Abstract

In a previous paper, 12 corresponding color data sets were derived for 4 neutral illuminants using the long-term memory colours of five familiar objects. The data were used to test several linear (one-step and two-step von Kries, RLAB) and nonlinear (Hunt and Nayatani) chromatic adaptation transforms (CAT). This paper extends that study to a total of 156 corresponding color sets by including 9 more colored illuminants: 2 with low and 2 with high correlated color temperatures as well as 5 representing high chroma adaptive conditions. As in the previous study, a two-step von Kries transform whereby the degree of adaptation D is optimized to minimize the DEu’v’ prediction errors outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color set. Most of the transforms tested, except the two- and one-step von Kries models with optimized D, showed large errors for corresponding color subsets that contained non-neutral adaptive conditions as all of them tended to overestimate the effective degree of adaptation in this study. An analysis of the impact of the sensor space primaries in which the adaptation is performed was found to have little impact compared to that of model choice. Finally, the effective degree of adaptation for the 13 illumination conditions (4 neutral + 9 colored) was successfully modelled using a bivariate Gaussian in a Macleod-Boyton like chromaticity diagram.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of chromatic adaptation using memory color matches, Part I: neutral illuminants

Kevin A. G. Smet, Qiyan Zhai, Ming R. Luo, and Peter Hanselaer
Opt. Express 25(7) 7732-7748 (2017)

Study of chromatic adaptation via neutral white matches on different viewing media

Qiyan Zhai and Ming R. Luo
Opt. Express 26(6) 7724-7739 (2018)

References

  • View by:
  • |
  • |
  • |

  1. CIE160–2004, A Review of Chromatic Adaptation Transforms (CIE, 2004).
  2. N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), pp. 23.
  3. I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
    [Crossref] [PubMed]
  4. D. B. Judd, “Hue saturation and lightness of surface colors with chromatic illumination,” J. Opt. Soc. Am. 30(1), 2–32 (1940).
    [Crossref]
  5. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “The study of chromatic adaptation using memory colors, Part I: neutral Illuminants,” Opt. Express, in press.
  6. K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
    [Crossref] [PubMed]
  7. A. G. Kevin, D. Geert, and H. Peter, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
    [Crossref] [PubMed]
  8. D. H. Foster, “Color constancy,” Vision Res. 51(7), 674–700 (2011).
    [Crossref] [PubMed]
  9. J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13), 6 (2008).
    [Crossref] [PubMed]
  10. M. D. Fairchild and L. Reniff, “Time course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
    [Crossref] [PubMed]
  11. P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
    [Crossref] [PubMed]
  12. P. E. Shrout and J. L. Fleiss, “Intraclass correlations: Uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
    [Crossref] [PubMed]
  13. M. D. Fairchild, Color Appearance Models, 2nd ed. (John Wiley & Sons, 2005).
  14. S. Süsstrunk, J. Holm, and G. D. Finlayson, “Chromatic adaptation performance of different RGB sensors,” in IS&T/SPIE Electronic Imaging 2001: Color Imaging, (San Jose, CA, 2001), pp. 172–183.
  15. K. M. Lam, “Metamerism and colour constancy. Ph.D. thesis,” (University of Bradford, 1985).
  16. C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
    [Crossref]
  17. S. Bianco and R. Schettini, “Two new von Kries based chromatic adaptation transforms found by numerical optimization,” Color Res. Appl. 35(3), 184–192 (2010).
    [Crossref]
  18. R. W. G. Hunt, “Revised colour-appearance model for related and unrelated colours,” Color Res. Appl. 16(3), 146–165 (1991).
    [Crossref]
  19. Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
    [Crossref]
  20. M. R. Luo and R. W. G. Hunt, “The structure of the CIE 1997 colour appearance model (CIECAM97s),” Color Res. Appl. 23(3), 138–146 (1998).
    [Crossref]
  21. L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in CIE 22nd Session (Melbourne, 1991), pp. 55–58.
  22. H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).
  23. M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
    [Crossref]
  24. W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
    [Crossref]
  25. E. J. Breneman, “Corresponding chromaticities for different states of adaptation to complex visual fields,” J. Opt. Soc. Am. A 4(6), 1115–1129 (1987).
    [Crossref] [PubMed]
  26. K. M. Braun and M. D. Fairchild, “Psychophysical generation of matching images for cross-media color production,” in IS&T and SID's 4th Color Imaging Conference: Color Science, Systems, and Applications, (IS&T, Springfield, Va, USA, 1996), pp. 214–220.
  27. J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theory - comparison between theoretical predictions and observer responses to color Mondrian experiments,” Vision Res. 16, 445 (1976).
  28. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
    [Crossref]
  29. K. A. G. Smet, Y. Lin, B. V. Nagy, Z. Németh, G. L. Duque-Chica, J. M. Quintero, H.-S. Chen, R. M. Luo, M. Safi, and P. Hanselaer, “Cross-cultural variation of memory colors of familiar objects,” Opt. Express 22(26), 32308–32328 (2014).
    [Crossref] [PubMed]
  30. M. Melgosa, P. A. García, L. Gómez-Robledo, R. Shamey, D. Hinks, G. Cui, and M. R. Luo, “Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments,” J. Opt. Soc. Am. A 28(5), 949–953 (2011).
    [Crossref] [PubMed]
  31. H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
    [Crossref]
  32. M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
    [Crossref]
  33. Y. Ohno and M. Fein, “Vision experiment on white light chromaticity for lighting,” in CIE/USA-CNC/CIE Biennial Joint Meeting (2013).
  34. H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19(6), 716–723 (1974).
    [Crossref]
  35. V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vision Res. 49(18), 2261–2272 (2009).
    [Crossref] [PubMed]
  36. B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
    [Crossref] [PubMed]
  37. L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3(10), 1743–1751 (1986).
    [Crossref] [PubMed]
  38. K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
    [Crossref] [PubMed]
  39. D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
    [Crossref] [PubMed]
  40. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1458), 1329–1346 (2005).
    [Crossref] [PubMed]
  41. V. Ekroll and F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25(2), 107–141 (2012).
    [Crossref] [PubMed]
  42. J. M. Bosten and J. D. Mollon, “Kirschmann’s fourth law,” Vision Res. 53(1), 40–46 (2012).
    [Crossref] [PubMed]
  43. V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: Evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (1)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

2012 (3)

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

V. Ekroll and F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25(2), 107–141 (2012).
[Crossref] [PubMed]

J. M. Bosten and J. D. Mollon, “Kirschmann’s fourth law,” Vision Res. 53(1), 40–46 (2012).
[Crossref] [PubMed]

2011 (3)

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: Evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

M. Melgosa, P. A. García, L. Gómez-Robledo, R. Shamey, D. Hinks, G. Cui, and M. R. Luo, “Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments,” J. Opt. Soc. Am. A 28(5), 949–953 (2011).
[Crossref] [PubMed]

D. H. Foster, “Color constancy,” Vision Res. 51(7), 674–700 (2011).
[Crossref] [PubMed]

2010 (1)

S. Bianco and R. Schettini, “Two new von Kries based chromatic adaptation transforms found by numerical optimization,” Color Res. Appl. 35(3), 184–192 (2010).
[Crossref]

2009 (1)

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vision Res. 49(18), 2261–2272 (2009).
[Crossref] [PubMed]

2008 (1)

J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13), 6 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

2005 (1)

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1458), 1329–1346 (2005).
[Crossref] [PubMed]

2002 (2)

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
[Crossref] [PubMed]

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

2001 (1)

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
[Crossref]

1998 (1)

M. R. Luo and R. W. G. Hunt, “The structure of the CIE 1997 colour appearance model (CIECAM97s),” Color Res. Appl. 23(3), 138–146 (1998).
[Crossref]

1995 (2)

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

M. D. Fairchild and L. Reniff, “Time course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
[Crossref] [PubMed]

1994 (1)

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
[Crossref] [PubMed]

1991 (2)

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

R. W. G. Hunt, “Revised colour-appearance model for related and unrelated colours,” Color Res. Appl. 16(3), 146–165 (1991).
[Crossref]

1987 (2)

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

E. J. Breneman, “Corresponding chromaticities for different states of adaptation to complex visual fields,” J. Opt. Soc. Am. A 4(6), 1115–1129 (1987).
[Crossref] [PubMed]

1986 (1)

1979 (1)

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: Uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
[Crossref] [PubMed]

1976 (1)

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theory - comparison between theoretical predictions and observer responses to color Mondrian experiments,” Vision Res. 16, 445 (1976).

1974 (1)

H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19(6), 716–723 (1974).
[Crossref]

1952 (1)

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

1940 (1)

Akaike, H.

H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19(6), 716–723 (1974).
[Crossref]

Arend, L.

Bez, H. E.

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

Bianco, S.

S. Bianco and R. Schettini, “Two new von Kries based chromatic adaptation transforms found by numerical optimization,” Color Res. Appl. 35(3), 184–192 (2010).
[Crossref]

Bosten, J. M.

J. M. Bosten and J. D. Mollon, “Kirschmann’s fourth law,” Vision Res. 53(1), 40–46 (2012).
[Crossref] [PubMed]

Breneman, E. J.

Chen, H.-S.

Clarke, A. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Crichton, S.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

Cui, G.

Deconinck, G.

Duque-Chica, G. L.

Ekroll, V.

V. Ekroll and F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25(2), 107–141 (2012).
[Crossref] [PubMed]

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: Evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vision Res. 49(18), 2261–2272 (2009).
[Crossref] [PubMed]

Fairchild, M. D.

M. D. Fairchild and L. Reniff, “Time course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
[Crossref] [PubMed]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), pp. 23.

Faul, F.

V. Ekroll and F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25(2), 107–141 (2012).
[Crossref] [PubMed]

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: Evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vision Res. 49(18), 2261–2272 (2009).
[Crossref] [PubMed]

Finlayson, G. D.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

Fleiss, J. L.

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: Uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
[Crossref] [PubMed]

Foster, D. H.

D. H. Foster, “Color constancy,” Vision Res. 51(7), 674–700 (2011).
[Crossref] [PubMed]

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
[Crossref] [PubMed]

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
[Crossref] [PubMed]

Freyssinier, J. P.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

García, P. A.

Geert, D.

Golz, J.

J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13), 6 (2008).
[Crossref] [PubMed]

Gómez-Robledo, L.

Hanselaer, P.

Hashimoto, K.

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

Helson, H.

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

Hinks, D.

Huertas, R.

Hunt, R. W. G.

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo and R. W. G. Hunt, “The structure of the CIE 1997 colour appearance model (CIECAM97s),” Color Res. Appl. 23(3), 138–146 (1998).
[Crossref]

R. W. G. Hunt, “Revised colour-appearance model for related and unrelated colours,” Color Res. Appl. 16(3), 146–165 (1991).
[Crossref]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), pp. 23.

Hurlbert, A.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

Judd, D. B.

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

D. B. Judd, “Hue saturation and lightness of surface colors with chromatic illumination,” J. Opt. Soc. Am. 30(1), 2–32 (1940).
[Crossref]

Kevin, A. G.

Kuo, W. G.

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

Kuriki, I.

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

Li, C.

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), pp. 23.

Lin, Y.

Linnell, K. J.

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
[Crossref] [PubMed]

Luo, M. R.

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

M. Melgosa, P. A. García, L. Gómez-Robledo, R. Shamey, D. Hinks, G. Cui, and M. R. Luo, “Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments,” J. Opt. Soc. Am. A 28(5), 949–953 (2011).
[Crossref] [PubMed]

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
[Crossref]

M. R. Luo and R. W. G. Hunt, “The structure of the CIE 1997 colour appearance model (CIECAM97s),” Color Res. Appl. 23(3), 138–146 (1998).
[Crossref]

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), pp. 23.

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “The study of chromatic adaptation using memory colors, Part I: neutral Illuminants,” Opt. Express, in press.

Luo, R. M.

Mackiewicz, M.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

McCann, J. J.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theory - comparison between theoretical predictions and observer responses to color Mondrian experiments,” Vision Res. 16, 445 (1976).

McKee, S. P.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theory - comparison between theoretical predictions and observer responses to color Mondrian experiments,” Vision Res. 16, 445 (1976).

Melgosa, M.

Mollon, J. D.

J. M. Bosten and J. D. Mollon, “Kirschmann’s fourth law,” Vision Res. 53(1), 40–46 (2012).
[Crossref] [PubMed]

Moroney, N.

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), pp. 23.

Nagy, B. V.

Nascimento, S. M. C.

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
[Crossref] [PubMed]

Nayatani, Y.

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

Németh, Z.

Newman, T.

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), pp. 23.

Pearce, B.

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

Peter, H.

Quintero, J. M.

Rea, M. S.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

Reeves, A.

Reniff, L.

Rhodes, P. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Rigg, B.

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
[Crossref]

Safi, M.

Schappo, A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Schettini, R.

S. Bianco and R. Schettini, “Two new von Kries based chromatic adaptation transforms found by numerical optimization,” Color Res. Appl. 35(3), 184–192 (2010).
[Crossref]

Scrivener, S. A. R.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Shamey, R.

Shrout, P. E.

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: Uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
[Crossref] [PubMed]

Smet, K. A. G.

Smithson, H. E.

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1458), 1329–1346 (2005).
[Crossref] [PubMed]

Sobagaki, H.

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

Tait, C. J.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

Takahama, K.

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

Taylor, T. H.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theory - comparison between theoretical predictions and observer responses to color Mondrian experiments,” Vision Res. 16, 445 (1976).

Wang, H.

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

Warren, M. H.

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

Wendt, G.

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: Evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

Xu, H.

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

Zhai, Q.

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “The study of chromatic adaptation using memory colors, Part I: neutral Illuminants,” Opt. Express, in press.

Color Res. Appl. (10)

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

S. Bianco and R. Schettini, “Two new von Kries based chromatic adaptation transforms found by numerical optimization,” Color Res. Appl. 35(3), 184–192 (2010).
[Crossref]

R. W. G. Hunt, “Revised colour-appearance model for related and unrelated colours,” Color Res. Appl. 16(3), 146–165 (1991).
[Crossref]

Y. Nayatani, K. Hashimoto, K. Takahama, and H. Sobagaki, “A nonlinear color-appearance model using Estévez-Hunt-Pointer primaries,” Color Res. Appl. 12(5), 231–242 (1987).
[Crossref]

M. R. Luo and R. W. G. Hunt, “The structure of the CIE 1997 colour appearance model (CIECAM97s),” Color Res. Appl. 23(3), 138–146 (1998).
[Crossref]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16(3), 166–180 (1991).
[Crossref]

W. G. Kuo, M. R. Luo, and H. E. Bez, “Various chromatic-adaptation transformations tested using new color appearance data in textiles,” Color Res. Appl. 20(5), 313–327 (1995).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(5), 340–350 (2001).
[Crossref]

H. Wang, G. Cui, M. R. Luo, and H. Xu, “Evaluation of colour-difference formulae for different colour-difference magnitudes,” Color Res. Appl. 37(5), 316–325 (2012).
[Crossref]

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

IEEE Trans. Automat. Contr. (1)

H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19(6), 716–723 (1974).
[Crossref]

J. Illum. Eng. (1)

H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” J. Illum. Eng. 47, 13 (1952).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

J. Vis. (1)

J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13), 6 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Perception (1)

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31(2), 151–159 (2002).
[Crossref] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1458), 1329–1346 (2005).
[Crossref] [PubMed]

PLoS One (1)

B. Pearce, S. Crichton, M. Mackiewicz, G. D. Finlayson, and A. Hurlbert, “Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations,” PLoS One 9(2), e87989 (2014).
[Crossref] [PubMed]

Proc. Biol. Sci. (1)

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. Biol. Sci. 257(1349), 115–121 (1994).
[Crossref] [PubMed]

Psychol. Bull. (1)

P. E. Shrout and J. L. Fleiss, “Intraclass correlations: Uses in assessing rater reliability,” Psychol. Bull. 86(2), 420–428 (1979).
[Crossref] [PubMed]

Seeing Perceiving (1)

V. Ekroll and F. Faul, “New laws of simultaneous contrast?” Seeing Perceiving 25(2), 107–141 (2012).
[Crossref] [PubMed]

Vision Res. (6)

J. M. Bosten and J. D. Mollon, “Kirschmann’s fourth law,” Vision Res. 53(1), 40–46 (2012).
[Crossref] [PubMed]

V. Ekroll, F. Faul, and G. Wendt, “The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: Evidence for a common mechanism,” Vision Res. 51(3), 311–322 (2011).
[Crossref] [PubMed]

D. H. Foster, “Color constancy,” Vision Res. 51(7), 674–700 (2011).
[Crossref] [PubMed]

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous colour contrast,” Vision Res. 49(18), 2261–2272 (2009).
[Crossref] [PubMed]

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theory - comparison between theoretical predictions and observer responses to color Mondrian experiments,” Vision Res. 16, 445 (1976).

Other (9)

K. M. Braun and M. D. Fairchild, “Psychophysical generation of matching images for cross-media color production,” in IS&T and SID's 4th Color Imaging Conference: Color Science, Systems, and Applications, (IS&T, Springfield, Va, USA, 1996), pp. 214–220.

Y. Ohno and M. Fein, “Vision experiment on white light chromaticity for lighting,” in CIE/USA-CNC/CIE Biennial Joint Meeting (2013).

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “The study of chromatic adaptation using memory colors, Part I: neutral Illuminants,” Opt. Express, in press.

CIE160–2004, A Review of Chromatic Adaptation Transforms (CIE, 2004).

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 color appearance model,” in IS&T/SID Tenth Color Imaging Conference (2002), pp. 23.

M. D. Fairchild, Color Appearance Models, 2nd ed. (John Wiley & Sons, 2005).

S. Süsstrunk, J. Holm, and G. D. Finlayson, “Chromatic adaptation performance of different RGB sensors,” in IS&T/SPIE Electronic Imaging 2001: Color Imaging, (San Jose, CA, 2001), pp. 172–183.

K. M. Lam, “Metamerism and colour constancy. Ph.D. thesis,” (University of Bradford, 1985).

L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in CIE 22nd Session (Melbourne, 1991), pp. 55–58.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 CIE 1976 u’v‘ chromaticity of the thirteen illumination conditions.
Fig. 2
Fig. 2 (a) Illustration of the background scene under magenta illumination with the cube in a green starting chromaticity (see experimental procedure). (b) Side view schematic of the experimental setup.
Fig. 3
Fig. 3 Prediction errors as a function of various sensor primary sets for each of the models investigated. Dots represent the minimum error prediction – sensor space combination for each of the models. Left: Results for the corresponding memory color sets. Right: Results for the sets from literature.
Fig. 4
Fig. 4 Median optimized degrees of adaptation for the thirteen illumination conditions in the memory color experiments (colored square data points) and the modelled degree of effective adaptation (mesh). The error bars of the optimized D values are also plotted.

Tables (4)

Tables Icon

Table 1 Prediction error in terms of DEu’v’, DE*ab and DE00 for the various tested models (with their native sensors) for the entire corresponding memory color data sets and several subsets.

Tables Icon

Table 2 Prediction error in terms of DEu’v’, DE*ab and DE00 for the various tested models (with their native sensors) for the 26 corresponding color data sets published in literature.

Tables Icon

Table 3 Summary details of several corresponding color data sets from literature.(Lw = luminance of a perfect white reflector; Yb: background luminance factor; Medium: R = reflective, T = transmissive, M = monitor; Sample size: S = small, L = large; Method: Hap. = halscopic matching, Mem. = memory matching, Mag. = magnitude estimation)

Tables Icon

Table 4 Prediction errors in terms of DEu’v’, DE*ab and DE00 for the von Kries models using the CAT02 sensor space for the corresponding memory color data sets and those from literature.

Metrics