Abstract

Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier’s roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs

Lingcao Wang, Kui Li, Yuanpei Chen, Juncheng Liu, and Yanchun Xu
Opt. Express 25(25) 30956-30975 (2017)

Innovative self-calibration method for accelerometer scale factor of the missile-borne RINS with fiber optic gyro

Qian Zhang, Lei Wang, Zengjun Liu, and Yiming Zhang
Opt. Express 24(19) 21228-21243 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, K. Li, Y. Chen, J. Liu, and Y. Xu, “Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs,” Opt. Express 25(25), 30956–30975 (2017).
    [Crossref] [PubMed]
  2. Q. Zhang, L. Wang, Z. Liu, and Y. Zhang, “Innovative self-calibration method for accelerometer scale factor of the missile-borne RINS with fiber optic gyro,” Opt. Express 24(19), 21228–21243 (2016).
    [Crossref] [PubMed]
  3. Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sens. Actuators A Phys. 219, 24–31 (2014).
    [Crossref]
  4. W. Sun and Y. Gao, “Fiber-based rotary strapdown inertial navigation system,” Opt. Eng. 52(7), 076106 (2013).
    [Crossref]
  5. Q. Cai, G. Yang, N. Song, L. Wang, H. Yin, and Y. Liu, “Online calibration of the geographic-coordinate-equivalent gyro bias in dual-Axis RINS,” IEEE Trans. Instrum. Meas. PP(99), 1–8 (2018).
    [Crossref]
  6. J. K. Bekkeng, “Calibration of a novel MEMS inertial reference unit,” IEEE Trans. Instrum. Meas. 58(6), 1967–1974 (2009).
    [Crossref]
  7. Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Meas. Sci. Technol. 18(7), 1897–1907 (2007).
    [Crossref]
  8. Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sens. Actuators A Phys. 232, 39–48 (2015).
    [Crossref]
  9. B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
    [Crossref]
  10. L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
    [Crossref]
  11. Z. Liu, L. Wang, K. Li, and J. Sui, “An improved rotation scheme for dual-axis rotational inertial navigation system,” IEEE Sens. J. 17(13), 4189–4196 (2017).
    [Crossref]
  12. F. Liu, W. Wang, L. Wang, and P. Feng, “Error analyses and calibration methods with accelerometers for optical angle encoders in rotational inertial navigation systems,” Appl. Opt. 52(32), 7724–7731 (2013).
    [Crossref] [PubMed]
  13. Y. Xu, K. Li, G. Yang, and M. He, “Error modeling and compensation for rotation-modulation strapdown inertial navigation system,” Adv. Sci. Lett. 5(2), 981–985 (2012).
    [Crossref]
  14. A. M. Kurbatov and R. A. Kurbatov, “Temperature characteristics of fiber-optic gyroscope sensing coils,” J. Commun. Technol. Electron. 58(7), 745–752 (2013).
    [Crossref]
  15. Z. Li, Z. Meng, T. Liu, and X. S. Yao, “A novel method for determining and improving the quality of a quadrupolar fiber gyro coil under temperature variations,” Opt. Express 21(2), 2521–2530 (2013).
    [Crossref] [PubMed]
  16. D. Zhang, Y. Zhao, X. Shu, C. Liu, W. Fu, and W. Zhou, “Magnetic drift in single depolarizer interferometric fiber-optic gyroscopes induced by orthogonal magnetic field,” Opt. Eng. 52(5), 1–5 (2012).
  17. P. Hu, P. Xu, B. Chen, and Q. Wu, “A self-calibration method for the installation errors of rotation axes based on the asynchronous rotation of rotational inertial navigation systems,” IEEE Trans. Ind. Electron. 65(4), 3550–3558 (2018).
    [Crossref]
  18. P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for tri-axis rotational inertial navigation system,” Meas. Sci. Technol. 27(11), 115009 (2016).
    [Crossref]
  19. T. Song, K. Li, J. Sui, Z. Liu, and J. Liu, “Self-calibration method of the inner lever-arm parameters for a tri-axis RINS,” Meas. Sci. Technol. 28(11), 115105 (2017).
    [Crossref]
  20. P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for accelerometer nonlinearity errors in tri-axis rotational inertial navigation system,” IEEE Trans. Instrum. Meas. 66(2), 243–253 (2017).
  21. J. Shen, B. Xin, H. Cui, and W. Gao, “Control of single-axis rotation INS by tracking differentiator based fuzzy PID,” IEEE Trans. Aerosp. Electron. Syst. 53(6), 2976–2986 (2017).
    [Crossref]

2018 (2)

Q. Cai, G. Yang, N. Song, L. Wang, H. Yin, and Y. Liu, “Online calibration of the geographic-coordinate-equivalent gyro bias in dual-Axis RINS,” IEEE Trans. Instrum. Meas. PP(99), 1–8 (2018).
[Crossref]

P. Hu, P. Xu, B. Chen, and Q. Wu, “A self-calibration method for the installation errors of rotation axes based on the asynchronous rotation of rotational inertial navigation systems,” IEEE Trans. Ind. Electron. 65(4), 3550–3558 (2018).
[Crossref]

2017 (5)

T. Song, K. Li, J. Sui, Z. Liu, and J. Liu, “Self-calibration method of the inner lever-arm parameters for a tri-axis RINS,” Meas. Sci. Technol. 28(11), 115105 (2017).
[Crossref]

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for accelerometer nonlinearity errors in tri-axis rotational inertial navigation system,” IEEE Trans. Instrum. Meas. 66(2), 243–253 (2017).

J. Shen, B. Xin, H. Cui, and W. Gao, “Control of single-axis rotation INS by tracking differentiator based fuzzy PID,” IEEE Trans. Aerosp. Electron. Syst. 53(6), 2976–2986 (2017).
[Crossref]

Z. Liu, L. Wang, K. Li, and J. Sui, “An improved rotation scheme for dual-axis rotational inertial navigation system,” IEEE Sens. J. 17(13), 4189–4196 (2017).
[Crossref]

L. Wang, K. Li, Y. Chen, J. Liu, and Y. Xu, “Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs,” Opt. Express 25(25), 30956–30975 (2017).
[Crossref] [PubMed]

2016 (2)

Q. Zhang, L. Wang, Z. Liu, and Y. Zhang, “Innovative self-calibration method for accelerometer scale factor of the missile-borne RINS with fiber optic gyro,” Opt. Express 24(19), 21228–21243 (2016).
[Crossref] [PubMed]

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for tri-axis rotational inertial navigation system,” Meas. Sci. Technol. 27(11), 115009 (2016).
[Crossref]

2015 (1)

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sens. Actuators A Phys. 232, 39–48 (2015).
[Crossref]

2014 (2)

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sens. Actuators A Phys. 219, 24–31 (2014).
[Crossref]

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

2013 (4)

2012 (3)

D. Zhang, Y. Zhao, X. Shu, C. Liu, W. Fu, and W. Zhou, “Magnetic drift in single depolarizer interferometric fiber-optic gyroscopes induced by orthogonal magnetic field,” Opt. Eng. 52(5), 1–5 (2012).

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

Y. Xu, K. Li, G. Yang, and M. He, “Error modeling and compensation for rotation-modulation strapdown inertial navigation system,” Adv. Sci. Lett. 5(2), 981–985 (2012).
[Crossref]

2009 (1)

J. K. Bekkeng, “Calibration of a novel MEMS inertial reference unit,” IEEE Trans. Instrum. Meas. 58(6), 1967–1974 (2009).
[Crossref]

2007 (1)

Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Meas. Sci. Technol. 18(7), 1897–1907 (2007).
[Crossref]

Aggarwal, P.

Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Meas. Sci. Technol. 18(7), 1897–1907 (2007).
[Crossref]

Bekkeng, J. K.

J. K. Bekkeng, “Calibration of a novel MEMS inertial reference unit,” IEEE Trans. Instrum. Meas. 58(6), 1967–1974 (2009).
[Crossref]

Cai, Q.

Q. Cai, G. Yang, N. Song, L. Wang, H. Yin, and Y. Liu, “Online calibration of the geographic-coordinate-equivalent gyro bias in dual-Axis RINS,” IEEE Trans. Instrum. Meas. PP(99), 1–8 (2018).
[Crossref]

Chen, B.

P. Hu, P. Xu, B. Chen, and Q. Wu, “A self-calibration method for the installation errors of rotation axes based on the asynchronous rotation of rotational inertial navigation systems,” IEEE Trans. Ind. Electron. 65(4), 3550–3558 (2018).
[Crossref]

Chen, Y.

Cui, H.

J. Shen, B. Xin, H. Cui, and W. Gao, “Control of single-axis rotation INS by tracking differentiator based fuzzy PID,” IEEE Trans. Aerosp. Electron. Syst. 53(6), 2976–2986 (2017).
[Crossref]

Deng, Z.

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sens. Actuators A Phys. 219, 24–31 (2014).
[Crossref]

El-Sheimy, N.

Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Meas. Sci. Technol. 18(7), 1897–1907 (2007).
[Crossref]

Feng, P.

Fu, M.

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sens. Actuators A Phys. 219, 24–31 (2014).
[Crossref]

Fu, W.

D. Zhang, Y. Zhao, X. Shu, C. Liu, W. Fu, and W. Zhou, “Magnetic drift in single depolarizer interferometric fiber-optic gyroscopes induced by orthogonal magnetic field,” Opt. Eng. 52(5), 1–5 (2012).

Gao, P.

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for accelerometer nonlinearity errors in tri-axis rotational inertial navigation system,” IEEE Trans. Instrum. Meas. 66(2), 243–253 (2017).

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for tri-axis rotational inertial navigation system,” Meas. Sci. Technol. 27(11), 115009 (2016).
[Crossref]

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

Gao, W.

J. Shen, B. Xin, H. Cui, and W. Gao, “Control of single-axis rotation INS by tracking differentiator based fuzzy PID,” IEEE Trans. Aerosp. Electron. Syst. 53(6), 2976–2986 (2017).
[Crossref]

Gao, Y.

W. Sun and Y. Gao, “Fiber-based rotary strapdown inertial navigation system,” Opt. Eng. 52(7), 076106 (2013).
[Crossref]

Goodall, C.

Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Meas. Sci. Technol. 18(7), 1897–1907 (2007).
[Crossref]

Han, S.

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sens. Actuators A Phys. 232, 39–48 (2015).
[Crossref]

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

He, M.

Y. Xu, K. Li, G. Yang, and M. He, “Error modeling and compensation for rotation-modulation strapdown inertial navigation system,” Adv. Sci. Lett. 5(2), 981–985 (2012).
[Crossref]

Hu, P.

P. Hu, P. Xu, B. Chen, and Q. Wu, “A self-calibration method for the installation errors of rotation axes based on the asynchronous rotation of rotational inertial navigation systems,” IEEE Trans. Ind. Electron. 65(4), 3550–3558 (2018).
[Crossref]

Kurbatov, A. M.

A. M. Kurbatov and R. A. Kurbatov, “Temperature characteristics of fiber-optic gyroscope sensing coils,” J. Commun. Technol. Electron. 58(7), 745–752 (2013).
[Crossref]

Kurbatov, R. A.

A. M. Kurbatov and R. A. Kurbatov, “Temperature characteristics of fiber-optic gyroscope sensing coils,” J. Commun. Technol. Electron. 58(7), 745–752 (2013).
[Crossref]

Li, K.

Z. Liu, L. Wang, K. Li, and J. Sui, “An improved rotation scheme for dual-axis rotational inertial navigation system,” IEEE Sens. J. 17(13), 4189–4196 (2017).
[Crossref]

T. Song, K. Li, J. Sui, Z. Liu, and J. Liu, “Self-calibration method of the inner lever-arm parameters for a tri-axis RINS,” Meas. Sci. Technol. 28(11), 115105 (2017).
[Crossref]

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for accelerometer nonlinearity errors in tri-axis rotational inertial navigation system,” IEEE Trans. Instrum. Meas. 66(2), 243–253 (2017).

L. Wang, K. Li, Y. Chen, J. Liu, and Y. Xu, “Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs,” Opt. Express 25(25), 30956–30975 (2017).
[Crossref] [PubMed]

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for tri-axis rotational inertial navigation system,” Meas. Sci. Technol. 27(11), 115009 (2016).
[Crossref]

Y. Xu, K. Li, G. Yang, and M. He, “Error modeling and compensation for rotation-modulation strapdown inertial navigation system,” Adv. Sci. Lett. 5(2), 981–985 (2012).
[Crossref]

Li, Z.

Liao, D.

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

Liu, C.

D. Zhang, Y. Zhao, X. Shu, C. Liu, W. Fu, and W. Zhou, “Magnetic drift in single depolarizer interferometric fiber-optic gyroscopes induced by orthogonal magnetic field,” Opt. Eng. 52(5), 1–5 (2012).

Liu, F.

Liu, J.

T. Song, K. Li, J. Sui, Z. Liu, and J. Liu, “Self-calibration method of the inner lever-arm parameters for a tri-axis RINS,” Meas. Sci. Technol. 28(11), 115105 (2017).
[Crossref]

L. Wang, K. Li, Y. Chen, J. Liu, and Y. Xu, “Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs,” Opt. Express 25(25), 30956–30975 (2017).
[Crossref] [PubMed]

Liu, T.

Liu, Y.

Q. Cai, G. Yang, N. Song, L. Wang, H. Yin, and Y. Liu, “Online calibration of the geographic-coordinate-equivalent gyro bias in dual-Axis RINS,” IEEE Trans. Instrum. Meas. PP(99), 1–8 (2018).
[Crossref]

Liu, Z.

Z. Liu, L. Wang, K. Li, and J. Sui, “An improved rotation scheme for dual-axis rotational inertial navigation system,” IEEE Sens. J. 17(13), 4189–4196 (2017).
[Crossref]

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for accelerometer nonlinearity errors in tri-axis rotational inertial navigation system,” IEEE Trans. Instrum. Meas. 66(2), 243–253 (2017).

T. Song, K. Li, J. Sui, Z. Liu, and J. Liu, “Self-calibration method of the inner lever-arm parameters for a tri-axis RINS,” Meas. Sci. Technol. 28(11), 115105 (2017).
[Crossref]

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for tri-axis rotational inertial navigation system,” Meas. Sci. Technol. 27(11), 115009 (2016).
[Crossref]

Q. Zhang, L. Wang, Z. Liu, and Y. Zhang, “Innovative self-calibration method for accelerometer scale factor of the missile-borne RINS with fiber optic gyro,” Opt. Express 24(19), 21228–21243 (2016).
[Crossref] [PubMed]

Meng, Z.

Niu, X.

Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Meas. Sci. Technol. 18(7), 1897–1907 (2007).
[Crossref]

Ren, Q.

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sens. Actuators A Phys. 219, 24–31 (2014).
[Crossref]

Shen, J.

J. Shen, B. Xin, H. Cui, and W. Gao, “Control of single-axis rotation INS by tracking differentiator based fuzzy PID,” IEEE Trans. Aerosp. Electron. Syst. 53(6), 2976–2986 (2017).
[Crossref]

Shu, X.

D. Zhang, Y. Zhao, X. Shu, C. Liu, W. Fu, and W. Zhou, “Magnetic drift in single depolarizer interferometric fiber-optic gyroscopes induced by orthogonal magnetic field,” Opt. Eng. 52(5), 1–5 (2012).

Song, N.

Q. Cai, G. Yang, N. Song, L. Wang, H. Yin, and Y. Liu, “Online calibration of the geographic-coordinate-equivalent gyro bias in dual-Axis RINS,” IEEE Trans. Instrum. Meas. PP(99), 1–8 (2018).
[Crossref]

Song, T.

T. Song, K. Li, J. Sui, Z. Liu, and J. Liu, “Self-calibration method of the inner lever-arm parameters for a tri-axis RINS,” Meas. Sci. Technol. 28(11), 115105 (2017).
[Crossref]

Sui, J.

T. Song, K. Li, J. Sui, Z. Liu, and J. Liu, “Self-calibration method of the inner lever-arm parameters for a tri-axis RINS,” Meas. Sci. Technol. 28(11), 115105 (2017).
[Crossref]

Z. Liu, L. Wang, K. Li, and J. Sui, “An improved rotation scheme for dual-axis rotational inertial navigation system,” IEEE Sens. J. 17(13), 4189–4196 (2017).
[Crossref]

Sun, W.

W. Sun and Y. Gao, “Fiber-based rotary strapdown inertial navigation system,” Opt. Eng. 52(7), 076106 (2013).
[Crossref]

Syed, Z. F.

Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Meas. Sci. Technol. 18(7), 1897–1907 (2007).
[Crossref]

Wang, B.

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sens. Actuators A Phys. 219, 24–31 (2014).
[Crossref]

Wang, L.

Q. Cai, G. Yang, N. Song, L. Wang, H. Yin, and Y. Liu, “Online calibration of the geographic-coordinate-equivalent gyro bias in dual-Axis RINS,” IEEE Trans. Instrum. Meas. PP(99), 1–8 (2018).
[Crossref]

Z. Liu, L. Wang, K. Li, and J. Sui, “An improved rotation scheme for dual-axis rotational inertial navigation system,” IEEE Sens. J. 17(13), 4189–4196 (2017).
[Crossref]

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for accelerometer nonlinearity errors in tri-axis rotational inertial navigation system,” IEEE Trans. Instrum. Meas. 66(2), 243–253 (2017).

L. Wang, K. Li, Y. Chen, J. Liu, and Y. Xu, “Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs,” Opt. Express 25(25), 30956–30975 (2017).
[Crossref] [PubMed]

Q. Zhang, L. Wang, Z. Liu, and Y. Zhang, “Innovative self-calibration method for accelerometer scale factor of the missile-borne RINS with fiber optic gyro,” Opt. Express 24(19), 21228–21243 (2016).
[Crossref] [PubMed]

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for tri-axis rotational inertial navigation system,” Meas. Sci. Technol. 27(11), 115009 (2016).
[Crossref]

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

F. Liu, W. Wang, L. Wang, and P. Feng, “Error analyses and calibration methods with accelerometers for optical angle encoders in rotational inertial navigation systems,” Appl. Opt. 52(32), 7724–7731 (2013).
[Crossref] [PubMed]

Wang, W.

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

F. Liu, W. Wang, L. Wang, and P. Feng, “Error analyses and calibration methods with accelerometers for optical angle encoders in rotational inertial navigation systems,” Appl. Opt. 52(32), 7724–7731 (2013).
[Crossref] [PubMed]

Wu, Q.

P. Hu, P. Xu, B. Chen, and Q. Wu, “A self-calibration method for the installation errors of rotation axes based on the asynchronous rotation of rotational inertial navigation systems,” IEEE Trans. Ind. Electron. 65(4), 3550–3558 (2018).
[Crossref]

Xin, B.

J. Shen, B. Xin, H. Cui, and W. Gao, “Control of single-axis rotation INS by tracking differentiator based fuzzy PID,” IEEE Trans. Aerosp. Electron. Syst. 53(6), 2976–2986 (2017).
[Crossref]

Xu, P.

P. Hu, P. Xu, B. Chen, and Q. Wu, “A self-calibration method for the installation errors of rotation axes based on the asynchronous rotation of rotational inertial navigation systems,” IEEE Trans. Ind. Electron. 65(4), 3550–3558 (2018).
[Crossref]

Xu, Y.

L. Wang, K. Li, Y. Chen, J. Liu, and Y. Xu, “Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs,” Opt. Express 25(25), 30956–30975 (2017).
[Crossref] [PubMed]

Y. Xu, K. Li, G. Yang, and M. He, “Error modeling and compensation for rotation-modulation strapdown inertial navigation system,” Adv. Sci. Lett. 5(2), 981–985 (2012).
[Crossref]

Yang, G.

Q. Cai, G. Yang, N. Song, L. Wang, H. Yin, and Y. Liu, “Online calibration of the geographic-coordinate-equivalent gyro bias in dual-Axis RINS,” IEEE Trans. Instrum. Meas. PP(99), 1–8 (2018).
[Crossref]

Y. Xu, K. Li, G. Yang, and M. He, “Error modeling and compensation for rotation-modulation strapdown inertial navigation system,” Adv. Sci. Lett. 5(2), 981–985 (2012).
[Crossref]

Yao, X. S.

Yin, H.

Q. Cai, G. Yang, N. Song, L. Wang, H. Yin, and Y. Liu, “Online calibration of the geographic-coordinate-equivalent gyro bias in dual-Axis RINS,” IEEE Trans. Instrum. Meas. PP(99), 1–8 (2018).
[Crossref]

Yuan, B.

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

Zhang, D.

D. Zhang, Y. Zhao, X. Shu, C. Liu, W. Fu, and W. Zhou, “Magnetic drift in single depolarizer interferometric fiber-optic gyroscopes induced by orthogonal magnetic field,” Opt. Eng. 52(5), 1–5 (2012).

Zhang, Q.

Q. Zhang, L. Wang, Z. Liu, and Y. Zhang, “Innovative self-calibration method for accelerometer scale factor of the missile-borne RINS with fiber optic gyro,” Opt. Express 24(19), 21228–21243 (2016).
[Crossref] [PubMed]

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

Zhang, Y.

Zhao, Y.

D. Zhang, Y. Zhao, X. Shu, C. Liu, W. Fu, and W. Zhou, “Magnetic drift in single depolarizer interferometric fiber-optic gyroscopes induced by orthogonal magnetic field,” Opt. Eng. 52(5), 1–5 (2012).

Zheng, K.

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sens. Actuators A Phys. 232, 39–48 (2015).
[Crossref]

Zheng, Z.

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sens. Actuators A Phys. 232, 39–48 (2015).
[Crossref]

Zhou, W.

D. Zhang, Y. Zhao, X. Shu, C. Liu, W. Fu, and W. Zhou, “Magnetic drift in single depolarizer interferometric fiber-optic gyroscopes induced by orthogonal magnetic field,” Opt. Eng. 52(5), 1–5 (2012).

Adv. Sci. Lett. (1)

Y. Xu, K. Li, G. Yang, and M. He, “Error modeling and compensation for rotation-modulation strapdown inertial navigation system,” Adv. Sci. Lett. 5(2), 981–985 (2012).
[Crossref]

Appl. Opt. (1)

IEEE Sens. J. (1)

Z. Liu, L. Wang, K. Li, and J. Sui, “An improved rotation scheme for dual-axis rotational inertial navigation system,” IEEE Sens. J. 17(13), 4189–4196 (2017).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

J. Shen, B. Xin, H. Cui, and W. Gao, “Control of single-axis rotation INS by tracking differentiator based fuzzy PID,” IEEE Trans. Aerosp. Electron. Syst. 53(6), 2976–2986 (2017).
[Crossref]

IEEE Trans. Ind. Electron. (1)

P. Hu, P. Xu, B. Chen, and Q. Wu, “A self-calibration method for the installation errors of rotation axes based on the asynchronous rotation of rotational inertial navigation systems,” IEEE Trans. Ind. Electron. 65(4), 3550–3558 (2018).
[Crossref]

IEEE Trans. Instrum. Meas. (3)

Q. Cai, G. Yang, N. Song, L. Wang, H. Yin, and Y. Liu, “Online calibration of the geographic-coordinate-equivalent gyro bias in dual-Axis RINS,” IEEE Trans. Instrum. Meas. PP(99), 1–8 (2018).
[Crossref]

J. K. Bekkeng, “Calibration of a novel MEMS inertial reference unit,” IEEE Trans. Instrum. Meas. 58(6), 1967–1974 (2009).
[Crossref]

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for accelerometer nonlinearity errors in tri-axis rotational inertial navigation system,” IEEE Trans. Instrum. Meas. 66(2), 243–253 (2017).

J. Commun. Technol. Electron. (1)

A. M. Kurbatov and R. A. Kurbatov, “Temperature characteristics of fiber-optic gyroscope sensing coils,” J. Commun. Technol. Electron. 58(7), 745–752 (2013).
[Crossref]

Meas. Sci. Technol. (4)

P. Gao, K. Li, L. Wang, and Z. Liu, “A self-calibration method for tri-axis rotational inertial navigation system,” Meas. Sci. Technol. 27(11), 115009 (2016).
[Crossref]

T. Song, K. Li, J. Sui, Z. Liu, and J. Liu, “Self-calibration method of the inner lever-arm parameters for a tri-axis RINS,” Meas. Sci. Technol. 28(11), 115105 (2017).
[Crossref]

Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Meas. Sci. Technol. 18(7), 1897–1907 (2007).
[Crossref]

B. Yuan, D. Liao, and S. Han, “Error compensation of an optical gyro INS by multi-axis rotation,” Meas. Sci. Technol. 23(2), 025102 (2012).
[Crossref]

Opt. Eng. (3)

L. Wang, W. Wang, Q. Zhang, and P. Gao, “Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro,” Opt. Eng. 53(6), 064103 (2014).
[Crossref]

D. Zhang, Y. Zhao, X. Shu, C. Liu, W. Fu, and W. Zhou, “Magnetic drift in single depolarizer interferometric fiber-optic gyroscopes induced by orthogonal magnetic field,” Opt. Eng. 52(5), 1–5 (2012).

W. Sun and Y. Gao, “Fiber-based rotary strapdown inertial navigation system,” Opt. Eng. 52(7), 076106 (2013).
[Crossref]

Opt. Express (3)

Sens. Actuators A Phys. (2)

Q. Ren, B. Wang, Z. Deng, and M. Fu, “A multi-position self-calibration method for dual-axis rotational inertial navigation system,” Sens. Actuators A Phys. 219, 24–31 (2014).
[Crossref]

Z. Zheng, S. Han, and K. Zheng, “An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System,” Sens. Actuators A Phys. 232, 39–48 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 An aircraft in the turning motion. (a) Straight and level flight. (b) Medium banked turn. (c) Steep banked turn.
Fig. 2
Fig. 2 Configuration of dual-axis RINS.
Fig. 3
Fig. 3 Spatial relationship between p-coordinate and gyro sensitive axes.
Fig. 4
Fig. 4 Spatial relationship of dual-axis RINS when carrier turns under the traditional motor control method. (a) Straight and level flight. (b) Medium banked turn. (c) Steep banked turn.
Fig. 5
Fig. 5 Spatial relationship between b-coordinate and p-coordinate.
Fig. 6
Fig. 6 Improved rotation control method with measurements of FOG for dual-axis RINS.
Fig. 7
Fig. 7 Spatial relationship of dual-axis RINS when carrier turns under the improved motor control method. (a) Straight and level flight. (b) Medium banked turn. (c) Steep banked turn.
Fig. 8
Fig. 8 Experimental equipment.
Fig. 9
Fig. 9 Roll angle and outer encoder angle of dual-axis RINS in once roll motion. (a)Traditional motor control method. (b) Improved motor control method.
Fig. 10
Fig. 10 Velocity errors in turntable experiments. (a) Traditional motor control method. (b) Improved motor control method. (The labels of VE errors and VN errors represent the velocity errors in the eastern and northern directions respectively).
Fig. 11
Fig. 11 Position errors in turntable experiments. (a) Traditional motor control method. (b) Improved motor control method. (The labels of PE errors and PN errors represent the position errors in the eastern and northern directions respectively).

Tables (2)

Tables Icon

Table 1 Device specification of dual-axis RINS.

Tables Icon

Table 2 The platform declination angles caused by FOG errors at most under carrier’s roll motion.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

C g p =[ Δ K gx 0 β gx Y α gy Z Δ K gy β gy X δ gz Y δ gz X Δ K gz ]
C b p =[ cos φ z sin φ z 0 sin φ z cos φ z 0 0 0 1 ][ cos φ y 0 sin φ y 0 1 0 sin φ y 0 cos φ y ]
C a n = C p n C a p
C a p =[ cos φ z sin φ z 0 sin φ z cos φ z 0 0 0 1 ]
ω g =[ ω r sin φ z ω r cos φ z ω z ]
Δ ω n = C b n C p b ( C g p I) ω g =[ cos ω r t 0 sin ω r t 0 1 0 sin ω r t 0 cos ω r t ][ cos φ z sin φ z 0 sin φ z cos φ z 0 0 0 1 ][ Δ K gx 0 β gx Y α gy Z Δ K gy β gy X δ gz Y δ gz X Δ K gz ][ ω r sin φ z ω r cos φ z ω z ] =[ cos ω r tcos φ z cos ω r tsin φ z sin ω r t sin φ z cos φ z 0 sin ω r tcos φ z sin ω r tsin φ z cos ω r t ][ Δ K gx ω r sin φ z + β gx Y ω z α gy Z ω r sin φ z +Δ K gy ω r cos φ z β gy X ω z δ gz Y ω r sin φ z + δ gz X ω r cos φ z +Δ K gz ω z ] =[ Δ K gx ω r sin φ z cos φ z cos ω r t+ β gx Y ω z cos φ z cos ω r t+ α gy Z ω r sin φ z cos ω r tsin φ z +Δ K gy ω r cos φ z cos ω r tsin φ z β gy X ω z cos ω r tsin φ z δ gz Y ω r sin φ z sin ω r t+ δ gz X ω r cos φ z sin ω r t+Δ K gz ω z sin ω r t Δ K gx ω r sin φ z sin φ z β gx Y ω z sin φ z + α gy Z ω r sin φ z cos φ z +Δ K gy ω r cos φ z cos φ z β gy X ω z cos φ z Δ K gx ω r sin φ z sin ω r tcos φ z β gx Y ω z sin ω r tcos φ z α gy Z ω r sin φ z sin ω r tsin φ z Δ K gy ω r cos φ z sin ω r tsin φ z + β gy X ω z sin ω r tsin φ z δ gz Y ω r sin φ z cos ω r t+ δ gz X ω r cos φ z cos ω r t+Δ K gz ω z cos ω r t ]
Δ ω E = 1 2 Δ K gx ω r cos ω r tsin2 φ z + α gy Z ω r cos ω r t sin 2 φ z + 1 2 Δ K gy ω r cos ω r tsin2 φ z δ gz Y ω r sin ω r tsin φ z + δ gz X ω r sin ω r tcos φ z Δ ω N =Δ K gx ω r sin 2 φ z + 1 2 α gy Z ω r sin2 φ z +Δ K gy ω r cos 2 φ z
Δ ϕ E = 0 γ b / ω r Δ ω E dt = 1 2 Δ K gx sin2 φ z sin γ b + 1 2 Δ K gy sin2 φ z sin γ b + α gy Z sin 2 φ z sin γ b + δ gz Y sin φ z cos γ b δ gz X cos φ z cos γ b Δ ϕ N = 0 γ b / ω r Δ ω N dt = γ b Δ K gx sin 2 φ z + γ b Δ K gy cos 2 φ z + 1 2 γ b α gy Z sin2 φ z
ω np p = ω ip p ω in p = ω ip p C n p ( ω ie n + ω en n )
γ a = tan 1 ( C a n (3,1), C a n (3,3))
Δγ= γ Target γ a
U out = K p Δγ+ K i Δγdt + K d Δ γ ˙
Δψ= ψ Target ψ a + ψ r
ψ a = tan 1 ( C a n (1,2), C a n (2,2))
ψ r ={ 2π/ T r positive rotation 2π/ T r negative rotation

Metrics