of Microelectromechanical Systems (WILEY, 2011).
    [Crossref]
  23. N. Lobontiu, Dynamics of Microelectromechanical Systems, vol. 17 of Microsystems (Springer, 2007).
    [Crossref]
  24. S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quant. Electron. 46, 1254–1260 (2010).
    [Crossref]

2016 (2)

Y.-H. Seo, K. Hwang, H.-C. Park, and K.-H. Jeong, “Electrothermal MEMS fiber scanner for optical endomicroscopy,” Opt. Express 24, 3903–3909 (2016).
[Crossref] [PubMed]

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).

2015 (3)

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).
[Crossref] [PubMed]

L. Lin and E. Keeler, “Progress of MEMS scanning micromirrors for optical bio-imaging,” Micromachines 6, 1675–1689 (2015).
[Crossref]

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

2014 (3)

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

R. Bauer, Li Li, and D. Uttamchandani, “Dynamic properties of angular vertical comb-drive scanning micromirrors with electrothermally controlled variable offset,” J. Microelectromech. Syst. 23, 999–1008 (2014).
[Crossref]

H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22, 5818–5825 (2014).
[Crossref] [PubMed]

2013 (2)

M. Strathman, Y. Liu, X. Li, and L. Y. Lin,“Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging,” Opt. Express 21, 23934–23941 (2013).
[Crossref] [PubMed]

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

2012 (1)

2010 (3)

Y. Gong and S. Zhang, “Ultrafast 3-D shape measurement with an off-the-shelf DLP projector,” Opt. Express 18, 19743–19754 (2010).
[Crossref] [PubMed]

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quant. Electron. 46, 1254–1260 (2010).
[Crossref]

2009 (1)

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the big picture (with a small device),” Opt. Photonics News 20, 28–34 (2009).
[Crossref]

2004 (2)

J.-S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Express 12, 557–563 (2004).
[Crossref] [PubMed]

C. Jeong, S. Seok, B. Lee, H. Kim, and K. Chun, “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” J. Micromech. Microeng. 14, 1530–1536 (2004).
[Crossref]

2003 (1)

H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators, A 103, 237–241 (2003).
[Crossref]

2001 (1)

1996 (1)

Abelé, N.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Baran, U.

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

Barras, T.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Bauer, R.

R. Bauer, Li Li, and D. Uttamchandani, “Dynamic properties of angular vertical comb-drive scanning micromirrors with electrothermally controlled variable offset,” J. Microelectromech. Syst. 23, 999–1008 (2014).
[Crossref]

Bishop, D. J.

Champion, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the big picture (with a small device),” Opt. Photonics News 20, 28–34 (2009).
[Crossref]

Chang, P.

Chen, C.-D.

Chun, K.

C. Jeong, S. Seok, B. Lee, H. Kim, and K. Chun, “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” J. Micromech. Microeng. 14, 1530–1536 (2004).
[Crossref]

Cowen, A.

A. Cowen, B. Hardy, R. Mahadevan, and S. Wilcenski, PolyMUMPs Design Handbook a MUMPs process (MEMSCAP Inc., 2011), 13th ed.

Dickensheets, D. L.

Duan, X.

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).

Eun, Y.

J.-I. Lee, S. Park, Y. Eun, B. Jeong, and J. Kim, “Resonant frequency tuning of torsional microscanner by mechanical restriction using MEMS actuator,” in “2009 IEEE 22nd Int. Conf. Micro Electro Mech. Syst.” (IEEE, 2009), pp. 164–167.

Fabre, L.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Fedder, G. K.

H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators, A 103, 237–241 (2003).
[Crossref]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[Crossref]

Freeman, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the big picture (with a small device),” Opt. Photonics News 20, 28–34 (2009).
[Crossref]

Gong, Y.

Hardy, B.

A. Cowen, B. Hardy, R. Mahadevan, and S. Wilcenski, PolyMUMPs Design Handbook a MUMPs process (MEMSCAP Inc., 2011), 13th ed.

Holmstrom, S. T. S.

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

Hu, K.-M.

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).
[Crossref] [PubMed]

Hwang, K.

Imboden, M.

Jang, J.-S.

Javidi, B.

Jeong, B.

J.-I. Lee, S. Park, Y. Eun, B. Jeong, and J. Kim, “Resonant frequency tuning of torsional microscanner by mechanical restriction using MEMS actuator,” in “2009 IEEE 22nd Int. Conf. Micro Electro Mech. Syst.” (IEEE, 2009), pp. 164–167.

Jeong, C.

C. Jeong, S. Seok, B. Lee, H. Kim, and K. Chun, “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” J. Micromech. Microeng. 14, 1530–1536 (2004).
[Crossref]

Jeong, K.-H.

Kayal, M.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Kechana, F.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Keeler, E.

L. Lin and E. Keeler, “Progress of MEMS scanning micromirrors for optical bio-imaging,” Micromachines 6, 1675–1689 (2015).
[Crossref]

Kilcher, L.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Kim, H.

C. Jeong, S. Seok, B. Lee, H. Kim, and K. Chun, “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” J. Micromech. Microeng. 14, 1530–1536 (2004).
[Crossref]

Kim, J.

J.-I. Lee, S. Park, Y. Eun, B. Jeong, and J. Kim, “Resonant frequency tuning of torsional microscanner by mechanical restriction using MEMS actuator,” in “2009 IEEE 22nd Int. Conf. Micro Electro Mech. Syst.” (IEEE, 2009), pp. 164–167.

Kino, G. S.

Kurabayashi, K.

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).

Lee, B.

C. Jeong, S. Seok, B. Lee, H. Kim, and K. Chun, “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” J. Micromech. Microeng. 14, 1530–1536 (2004).
[Crossref]

Lee, J.-I.

J.-I. Lee, S. Park, Y. Eun, B. Jeong, and J. Kim, “Resonant frequency tuning of torsional microscanner by mechanical restriction using MEMS actuator,” in “2009 IEEE 22nd Int. Conf. Micro Electro Mech. Syst.” (IEEE, 2009), pp. 164–167.

Lee, K. B.

K. B. Lee, Principles of Microelectromechanical Systems (WILEY, 2011).
[Crossref]

Li, H.

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).

Li, L.

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

Li, Li

R. Bauer, Li Li, and D. Uttamchandani, “Dynamic properties of angular vertical comb-drive scanning micromirrors with electrothermally controlled variable offset,” J. Microelectromech. Syst. 23, 999–1008 (2014).
[Crossref]

Li, R.

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

Li, X.

Lin, L.

L. Lin and E. Keeler, “Progress of MEMS scanning micromirrors for optical bio-imaging,” Micromachines 6, 1675–1689 (2015).
[Crossref]

Lin, L. Y.

Little, T. D. C.

Liu, Y.

Lo Conte, F.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Lobontiu, N.

N. Lobontiu, Dynamics of Microelectromechanical Systems, vol. 17 of Microsystems (Springer, 2007).
[Crossref]

Lubeigt, W.

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

Madhavan, S.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the big picture (with a small device),” Opt. Photonics News 20, 28–34 (2009).
[Crossref]

Mahadevan, R.

A. Cowen, B. Hardy, R. Mahadevan, and S. Wilcenski, PolyMUMPs Design Handbook a MUMPs process (MEMSCAP Inc., 2011), 13th ed.

Meng, G.

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).
[Crossref] [PubMed]

Morrison, J.

Oh, Y.-S.

Oldham, K. R.

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).

Pal, S.

S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quant. Electron. 46, 1254–1260 (2010).
[Crossref]

Pan, Y.

H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators, A 103, 237–241 (2003).
[Crossref]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[Crossref]

Park, H.-C.

Park, S.

J.-I. Lee, S. Park, Y. Eun, B. Jeong, and J. Kim, “Resonant frequency tuning of torsional microscanner by mechanical restriction using MEMS actuator,” in “2009 IEEE 22nd Int. Conf. Micro Electro Mech. Syst.” (IEEE, 2009), pp. 164–167.

Peng, Z.-K.

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).
[Crossref] [PubMed]

Qiu, Z.

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).

Raboud, D.

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Seo, Y.-H.

Seok, S.

C. Jeong, S. Seok, B. Lee, H. Kim, and K. Chun, “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” J. Micromech. Microeng. 14, 1530–1536 (2004).
[Crossref]

Strathman, M.

Urey, H.

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

Uttamchandani, D.

R. Bauer, Li Li, and D. Uttamchandani, “Dynamic properties of angular vertical comb-drive scanning micromirrors with electrothermally controlled variable offset,” J. Microelectromech. Syst. 23, 999–1008 (2014).
[Crossref]

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

Wang, T. D.

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).

Wang, Y.-J.

Wilcenski, S.

A. Cowen, B. Hardy, R. Mahadevan, and S. Wilcenski, PolyMUMPs Design Handbook a MUMPs process (MEMSCAP Inc., 2011), 13th ed.

Xie, H.

S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quant. Electron. 46, 1254–1260 (2010).
[Crossref]

H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators, A 103, 237–241 (2003).
[Crossref]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[Crossref]

Zhang, S.

Zhang, W.-M.

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).
[Crossref] [PubMed]

Zhou, Q.

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).

IEEE J. Quant. Electron. (1)

S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quant. Electron. 46, 1254–1260 (2010).
[Crossref]

J. Microelectromech. Syst. (3)

L. Li, R. Li, W. Lubeigt, and D. Uttamchandani, “Design, simulation, and characterization of a bimorph varifocal micromirror and its application in an optical imaging system,” J. Microelectromech. Syst. 22, 285–294 (2013).
[Crossref]

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

R. Bauer, Li Li, and D. Uttamchandani, “Dynamic properties of angular vertical comb-drive scanning micromirrors with electrothermally controlled variable offset,” J. Microelectromech. Syst. 23, 999–1008 (2014).
[Crossref]

J. Micromech. Microeng. (1)

C. Jeong, S. Seok, B. Lee, H. Kim, and K. Chun, “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” J. Micromech. Microeng. 14, 1530–1536 (2004).
[Crossref]

Micromachines (1)

L. Lin and E. Keeler, “Progress of MEMS scanning micromirrors for optical bio-imaging,” Micromachines 6, 1675–1689 (2015).
[Crossref]

Opt. Express (8)

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical / horizontal cross- sectional imaging,” Opt. Express 24, 462–471 (2016).

J.-S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Express 12, 557–563 (2004).
[Crossref] [PubMed]

Y. Gong and S. Zhang, “Ultrafast 3-D shape measurement with an off-the-shelf DLP projector,” Opt. Express 18, 19743–19754 (2010).
[Crossref] [PubMed]

C.-D. Chen, Y.-J. Wang, and P. Chang, “A novel two-axis MEMS scanning mirror with a PZT actuator for laser scanning projection,” Opt. Express 20, 27003–27017 (2012).
[Crossref] [PubMed]

M. Strathman, Y. Liu, X. Li, and L. Y. Lin,“Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging,” Opt. Express 21, 23934–23941 (2013).
[Crossref] [PubMed]

H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22, 5818–5825 (2014).
[Crossref] [PubMed]

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

Y.-H. Seo, K. Hwang, H.-C. Park, and K.-H. Jeong, “Electrothermal MEMS fiber scanner for optical endomicroscopy,” Opt. Express 24, 3903–3909 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Photonics News (1)

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the big picture (with a small device),” Opt. Photonics News 20, 28–34 (2009).
[Crossref]

Procedia Eng. (1)

D. Raboud, T. Barras, F. Lo Conte, L. Fabre, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “MEMS based color-VGA micro-projector system,” Procedia Eng. 5, 260–263 (2010).
[Crossref]

Sens. Actuators, A (1)

H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators, A 103, 237–241 (2003).
[Crossref]

Sensors (1)

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).
[Crossref] [PubMed]

Other (4)

J.-I. Lee, S. Park, Y. Eun, B. Jeong, and J. Kim, “Resonant frequency tuning of torsional microscanner by mechanical restriction using MEMS actuator,” in “2009 IEEE 22nd Int. Conf. Micro Electro Mech. Syst.” (IEEE, 2009), pp. 164–167.

A. Cowen, B. Hardy, R. Mahadevan, and S. Wilcenski, PolyMUMPs Design Handbook a MUMPs process (MEMSCAP Inc., 2011), 13th ed.

K. B. Lee, Principles of Microelectromechanical Systems (WILEY, 2011).
[Crossref]

N. Lobontiu, Dynamics of Microelectromechanical Systems, vol. 17 of Microsystems (Springer, 2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) SEM image of micromirror derived from [20] and (b) the angular deflection as a function of differential power to the bimorph legs.
Fig. 2
Fig. 2 FEM simulations of a mirror with in-plane residual stresses. The modes are given as a) vertical or piston, b) tip, c) tilt. Note that the direction of the tip and tilt are mirror images.
Fig. 3
Fig. 3 Fits to the power as a function of current using quadratic and cubic functions. The quadratic fit does not fall within the error bars.
Fig. 4
Fig. 4 Two legs are biased at an offset power and a differential power amplitude while the opposite legs are biased by a separate constant tuning power. The inset shows the effect of increasing the tuning power on the spring shape.
Fig. 5
Fig. 5 Transfer function fit to the low frequency response of the mirror under test.
Fig. 6
Fig. 6 The frequency response is measured using a differential current bias output corresponding to a specified DC power amplitude and a tuning power offset to the bimorph legs driving the opposite axis. The reflection from the mirror is recorded by reading the output of a PSD over multiple periods and converting the cartesian coordinate into two angles.
Fig. 7
Fig. 7 The normalized angle magnitude is calculated analytically for two possible phase values in order to convey measurement variables. The plot is not a measurement but a representation of how the variables are extracted. The maximum and minimum angles are depicted for ϕ = π 3 and ϕ = π 9 and shown as arrows in the parametric plot inset.
Fig. 8
Fig. 8 Lorentzian fits to the magnitude of the dominant resonance angle for (a) nearly equal powers (PoffsetPtuning = −1 mW) and (b) unequal powers (PoffsetPtuning = −11 mW). The FEM insets show the approximate spring deformations for the two scenarios. Below the Lorentzian fits, the parametric plots in (c) and (d) correspond to the mode shape at key frequencies labeled in (a) and (b) by the stars and dotted lines.
Fig. 9
Fig. 9 Magnitude of the dominant resonance angle as a function of frequency and tuning power is shown for various offset powers.
Fig. 10
Fig. 10 Primary (green) and secondary (blue) resonance frequencies are plotted in (a) as a function of ΔP and the difference between the primary and secondary resonance frequencies Δf shown as a function of ΔP in (b). The frequency separation can be tuned from 230 Hz to −240 Hz.
Fig. 11
Fig. 11 Phase measured at the primary (green) and secondary (blue) resonance frequencies plotted against the difference in frequency.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m x ¨ + γ x ˙ + k x = F ( t )
x ( ω ) = F 0 m ( ω 2 ω 0 2 ) 2 ( ω ω 0 Q ) 2
G ( s ) = ( s z 0 ) ( s p ˜ 0 )
X ( t ) = X 0 cos ( ω t ) Y ( t ) = Y 0 cos ( ω t + ϕ )

Metrics