Abstract

Bit error rate (BER) versus optical signal to noise ratio (OSNR) characteristics determines the transmission performance for coherent optical transponder. We have developed a model to predict BER versus OSNR at various receiver optical power (ROP). The model has three parameters, which are related to BER noise floor, filter mismatching, and OSNR value without noise loading. The model is applied to high baud rate and quadrature amplitude modulation (QAM) transponders. By considering the influence of baud rate on the fitting parameters, accurate prediction of performance for coherent transponder can be achieved over various baud rates. Novel applications enabled by this model include in-field measurement of BER versus OSNR, simple abstraction of coherent transponder, accurate OSNR monitor and coherent optical channel monitor.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transmitter skew tolerance and spectral efficiency tradeoff in high baud-rate QAM optical communication systems

Yang Yue, Qiang Wang, and Jon Anderson
Opt. Express 26(12) 15045-15058 (2018)

Demonstration of in-service wavelength division multiplexing optical-signal-to-noise ratio performance monitoring and operating guidelines for coherent data channels with different modulation formats and various baud rates

Mohammad Reza Chitgarha, Salman Khaleghi, Wajih Daab, Ahmed Almaiman, Morteza Ziyadi, Amirhossein Mohajerin-Ariaei, Devora Rogawski, Moshe Tur, Joseph D. Touch, Vijay Vusirikala, Wendy Zhao, and Alan E. Willner
Opt. Lett. 39(6) 1605-1608 (2014)

Modulation format identification and OSNR monitoring using density distributions in Stokes axes for digital coherent receivers

Anlin Yi, Lianshan Yan, Hengjiang Liu, Lin Jiang, Yan Pan, Bin Luo, and Wei Pan
Opt. Express 27(4) 4471-4479 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, S. Foo, M. Moyer, M. Hubbard, A. Sinclair, J. Gaudette, and C. Laperle, “High Capacity Transport 100G and Beyond,” J. Lightwave Technol. 33(3), 563–578 (2015).
    [Crossref]
  2. J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
    [Crossref]
  3. J. Cai, H. G. Batshon, M. Mazurczyk, H. Zhang, Y. Sun, O. V. Sinkin, D. Foursa, and A. N. Pilipetskii, “64QAM Based Coded Modulation Transmission over Transoceanic Distance with > 60 Tb/s Capacity,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.8.
  4. W. Peng, T. Tsuritani, and I. Morita, “Transmission of High-Baud PDM-64QAM Signals,” J. Lightwave Technol. 31(13), 2146–2162 (2013).
    [Crossref]
  5. P. Iovanna, F. Testa, R. Sabella, A. Bianchi, M. Puleri, M. R. Casanova, and A. Germoni, “Packet–Optical Integration Nodes for Next Generation Transport Networks,” J. Opt. Commun. Netw. 4(10), 821–835 (2012).
    [Crossref]
  6. Optical Internetworking Forum, “Implementation Agreement for CFP2- Analogue Coherent Optics Module,” http://www.oiforum.com/wp-content/uploads/OIF-CFP2-ACO-01.0.pdf
  7. M. Faruk and K. Kikuchi, “Monitoring of optical signal-to-noise ratio using statistical moments of adaptive-equalizer output in coherent optical receivers,” in 16th Opto-Electronics and Communications Conference (OECC), 233–234 (2011).
  8. D. Zhao, L. Xi, X. Tang, X. Zhang, Y. Qiao, and X. Zhang, “Periodic Training Sequence Aided In-Band OSNR Monitoring in Digital Coherent Receiver,” IEEE Photonics J. 6(4), 1–8 (2014).
    [Crossref]
  9. C. Rasmussen and M. Aydinlik, “Optical signal-to-noise ratio monitoring and measurement in optical communications systems,” US patent application 20150365165 (2015).
  10. Y. Yu and C. Yu, “Optical signal to noise ratio monitoring using variable phase difference phase portrait with software synchronization,” Opt. Express 23(9), 11284–11289 (2015).
    [Crossref] [PubMed]
  11. F. N. Khan, Y. Yu, M. C. Tan, W. H. Al-Arashi, C. Yu, A. P. Lau, and C. Lu, “Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling,” Opt. Express 23(23), 30337–30346 (2015).
    [Crossref] [PubMed]
  12. D. Gariépy, S. Searcy, G. He, and S. Tibuleac, “Non-intrusive OSNR measurement of polarization-multiplexed signals with spectral shaping and subject to fiber non-linearity with minimum channel spacing of 37.5GHz,” Opt. Express 24(18), 20156–20166 (2016).
    [Crossref] [PubMed]
  13. E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental Validation of an Analytical Model for Nonlinear Propagation in Uncompensated Optical Links,” Opt. Express 19(26), B790–B798 (2011).
    [Crossref] [PubMed]
  14. J. Wang and Z. Pan, “Generate Nyquist-WDM Signal Using a DAC With Zero-Order Holding at the Symbol Rate,” J. Lightwave Technol. 32(24), 4085–4091 (2014).
  15. X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. J. Winzer, “All-Electronic 100-GHz Bandwidth Digital-to-Analog Converter Generating PAM Signals up to 190 GBaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
    [Crossref]
  16. A. Lord, P. Wright, and A. Mitra, “Core Networks in the Flexgrid Era,” J. Lightwave Technol. 33(5), 1126–1135 (2015).
    [Crossref]
  17. M. Faruk and S. Savory, “Digital Signal Processing for Coherent Transceivers Employing Multilevel Formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
    [Crossref]
  18. Y. Zhu, A. Li, W. Peng, C. Kan, Z. Li, S. Chowdhury, Y. Cui, and Y. Bai, “Spectrally-Efficient Single-Carrier 400G Transmission Enabled by Probabilistic Shaping,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M3C.1.
    [Crossref]
  19. M. S. Faruk, Y. Mori, C. Zhang, K. Igarashi, and K. Kikuchi, “Multi-impairment monitoring from adaptive finite-impulse-response filters in a digital coherent receiver,” Opt. Express 18(26), 26929–26936 (2010).
    [Crossref] [PubMed]
  20. Q. Wang, M. Salsi, A. Vovan, and J. Anderson, “Accurate and Simple Method to Predict and Monitor Performance of Coherent Optical Transceiver,” in 2017Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), paper s1181.
    [Crossref]
  21. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN model of fiber non-linear propagation and its applications,” J. Lightwave Technol. 32(4), 694–721 (2014).
    [Crossref]
  22. A. J. Stark, Y. Hsueh, T. F. Detwiler, M. Filer, S. Tibuleac, and S. E. Ralph, “System Performance Prediction With the Gaussian Noise Model in 100G PDM-QPSK Coherent Optical Networks,” J. Lightwave Technol. 31(21), 3352–3360 (2013).
    [Crossref]
  23. “Sequential quadratic programming,” https://en.wikipedia.org/wiki/Sequential_quadratic_programming
  24. F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
    [Crossref]
  25. J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. 36(1), 103–113 (2018).
    [Crossref]
  26. T. Liu and I. B. Djordjevic, “On the optimum signal constellation design for high-speed optical transport networks,” Opt. Express 20(18), 20396–20406 (2012).
    [Crossref] [PubMed]
  27. D. S. Millar, T. Koike-Akino, S. Ö. Arık, K. Kojima, K. Parsons, T. Yoshida, and T. Sugihara, “High-dimensional modulation for coherent optical communications systems,” Opt. Express 22(7), 8798–8812 (2014).
    [Crossref] [PubMed]
  28. K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, Flexibility, and Network Optimization,” J. Opt. Commun. Netw. 9(4), C12–C24 (2017).
    [Crossref]

2018 (1)

2017 (3)

2016 (2)

2015 (5)

2014 (4)

2013 (2)

2012 (2)

2011 (1)

2010 (1)

Adamiecki, A.

Al-Arashi, W. H.

Arik, S. Ö.

Bianchi, A.

Bocherer, G.

Bosco, G.

Buchali, F.

Burrows, E.

Carena, A.

Casanova, M. R.

Chandrasekhar, S.

Chen, X.

Cheng, Q.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Cho, J.

Cigliutti, R.

Correa, D.

Corteselli, S.

Cunningham, D.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Curri, V.

Dar, R.

Detwiler, T. F.

Djordjevic, I. B.

Faruk, M.

M. Faruk and S. Savory, “Digital Signal Processing for Coherent Transceivers Employing Multilevel Formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
[Crossref]

M. Faruk and K. Kikuchi, “Monitoring of optical signal-to-noise ratio using statistical moments of adaptive-equalizer output in coherent optical receivers,” in 16th Opto-Electronics and Communications Conference (OECC), 233–234 (2011).

Faruk, M. S.

Filer, M.

Foo, S.

Forghieri, F.

Gareau, S.

Gariépy, D.

Gaudette, J.

Germoni, A.

Grubb, S.

He, G.

Hsueh, Y.

Hubbard, M.

Idler, W.

Igarashi, K.

Iovanna, P.

Jiang, Y.

Khan, F. N.

Kikuchi, K.

M. S. Faruk, Y. Mori, C. Zhang, K. Igarashi, and K. Kikuchi, “Multi-impairment monitoring from adaptive finite-impulse-response filters in a digital coherent receiver,” Opt. Express 18(26), 26929–26936 (2010).
[Crossref] [PubMed]

M. Faruk and K. Kikuchi, “Monitoring of optical signal-to-noise ratio using statistical moments of adaptive-equalizer output in coherent optical receivers,” in 16th Opto-Electronics and Communications Conference (OECC), 233–234 (2011).

Koike-Akino, T.

Kojima, K.

Laperle, C.

Lau, A. P.

Liu, T.

Lord, A.

Lu, C.

McKay, B.

Millar, D. S.

Mitra, A.

Monga, I.

Mori, Y.

Morita, I.

Moyer, M.

Nespola, A.

Pan, Y.

Pan, Z.

Parsons, K.

Peng, W.

Penty, R.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Poggiolini, P.

Puleri, M.

Pupalaikis, P.

Qiao, Y.

D. Zhao, L. Xi, X. Tang, X. Zhang, Y. Qiao, and X. Zhang, “Periodic Training Sequence Aided In-Band OSNR Monitoring in Digital Coherent Receiver,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Ralph, S. E.

Randel, S.

Raybon, G.

Roberts, K.

Sabella, R.

Savory, S.

Schmalen, L.

Schulte, P.

Searcy, S.

Sinclair, A.

Stark, A. J.

Steiner, F.

Sugihara, T.

Tan, M. C.

Tang, X.

D. Zhao, L. Xi, X. Tang, X. Zhang, Y. Qiao, and X. Zhang, “Periodic Training Sequence Aided In-Band OSNR Monitoring in Digital Coherent Receiver,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Testa, F.

Tibuleac, S.

Torrengo, E.

Tsuritani, T.

Wang, J.

Wei, J.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

White, I.

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Winzer, P.

Winzer, P. J.

Wright, P.

Xi, L.

D. Zhao, L. Xi, X. Tang, X. Zhang, Y. Qiao, and X. Zhang, “Periodic Training Sequence Aided In-Band OSNR Monitoring in Digital Coherent Receiver,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Yoshida, T.

Yu, C.

Yu, Y.

Zeolla, D.

Zhang, C.

Zhang, X.

D. Zhao, L. Xi, X. Tang, X. Zhang, Y. Qiao, and X. Zhang, “Periodic Training Sequence Aided In-Band OSNR Monitoring in Digital Coherent Receiver,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

D. Zhao, L. Xi, X. Tang, X. Zhang, Y. Qiao, and X. Zhang, “Periodic Training Sequence Aided In-Band OSNR Monitoring in Digital Coherent Receiver,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Zhao, D.

D. Zhao, L. Xi, X. Tang, X. Zhang, Y. Qiao, and X. Zhang, “Periodic Training Sequence Aided In-Band OSNR Monitoring in Digital Coherent Receiver,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Zhuge, Q.

Zsigmond, S.

IEEE Commun. Mag. (1)

J. Wei, Q. Cheng, R. Penty, I. White, and D. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

IEEE Photonics J. (1)

D. Zhao, L. Xi, X. Tang, X. Zhang, Y. Qiao, and X. Zhang, “Periodic Training Sequence Aided In-Band OSNR Monitoring in Digital Coherent Receiver,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

J. Lightwave Technol. (10)

W. Peng, T. Tsuritani, and I. Morita, “Transmission of High-Baud PDM-64QAM Signals,” J. Lightwave Technol. 31(13), 2146–2162 (2013).
[Crossref]

A. J. Stark, Y. Hsueh, T. F. Detwiler, M. Filer, S. Tibuleac, and S. E. Ralph, “System Performance Prediction With the Gaussian Noise Model in 100G PDM-QPSK Coherent Optical Networks,” J. Lightwave Technol. 31(21), 3352–3360 (2013).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN model of fiber non-linear propagation and its applications,” J. Lightwave Technol. 32(4), 694–721 (2014).
[Crossref]

J. Wang and Z. Pan, “Generate Nyquist-WDM Signal Using a DAC With Zero-Order Holding at the Symbol Rate,” J. Lightwave Technol. 32(24), 4085–4091 (2014).

K. Roberts, S. Foo, M. Moyer, M. Hubbard, A. Sinclair, J. Gaudette, and C. Laperle, “High Capacity Transport 100G and Beyond,” J. Lightwave Technol. 33(3), 563–578 (2015).
[Crossref]

A. Lord, P. Wright, and A. Mitra, “Core Networks in the Flexgrid Era,” J. Lightwave Technol. 33(5), 1126–1135 (2015).
[Crossref]

F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
[Crossref]

X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. J. Winzer, “All-Electronic 100-GHz Bandwidth Digital-to-Analog Converter Generating PAM Signals up to 190 GBaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
[Crossref]

M. Faruk and S. Savory, “Digital Signal Processing for Coherent Transceivers Employing Multilevel Formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
[Crossref]

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. 36(1), 103–113 (2018).
[Crossref]

J. Opt. Commun. Netw. (2)

Opt. Express (7)

D. Gariépy, S. Searcy, G. He, and S. Tibuleac, “Non-intrusive OSNR measurement of polarization-multiplexed signals with spectral shaping and subject to fiber non-linearity with minimum channel spacing of 37.5GHz,” Opt. Express 24(18), 20156–20166 (2016).
[Crossref] [PubMed]

M. S. Faruk, Y. Mori, C. Zhang, K. Igarashi, and K. Kikuchi, “Multi-impairment monitoring from adaptive finite-impulse-response filters in a digital coherent receiver,” Opt. Express 18(26), 26929–26936 (2010).
[Crossref] [PubMed]

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental Validation of an Analytical Model for Nonlinear Propagation in Uncompensated Optical Links,” Opt. Express 19(26), B790–B798 (2011).
[Crossref] [PubMed]

T. Liu and I. B. Djordjevic, “On the optimum signal constellation design for high-speed optical transport networks,” Opt. Express 20(18), 20396–20406 (2012).
[Crossref] [PubMed]

Y. Yu and C. Yu, “Optical signal to noise ratio monitoring using variable phase difference phase portrait with software synchronization,” Opt. Express 23(9), 11284–11289 (2015).
[Crossref] [PubMed]

F. N. Khan, Y. Yu, M. C. Tan, W. H. Al-Arashi, C. Yu, A. P. Lau, and C. Lu, “Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling,” Opt. Express 23(23), 30337–30346 (2015).
[Crossref] [PubMed]

D. S. Millar, T. Koike-Akino, S. Ö. Arık, K. Kojima, K. Parsons, T. Yoshida, and T. Sugihara, “High-dimensional modulation for coherent optical communications systems,” Opt. Express 22(7), 8798–8812 (2014).
[Crossref] [PubMed]

Other (7)

C. Rasmussen and M. Aydinlik, “Optical signal-to-noise ratio monitoring and measurement in optical communications systems,” US patent application 20150365165 (2015).

Y. Zhu, A. Li, W. Peng, C. Kan, Z. Li, S. Chowdhury, Y. Cui, and Y. Bai, “Spectrally-Efficient Single-Carrier 400G Transmission Enabled by Probabilistic Shaping,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper M3C.1.
[Crossref]

Q. Wang, M. Salsi, A. Vovan, and J. Anderson, “Accurate and Simple Method to Predict and Monitor Performance of Coherent Optical Transceiver,” in 2017Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), paper s1181.
[Crossref]

“Sequential quadratic programming,” https://en.wikipedia.org/wiki/Sequential_quadratic_programming

J. Cai, H. G. Batshon, M. Mazurczyk, H. Zhang, Y. Sun, O. V. Sinkin, D. Foursa, and A. N. Pilipetskii, “64QAM Based Coded Modulation Transmission over Transoceanic Distance with > 60 Tb/s Capacity,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.8.

Optical Internetworking Forum, “Implementation Agreement for CFP2- Analogue Coherent Optics Module,” http://www.oiforum.com/wp-content/uploads/OIF-CFP2-ACO-01.0.pdf

M. Faruk and K. Kikuchi, “Monitoring of optical signal-to-noise ratio using statistical moments of adaptive-equalizer output in coherent optical receivers,” in 16th Opto-Electronics and Communications Conference (OECC), 233–234 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Architecture for packet-optical integration. FEC: forward error correction; FIR: finite impulse response; DAC: digital to analog conversion; OSNR: optical signal to noise ratio; CD: chromatic dispersion; PMD: polarization modal dispersion; PDL: polarization dependent loss; ADC: analog to digital conversion; CPE: carrier phase estimation.
Fig. 2
Fig. 2 Experimental setup for BER vs. OSNR measurement.
Fig. 3
Fig. 3 Measurement vs. theory for BER vs. OSNR curves. Symbol: measurement; line: analytical results. Different [η, κ] are used to generate the analytical results.
Fig. 4
Fig. 4 (a): setup for BER vs. ROP measurement. PM: power meter, OC: optical coupler. (b): correlation between BER vs. OSNR and BER vs. ROP. OSNRini = 10*log10(ρ)
Fig. 5
Fig. 5 Prediction of BER vs. OSNR based on [ηSEN, κSEN, ρ], wrapped around different ROP value. Blue symbol: measurement results; red curve: analytical results.
Fig. 6
Fig. 6 Accuracy of OSNR monitoring based on pre-FEC BER value.
Fig. 7
Fig. 7 Variations of the fitting parameters, fitting error, BER noise floor and estimation error using average analytical parameters over wavelength.
Fig. 8
Fig. 8 BER vs. OSNR measurement and prediction. Symbol: measurement result; line: prediction result.
Fig. 9
Fig. 9 BER vs. ROP measurement. The dashed line indicates ROPth.
Fig. 10
Fig. 10 Correlation between BER vs. OSNR curves and BER vs. ROP curves for different baud rates. Rho: ρ. The amount of the shift applied to ROP curve is determined by Eq. (5).
Fig. 11
Fig. 11 Analytical model parameters vs. baud rate. (a) η vs. baud rate, (b) κ vs. baud rate, (c) Q2_ceiling vs. baud rate. Two sets of parameters and their linear fittings are shown. One is extracted from the BER vs. OSNR curves, the other one is extracted from the BER vs. ROP curves. As seen, two sets of parameters agree with each other.

Tables (1)

Tables Icon

Table 1 Fitting parameters used to predict BER vs. OSNR curves shown in Fig. 9

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

OSN R cal = 10^(OSN R dB /10)bw 2B , 1 SNR = 1 κ + 1 OSN R cal , BE R fit =erfc( η*SNR ) Minimize Er r rms = 1 N i=1 N ( BE R fit BE R measure BE R fit ) 2 to solve η and κ BE R floor (B)=erfc( ηκ )
RO P cal = 10^(RO P dB /10)bw 2B , 1 SNR = 1 κ SEN + 1 ρRO P cal , BE R fit =erfc( η SEN *SNR ) Minimize Er r rms = 1 N i=1 N ( BE R fit BE R measure BE R fit ) 2 to solve η SEN and κ SEN
OSN R cal = 10^(OSN R dB /10)bw 2B , RO P cal = 10^(RO P dB /10)bw 2B , 1 SNR = 1 κ SEN + 1 OSN R cal + 1 ρRO P cal , BE R pred =erfc( η SEN *SNR )
SNR= [ erf c 1 ( BE R measure ) ] 2 / η SEN 1 OSN R cal = 1 SNR 1 κ SEN 1 ρRO P cal OSN R estimate =10* log 10 ( 2B*OSN R cal /bw )
ρ( B )= ρ( B 0 )* B 0 /B
η SEN ( B )= α 0 *B+ β 0
BE R floor (B)=erfc( ηκ )
Q 2 ceiling SEN (B) α 1 *B+ β 1 , η SEN (B)= α 0 *B+ β 0 BE R floor SEN (B)=erfc( Q 2 ceiling SEN (B)/2 )=erfc( η SEN κ SEN ) κ SEN (B)= Q 2 ceiling SEN (B)/2/ η SEN (B)=( α 1 *B+ β 1 )/2/( α 0 *B+ β 0 )

Metrics