Abstract

We present an 8x four-group zoom lens system for a compact camera without any moving groups by employing a focus tunable lens (FTL). We locate the FTLs at the second and fourth groups as a variator and a compensator. In the initial design stage, paraxial analysis for the zoom position was numerically determined by examining the solutions for various first group and third group powers, to achieve a physically meaningful and compact zoom system at a zoom ratio of 8x. The designed zoom lens has focal lengths of 4–31 mm and the apertures of F/3.5 to F/4.5 at wide and tele positions, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Four-group stabilized zoom lens design of two focal-length-variable elements

Qun Hao, Xuemin Cheng, and Ke Du
Opt. Express 21(6) 7758-7767 (2013)

Analysis of two-element zoom systems based on variable power lenses

Antonin Miks and Jiri Novak
Opt. Express 18(7) 6797-6810 (2010)

An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses

Ming-Syuan Chen, Po-Ju Chen, Michael Chen, and Yi-Hsin Lin
Opt. Express 22(10) 11427-11435 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component type,” Appl. Opt. 21(12), 2174–2183 (1982).
    [Crossref] [PubMed]
  2. W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill, 2004), Chap. 20.
  3. S. C. Park and J. Park, “Zoom lens design for a slim mobile camera using liquid lens,” J. Korean Phys. Soc. 54(6), 2274–2281 (2009).
    [Crossref]
  4. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  5. M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
    [Crossref]
  6. www.optotune.com
  7. H. Zappe and C. Duppe, Tunable Micro-Optics (Cambridge University, 2016), Chap. 5.
  8. S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
    [Crossref] [PubMed]
  9. D. Lee and S. C. Park, “Design of an 8x four-group inner-focus zoom system using a focus tunable lens,” J. Opt. Soc. Korea 20(2), 283–290 (2016).
    [Crossref]
  10. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1–3), 175–182 (2005).
    [Crossref]
  11. Q. Hao, X. Cheng, and K. Du, “Four-group stabilized zoom lens design of two focal-length-variable elements,” Opt. Express 21(6), 7758–7767 (2013).
    [Crossref] [PubMed]
  12. L. Li, D. Wang, C. Liu, and Q. H. Wang, “Ultrathin zoom telescopic objective,” Opt. Express 24(16), 18674–18684 (2016).
    [Crossref] [PubMed]
  13. A. Miks and J. Novak, “Paraxial analysis of zoom lens composed of three tunable-focus elements with fixed position of image-space focal point and object-image distance,” Opt. Express 22(22), 27056–27062 (2014).
    [Crossref] [PubMed]
  14. S. C. Park and R. R. Shannon, “Zoom lens design using lens module,” Opt. Eng. 35(6), 1668–1676 (1996).
    [Crossref]
  15. K. Tanaka, “Paraxial theory in optical design in terms of Gaussian brackets,” in Process in Optics XXIII, E. Wolf ed. (North-Holland, 1986), pp. 63–111.
  16. M. Herzberger, “Gaussian optics and Gaussian brackets,” J. Opt. Soc. Am. 33(12), 651–652 (1943).
    [Crossref]
  17. W. T. Welford, Aberrations of optical systems (CRC, 1986), pp. 35–40.
  18. R. Ditteon, Modern Geometrical Optics (John Wiley & Sons, 1998), Chap. 4.

2016 (2)

2014 (1)

2013 (2)

2011 (1)

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

2009 (1)

S. C. Park and J. Park, “Zoom lens design for a slim mobile camera using liquid lens,” J. Korean Phys. Soc. 54(6), 2274–2281 (2009).
[Crossref]

2005 (1)

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1–3), 175–182 (2005).
[Crossref]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

1996 (1)

S. C. Park and R. R. Shannon, “Zoom lens design using lens module,” Opt. Eng. 35(6), 1668–1676 (1996).
[Crossref]

1982 (1)

1943 (1)

Aschwanden, M.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Blum, M.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Büeler, M.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Chang, J. H.

Cheng, X.

Choi, M.

Du, K.

Grätzel, C.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Hao, Q.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Herzberger, M.

Jung, K. D.

Justis, N.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1–3), 175–182 (2005).
[Crossref]

Kim, W.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Lee, D.

Lee, E.

Lee, S.

Li, L.

Liu, C.

Lo, Y. H.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1–3), 175–182 (2005).
[Crossref]

Miks, A.

Novak, J.

Park, J.

S. C. Park and J. Park, “Zoom lens design for a slim mobile camera using liquid lens,” J. Korean Phys. Soc. 54(6), 2274–2281 (2009).
[Crossref]

Park, S. C.

D. Lee and S. C. Park, “Design of an 8x four-group inner-focus zoom system using a focus tunable lens,” J. Opt. Soc. Korea 20(2), 283–290 (2016).
[Crossref]

S. C. Park and J. Park, “Zoom lens design for a slim mobile camera using liquid lens,” J. Korean Phys. Soc. 54(6), 2274–2281 (2009).
[Crossref]

S. C. Park and R. R. Shannon, “Zoom lens design using lens module,” Opt. Eng. 35(6), 1668–1676 (1996).
[Crossref]

Shannon, R. R.

S. C. Park and R. R. Shannon, “Zoom lens design using lens module,” Opt. Eng. 35(6), 1668–1676 (1996).
[Crossref]

Tanaka, K.

Wang, D.

Wang, Q. H.

Zhang, D. Y.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1–3), 175–182 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

J. Korean Phys. Soc. (1)

S. C. Park and J. Park, “Zoom lens design for a slim mobile camera using liquid lens,” J. Korean Phys. Soc. 54(6), 2274–2281 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Korea (1)

Opt. Commun. (1)

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1–3), 175–182 (2005).
[Crossref]

Opt. Eng. (1)

S. C. Park and R. R. Shannon, “Zoom lens design using lens module,” Opt. Eng. 35(6), 1668–1676 (1996).
[Crossref]

Opt. Express (4)

Proc. SPIE (1)

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Other (6)

www.optotune.com

H. Zappe and C. Duppe, Tunable Micro-Optics (Cambridge University, 2016), Chap. 5.

W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill, 2004), Chap. 20.

K. Tanaka, “Paraxial theory in optical design in terms of Gaussian brackets,” in Process in Optics XXIII, E. Wolf ed. (North-Holland, 1986), pp. 63–111.

W. T. Welford, Aberrations of optical systems (CRC, 1986), pp. 35–40.

R. Ditteon, Modern Geometrical Optics (John Wiley & Sons, 1998), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Layout of the four-group zoom system without moving groups by employing FTLs.
Fig. 2
Fig. 2 Cardinal points of a single lens.
Fig. 3
Fig. 3 Edge thickness (e) and sags of a single lens.
Fig. 4
Fig. 4 Shape-changing tunable lens and thickness variation by its curvature change.
Fig. 5
Fig. 5 Distances between the adjacent principal points of an 8x four-group zoom system with the first group’s focal length f 1 at four focal lengths of f 3 .
Fig. 6
Fig. 6 An 8x four-group lens module zoom system with variator and compensator having variable powers.
Fig. 7
Fig. 7 8x initial real lens zoom system with a fixed variator and a compensator using FTLs.
Fig. 8
Fig. 8 Layout of a final 8x four-group zoom system with FTLs at the second and fourth groups. (DST: Distortion, AOI: Angle of incidence, RI: Relative illumination).
Fig. 9
Fig. 9 Variations of the sag of both FTLs at the second and fourth groups with zoom position.
Fig. 10
Fig. 10 Lateral color aberrations of a final 8x four-group zoom system with zoom position.
Fig. 11
Fig. 11 MTF characteristics of a final 8x four-group zoom system at both extreme positions.

Tables (2)

Tables Icon

Table 1 Solutions of an 8x four-group zoom system at four focal lengths of f 3 (in mm)

Tables Icon

Table 2 Specific data for the groups and distances between groups in the lens module zoom system (in mm)

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

h iw =[ k 1 , z 1w , k 2w , z 2w , k 3 , z 3w , k 4w , z 4w ]=0,
K w =[ k 1 , z 1w , k 2w , z 2w , k 3 , z 3w , k 4w ],
h it =[ k 1 , z 1t , k 2t , z 2t , k 3 , z 3t , k 4t , z 4t ]=0,
K t =[ k 1 , z 1t , k 2t , z 2t , k 3 , z 3t , k 4t ],
z 1t = z 1w +Δ z 1 ,
z 2t = z 2w +Δ z 2 ,
z 3t = z 3w +Δ z 3 ,
z 4t = z 4w +Δ z 4 .
h iw =[ k 1 , z 1w , k 2w , z 2w , k 3 , z 3w , k 4w , z 4w ]=0,
K w =[ k 1 , z 1w , k 2w , z 2w , k 3 , z 3w , k 4w ],
h it =[ k 1 ,( z 1w +Δ z 1 ), k 2t ,( z 2w +Δ z 2 ), k 3 ,( z 3w +Δ z 3 ), k 4t ,( z 4w +Δ z 4 )]=0,
K t =[ k 1 ,( z 1w +Δ z 1 ), k 2t ,( z 2w +Δ z 2 ), k 3 ,( z 3w +Δ z 3 ), k 4t ].
H A 1 ¯ = d k 2 n( k 1 + k 2 )d k 1 k 2 ,
H A 2 ¯ = d k 1 n( k 1 + k 2 )d k 1 k 2 ,
S 1 =R R 2 h 2 (R>0),
S 2 =R+ R 2 h 2 (R<0).
A 1 H 2w ¯ = A 1 A 2w ¯ d 2w k 22 n 2 ( k 21w + k 22 ) d 2w k 21w k 22 = A 1 A 2w ¯ ,
H 2w A 3 ¯ = d 2w k 21w n 2 ( k 21w + k 22 ) d 2w k 21w k 22 = d 2w n 2 ,
A 1 H 2t ¯ = H 2t A 2t ¯ = d 2t k 22 n 2 ( k 21t + k 22 ) d 2t k 21t k 22 =0,
H 2t A 3 ¯ = d 2t k 21t n 2 ( k 21t + k 22 ) d 2t k 21t k 22 = d 2t n 2 ,
A 4 H 4w ¯ = H 4w A 5w ¯ = d 4w k 42 n 4 ( k 41w + k 42 ) d 4w k 41w k 42 =0,
H 4w A 6 ¯ = d 4w k 41w n 4 ( k 41w + k 42 ) d 4w k 41w k 42 = d 4w n 4 ,
A 4 H 4t ¯ = A 4 A 5t ¯ d 4t k 42 n 4 ( k 41t + k 42 ) d 4t k 41t k 42 = A 4 A 5t ¯ ,
H 4t A 6 ¯ = d 4t k 41t n 4 ( k 41t + k 42 ) d 4t k 41t k 42 = d 4t n 4 ,
Δ z 1 = A 1 H 2t ¯ A 1 H 2w ¯ ,
Δ z 2 = H 2t A 3 ¯ H 2w A 3 ¯ ,
Δ z 3 = A 4 H 4t ¯ A 4 H 4w ¯ ,
Δ z 4 = H 4t A 6 ¯ H 4w A 6 ¯ .
Δ z 1 =2mm,Δ z 2 =1.45mm,Δ z 3 =2mm,Δ z 4 =1.41mm.
k 2w =0.0447m m 1 , k 2t =0.0447m m 1 , k 4w =0.0840m m 1 , k 4t =0.0840m m 1 .
z 1w =0.32mm, z 2w =18.28mm, z 3w =8.55mm, z 4w =8.71mm, z 1t =1.68mm, z 2t =19.73mm, z 3t =6.55mm, z 4t =7.30mm, f 1 =88.89mm, f 2w =22.37mm, f 2t =22.37mm, f 3 =16mm, f 4w =11.91mm, f 4t =11.91mm, K w =0.25m m 1 , K t =0.03125m m 1 .

Metrics