Abstract

We present a simple to process tunable laser, fabricated in a low-cost generic fabrication process and based on two coupled Fabry-Perot cavities. The complex coupling coefficients of the coupling element are analytically derived from a 3×3 MMI using coupled mode theory and chosen to maximize the SMSR during lasing operation. Additionally, one of the cavities contains a reflective interferometer, which acts as coarse wavelength selector. This interferometer is derived from a Michelson Interferometer, by replacing the two independent mirrors with our optimized coupling element, leading to a doubled Free Spectral Range. As a result, we obtained a tuning range of 26 nm with potential for beyond 40 nm, a SMSR larger than 40 dB and fiber coupled power up to 9 dBm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
1 × 8 MMI based multi-channel interference laser integrated with SOA through a 2-port multimode interference reflector

Quanan Chen, Chun Jiang, Xiang Ma, Ye Liu, Dongtang Yang, Qiaoyin Lu, and Weihua Guo
Opt. Express 26(16) 19940-19949 (2018)

Coupled cavity laser based on anti-resonant imaging via multimode interference

D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit
Opt. Lett. 40(4) 653-656 (2015)

Widely tunable erbium-doped fiber laser based on multimode interference effect

A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa
Opt. Express 18(2) 591-597 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
    [Crossref]
  2. A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
    [Crossref]
  3. J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, “Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection,” in IEEE 18th International Semiconductor Laser Conference, (IEEE, 2002), pp. 99–100.
    [Crossref]
  4. B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
    [Crossref]
  5. M. Heck, L. Augustin, B. Smallbrugge, and M. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21(13), 905–907 (2009).
    [Crossref]
  6. B. Tilma, Y. Jiao, Smit, and Bente, “Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 um Wavelength Region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
    [Crossref]
  7. K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2
  8. P. Kuindersma, X. Leijtens, J. van Zantvoort, and H. de Waardt, “Widely tunable laser with Dual Ring Resonator and Delayed Interferometer pairs, realized in generic InP technology,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1G.1.
  9. E. Bente, S. Latkowski, T. D. Vries, and M. Smit, “Widely Tunable Monolithically Integrated Lasers Using Intracavity Mach-Zehnder Interferometers,” in 16th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2014), p. Mo.D2.4.
    [Crossref]
  10. H. Cai, B. Liu, X. M. Zhang, A. Q. Liu, J. Tamil, T. Bourouina, and Q. X. Zhang, “A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity,” Opt. Express 16(21), 16670–16679 (2008).
    [Crossref] [PubMed]
  11. F. Khan and D. Cassidy, “Widely tunable coupled-cavity semiconductor laser,” Appl. Opt. 48(19), 3809–3817 (2009).
    [Crossref] [PubMed]
  12. L. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315 (1981).
    [Crossref]
  13. R. Lang, A. Yariv, and J. Salzman, “Laterally Coupled-Cavity Semiconductor Lasers,” IEEE J. Quantum Electron. 23(4), 395–400 (1987).
    [Crossref]
  14. S. Arafin, G. B. Morrison, M. L. Mashanovitch, L. A. Johansson, and L. A. Coldren, “Compact Low-Power Consumption Single-Mode Coupled Cavity Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
    [Crossref]
  15. J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16(6), 3896 (2008).
    [Crossref] [PubMed]
  16. J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with 40 dB side-mode suppression ratio,” Opt. letters 36(21), 4230–4232 (2011).
    [Crossref]
  17. L. Wu, Z. Hu, X. Liao, and J.-J. He, “Half-Wave Coupled Ring-FP Laser with 50-Channel 100GHz-Spaced Wavelength Tuning,” IEEE Photonics J. 6(4), 1501408 (2014).
  18. L. Wu, Y. Wang, T. Yu, L. Wang, and J. J. He, “Wavelength switchable semiconductor laser based on half-wave coupled Fabry-Perot and rectangular ring resonators,” IEEE Photonics Technol. Lett. 24(12), 991–993 (2012).
    [Crossref]
  19. L. Wu, Z. Hu, J.-j. Meng, and J.-j. He, “Widely Tunable Semiconductor Laser Based on Double Half-Wave-Coupled Rectangular Ring Resonators,” in Asia Communications and Photonics Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper AF1B.2
    [Crossref]
  20. P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
    [Crossref]
  21. D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40(5), 653–656 (2015).
    [Crossref]
  22. W. Yao, G. Gilardi, D. D’Agostino, M. K. Smit, and M. J. Wale, “Monolithic Tunable Coupled-Cavity WDM Transmitter in a Generic Foundry Platform,” IEEE Photonics Technol. Lett. 29(6), 496–499 (2017).
    [Crossref]
  23. O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
    [Crossref]
  24. W. Streifer, D. Yevick, T. Paoli, and R. Burnham, “An analysis of cleaved coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 754–764 (1984).
    [Crossref]
  25. C. Henry and R. Kazarinov, “Stabilization of single frequency operation of coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 733–744 (1984).
    [Crossref]
  26. L. Coldren and T. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
    [Crossref]
  27. D. Lenstra, “Self-consistent rate-equation theory of coupling in mutually injected semiconductor lasers,” Proc. SPIE 10098, 100980K (2017).
    [Crossref]
  28. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
    [Crossref]
  29. D. Lenstra, “Rate-equation analysis for an integrated coupled-cavity laser with multi-mode interference anti-phase coupler,” in International Semiconductor Laser Conference (ISLC), (IEEE, 2016), pp. 1–2.
  30. E. Kleijn, M. Smit, and X. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Light. Technol. 31(18), 3055–3063 (2013).
    [Crossref]
  31. T. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Light. Technol. 8(3), 274–293 (1990).
    [Crossref]
  32. R. Boeck, N. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010).
    [Crossref] [PubMed]

2017 (3)

S. Arafin, G. B. Morrison, M. L. Mashanovitch, L. A. Johansson, and L. A. Coldren, “Compact Low-Power Consumption Single-Mode Coupled Cavity Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

W. Yao, G. Gilardi, D. D’Agostino, M. K. Smit, and M. J. Wale, “Monolithic Tunable Coupled-Cavity WDM Transmitter in a Generic Foundry Platform,” IEEE Photonics Technol. Lett. 29(6), 496–499 (2017).
[Crossref]

D. Lenstra, “Self-consistent rate-equation theory of coupling in mutually injected semiconductor lasers,” Proc. SPIE 10098, 100980K (2017).
[Crossref]

2016 (1)

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

2015 (1)

2014 (2)

L. Wu, Z. Hu, X. Liao, and J.-J. He, “Half-Wave Coupled Ring-FP Laser with 50-Channel 100GHz-Spaced Wavelength Tuning,” IEEE Photonics J. 6(4), 1501408 (2014).

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

2013 (1)

E. Kleijn, M. Smit, and X. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Light. Technol. 31(18), 3055–3063 (2013).
[Crossref]

2012 (2)

B. Tilma, Y. Jiao, Smit, and Bente, “Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 um Wavelength Region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[Crossref]

L. Wu, Y. Wang, T. Yu, L. Wang, and J. J. He, “Wavelength switchable semiconductor laser based on half-wave coupled Fabry-Perot and rectangular ring resonators,” IEEE Photonics Technol. Lett. 24(12), 991–993 (2012).
[Crossref]

2011 (1)

J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with 40 dB side-mode suppression ratio,” Opt. letters 36(21), 4230–4232 (2011).
[Crossref]

2010 (1)

2009 (2)

F. Khan and D. Cassidy, “Widely tunable coupled-cavity semiconductor laser,” Appl. Opt. 48(19), 3809–3817 (2009).
[Crossref] [PubMed]

M. Heck, L. Augustin, B. Smallbrugge, and M. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21(13), 905–907 (2009).
[Crossref]

2008 (2)

2005 (1)

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

2003 (1)

O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

2002 (1)

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

1995 (1)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

1990 (1)

T. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Light. Technol. 8(3), 274–293 (1990).
[Crossref]

1987 (1)

R. Lang, A. Yariv, and J. Salzman, “Laterally Coupled-Cavity Semiconductor Lasers,” IEEE J. Quantum Electron. 23(4), 395–400 (1987).
[Crossref]

1984 (3)

W. Streifer, D. Yevick, T. Paoli, and R. Burnham, “An analysis of cleaved coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 754–764 (1984).
[Crossref]

C. Henry and R. Kazarinov, “Stabilization of single frequency operation of coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 733–744 (1984).
[Crossref]

L. Coldren and T. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

1981 (1)

L. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315 (1981).
[Crossref]

Achouche, M.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Agrawal, V.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Ambrosius, H. P. M. M.

D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40(5), 653–656 (2015).
[Crossref]

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Arafin, S.

S. Arafin, G. B. Morrison, M. L. Mashanovitch, L. A. Johansson, and L. A. Coldren, “Compact Low-Power Consumption Single-Mode Coupled Cavity Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Augustin, L.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

M. Heck, L. Augustin, B. Smallbrugge, and M. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21(13), 905–907 (2009).
[Crossref]

Bakker, A.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Barton, E.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Bente,

B. Tilma, Y. Jiao, Smit, and Bente, “Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 um Wavelength Region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[Crossref]

Bente, E.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

E. Bente, S. Latkowski, T. D. Vries, and M. Smit, “Widely Tunable Monolithically Integrated Lasers Using Intracavity Mach-Zehnder Interferometers,” in 16th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2014), p. Mo.D2.4.
[Crossref]

Bhat, S.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Bitincka, E.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Boeck, R.

Bolk, J.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Bourouina, T.

Broeke, R.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Burnham, R.

W. Streifer, D. Yevick, T. Paoli, and R. Burnham, “An analysis of cleaved coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 754–764 (1984).
[Crossref]

Busico, G.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Buus, J.

J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, “Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection,” in IEEE 18th International Semiconductor Laser Conference, (IEEE, 2002), pp. 99–100.
[Crossref]

Cai, H.

Caro, L.

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Carter, A.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Cassidy, D.

Chipman, C.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Chrostowski, L.

Coldren, L.

L. Coldren and T. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

L. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315 (1981).
[Crossref]

Coldren, L. A.

S. Arafin, G. B. Morrison, M. L. Mashanovitch, L. A. Johansson, and L. A. Coldren, “Compact Low-Power Consumption Single-Mode Coupled Cavity Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Corradi, A.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

D’Agostino, D.

W. Yao, G. Gilardi, D. D’Agostino, M. K. Smit, and M. J. Wale, “Monolithic Tunable Coupled-Cavity WDM Transmitter in a Generic Foundry Platform,” IEEE Photonics Technol. Lett. 29(6), 496–499 (2017).
[Crossref]

D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40(5), 653–656 (2015).
[Crossref]

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Dabbs, A.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

de Vries, H.

J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, “Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection,” in IEEE 18th International Semiconductor Laser Conference, (IEEE, 2002), pp. 99–100.
[Crossref]

de Vries, T.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

de Waardt, H.

P. Kuindersma, X. Leijtens, J. van Zantvoort, and H. de Waardt, “Widely tunable laser with Dual Ring Resonator and Delayed Interferometer pairs, realized in generic InP technology,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1G.1.

Debregeas, H.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Dernaika, M.

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Duck, J.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Dzibrou, D.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Emanuel, M.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Epp, P.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Faraji, B.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Felicetti, M.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Firth, P.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Frigyes, I.

O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

Gallagher, D.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Geluk, E. J.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Gentner, J. L.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Gilardi, G.

W. Yao, G. Gilardi, D. D’Agostino, M. K. Smit, and M. J. Wale, “Monolithic Tunable Coupled-Cavity WDM Transmitter in a Generic Foundry Platform,” IEEE Photonics Technol. Lett. 29(6), 496–499 (2017).
[Crossref]

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Grote, N.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Hammerfeldt, S.

J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, “Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection,” in IEEE 18th International Semiconductor Laser Conference, (IEEE, 2002), pp. 99–100.
[Crossref]

He, J. J.

L. Wu, Y. Wang, T. Yu, L. Wang, and J. J. He, “Wavelength switchable semiconductor laser based on half-wave coupled Fabry-Perot and rectangular ring resonators,” IEEE Photonics Technol. Lett. 24(12), 991–993 (2012).
[Crossref]

He, J.-J.

L. Wu, Z. Hu, X. Liao, and J.-J. He, “Half-Wave Coupled Ring-FP Laser with 50-Channel 100GHz-Spaced Wavelength Tuning,” IEEE Photonics J. 6(4), 1501408 (2014).

J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with 40 dB side-mode suppression ratio,” Opt. letters 36(21), 4230–4232 (2011).
[Crossref]

J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16(6), 3896 (2008).
[Crossref] [PubMed]

L. Wu, Z. Hu, J.-j. Meng, and J.-j. He, “Widely Tunable Semiconductor Laser Based on Double Half-Wave-Coupled Rectangular Ring Resonators,” in Asia Communications and Photonics Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper AF1B.2
[Crossref]

Heanue, J.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Heck, M.

M. Heck, L. Augustin, B. Smallbrugge, and M. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21(13), 905–907 (2009).
[Crossref]

Heiss, D.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Henry, C.

C. Henry and R. Kazarinov, “Stabilization of single frequency operation of coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 733–744 (1984).
[Crossref]

Hong, X.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Hu, Z.

L. Wu, Z. Hu, X. Liao, and J.-J. He, “Half-Wave Coupled Ring-FP Laser with 50-Channel 100GHz-Spaced Wavelength Tuning,” IEEE Photonics J. 6(4), 1501408 (2014).

L. Wu, Z. Hu, J.-j. Meng, and J.-j. He, “Widely Tunable Semiconductor Laser Based on Double Half-Wave-Coupled Rectangular Ring Resonators,” in Asia Communications and Photonics Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper AF1B.2
[Crossref]

Iga, K.

L. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315 (1981).
[Crossref]

Jaeger, N.

Jiao, Y.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

B. Tilma, Y. Jiao, Smit, and Bente, “Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 um Wavelength Region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[Crossref]

Jin, J.

J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with 40 dB side-mode suppression ratio,” Opt. letters 36(21), 4230–4232 (2011).
[Crossref]

Johansson, L. A.

S. Arafin, G. B. Morrison, M. L. Mashanovitch, L. A. Johansson, and L. A. Coldren, “Compact Low-Power Consumption Single-Mode Coupled Cavity Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Kazarinov, R.

C. Henry and R. Kazarinov, “Stabilization of single frequency operation of coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 733–744 (1984).
[Crossref]

Kelly, N.

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Khan, F.

Kleijn, E.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

E. Kleijn, M. Smit, and X. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Light. Technol. 31(18), 3055–3063 (2013).
[Crossref]

Koch, T.

T. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Light. Technol. 8(3), 274–293 (1990).
[Crossref]

L. Coldren and T. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

Koren, U.

T. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Light. Technol. 8(3), 274–293 (1990).
[Crossref]

Korthorst, T.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Kubicky, J.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Kuindersma, P.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

P. Kuindersma, X. Leijtens, J. van Zantvoort, and H. de Waardt, “Widely tunable laser with Dual Ring Resonator and Delayed Interferometer pairs, realized in generic InP technology,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1G.1.

Lang, R.

R. Lang, A. Yariv, and J. Salzman, “Laterally Coupled-Cavity Semiconductor Lasers,” IEEE J. Quantum Electron. 23(4), 395–400 (1987).
[Crossref]

Laroy, R.

J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, “Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection,” in IEEE 18th International Semiconductor Laser Conference, (IEEE, 2002), pp. 99–100.
[Crossref]

Latkowski, S.

E. Bente, S. Latkowski, T. D. Vries, and M. Smit, “Widely Tunable Monolithically Integrated Lasers Using Intracavity Mach-Zehnder Interferometers,” in 16th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2014), p. Mo.D2.4.
[Crossref]

Lawniczuk, K.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

Leijtens, X.

E. Kleijn, M. Smit, and X. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Light. Technol. 31(18), 3055–3063 (2013).
[Crossref]

P. Kuindersma, X. Leijtens, J. van Zantvoort, and H. de Waardt, “Widely tunable laser with Dual Ring Resonator and Delayed Interferometer pairs, realized in generic InP technology,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1G.1.

Leijtens, X. J. M.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

Lenstra, D.

D. Lenstra, “Self-consistent rate-equation theory of coupling in mutually injected semiconductor lasers,” Proc. SPIE 10098, 100980K (2017).
[Crossref]

D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40(5), 653–656 (2015).
[Crossref]

D. Lenstra, “Rate-equation analysis for an integrated coupled-cavity laser with multi-mode interference anti-phase coupler,” in International Semiconductor Laser Conference (ISLC), (IEEE, 2016), pp. 1–2.

Liao, X.

L. Wu, Z. Hu, X. Liao, and J.-J. He, “Half-Wave Coupled Ring-FP Laser with 50-Channel 100GHz-Spaced Wavelength Tuning,” IEEE Photonics J. 6(4), 1501408 (2014).

Liu, A. Q.

Liu, B.

Liu, D.

Mashanovitch, M. L.

S. Arafin, G. B. Morrison, M. L. Mashanovitch, L. A. Johansson, and L. A. Coldren, “Compact Low-Power Consumption Single-Mode Coupled Cavity Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Melati, D.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Melloni, A.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Meng, J.-j.

L. Wu, Z. Hu, J.-j. Meng, and J.-j. He, “Widely Tunable Semiconductor Laser Based on Double Half-Wave-Coupled Rectangular Ring Resonators,” in Asia Communications and Photonics Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper AF1B.2
[Crossref]

Miller, B. I.

L. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315 (1981).
[Crossref]

Morichetti, F.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Morrison, G. B.

S. Arafin, G. B. Morrison, M. L. Mashanovitch, L. A. Johansson, and L. A. Coldren, “Compact Low-Power Consumption Single-Mode Coupled Cavity Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Morrissey, P. E.

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Moskalenko, V.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Musk, B.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Paoli, T.

W. Streifer, D. Yevick, T. Paoli, and R. Burnham, “An analysis of cleaved coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 754–764 (1984).
[Crossref]

Pello, J.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Pennings, E.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

Penty, R.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Peters, F. H.

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Pezeshki, B.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Piramidowicz, R.

K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

Ponnampalam, L.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Rabbani, H.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Razazan, T.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Reid, D.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Rentschler, J. A.

L. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315 (1981).
[Crossref]

Rishton, S.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Robbins, D.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Roelkens, G.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Rouger, N.

Salzman, J.

R. Lang, A. Yariv, and J. Salzman, “Laterally Coupled-Cavity Semiconductor Lasers,” IEEE J. Quantum Electron. 23(4), 395–400 (1987).
[Crossref]

Santos, R.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Schell, M.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Schwelb, O.

O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

Sherback, M.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Siljan, R.

J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, “Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection,” in IEEE 18th International Semiconductor Laser Conference, (IEEE, 2002), pp. 99–100.
[Crossref]

Smalbrugge, B.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Smallbrugge, B.

M. Heck, L. Augustin, B. Smallbrugge, and M. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21(13), 905–907 (2009).
[Crossref]

Smit,

B. Tilma, Y. Jiao, Smit, and Bente, “Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 um Wavelength Region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[Crossref]

Smit, M.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

E. Kleijn, M. Smit, and X. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Light. Technol. 31(18), 3055–3063 (2013).
[Crossref]

M. Heck, L. Augustin, B. Smallbrugge, and M. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21(13), 905–907 (2009).
[Crossref]

E. Bente, S. Latkowski, T. D. Vries, and M. Smit, “Widely Tunable Monolithically Integrated Lasers Using Intracavity Mach-Zehnder Interferometers,” in 16th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2014), p. Mo.D2.4.
[Crossref]

Smit, M. K.

W. Yao, G. Gilardi, D. D’Agostino, M. K. Smit, and M. J. Wale, “Monolithic Tunable Coupled-Cavity WDM Transmitter in a Generic Foundry Platform,” IEEE Photonics Technol. Lett. 29(6), 496–499 (2017).
[Crossref]

D. D’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40(5), 653–656 (2015).
[Crossref]

K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

Soares, F.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Soldano, L.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

Stabile, P.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Stopinski, S.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Streifer, W.

W. Streifer, D. Yevick, T. Paoli, and R. Burnham, “An analysis of cleaved coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 754–764 (1984).
[Crossref]

Szczepanski, P.

K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

Tahvili, S.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Tamil, J.

Thijs, P.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Tilma, B.

B. Tilma, Y. Jiao, Smit, and Bente, “Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 um Wavelength Region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[Crossref]

Ton, D.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Vail, E.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

van der Tol, J.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

van Veldhoven, R.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

van Zantvoort, J.

P. Kuindersma, X. Leijtens, J. van Zantvoort, and H. de Waardt, “Widely tunable laser with Dual Ring Resonator and Delayed Interferometer pairs, realized in generic InP technology,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1G.1.

Vries, T. D.

E. Bente, S. Latkowski, T. D. Vries, and M. Smit, “Widely Tunable Monolithically Integrated Lasers Using Intracavity Mach-Zehnder Interferometers,” in 16th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2014), p. Mo.D2.4.
[Crossref]

Wale, M.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Wale, M. J.

W. Yao, G. Gilardi, D. D’Agostino, M. K. Smit, and M. J. Wale, “Monolithic Tunable Coupled-Cavity WDM Transmitter in a Generic Foundry Platform,” IEEE Photonics Technol. Lett. 29(6), 496–499 (2017).
[Crossref]

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

Wang, L.

L. Wu, Y. Wang, T. Yu, L. Wang, and J. J. He, “Wavelength switchable semiconductor laser based on half-wave coupled Fabry-Perot and rectangular ring resonators,” IEEE Photonics Technol. Lett. 24(12), 991–993 (2012).
[Crossref]

J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with 40 dB side-mode suppression ratio,” Opt. letters 36(21), 4230–4232 (2011).
[Crossref]

Wang, Y.

L. Wu, Y. Wang, T. Yu, L. Wang, and J. J. He, “Wavelength switchable semiconductor laser based on half-wave coupled Fabry-Perot and rectangular ring resonators,” IEEE Photonics Technol. Lett. 24(12), 991–993 (2012).
[Crossref]

J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with 40 dB side-mode suppression ratio,” Opt. letters 36(21), 4230–4232 (2011).
[Crossref]

Ward, A.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Wesstrom, J.-O.

J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, “Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection,” in IEEE 18th International Semiconductor Laser Conference, (IEEE, 2002), pp. 99–100.
[Crossref]

Whitbread, N.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Whitbread, N. D.

K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

Williams, K.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Williams, P.

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

Williams, P. J.

K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

Wonfor, A.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Wu, L.

L. Wu, Z. Hu, X. Liao, and J.-J. He, “Half-Wave Coupled Ring-FP Laser with 50-Channel 100GHz-Spaced Wavelength Tuning,” IEEE Photonics J. 6(4), 1501408 (2014).

L. Wu, Y. Wang, T. Yu, L. Wang, and J. J. He, “Wavelength switchable semiconductor laser based on half-wave coupled Fabry-Perot and rectangular ring resonators,” IEEE Photonics Technol. Lett. 24(12), 991–993 (2012).
[Crossref]

L. Wu, Z. Hu, J.-j. Meng, and J.-j. He, “Widely Tunable Semiconductor Laser Based on Double Half-Wave-Coupled Rectangular Ring Resonators,” in Asia Communications and Photonics Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper AF1B.2
[Crossref]

Yang, H.

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Yao, W.

W. Yao, G. Gilardi, D. D’Agostino, M. K. Smit, and M. J. Wale, “Monolithic Tunable Coupled-Cavity WDM Transmitter in a Generic Foundry Platform,” IEEE Photonics Technol. Lett. 29(6), 496–499 (2017).
[Crossref]

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Yariv, A.

R. Lang, A. Yariv, and J. Salzman, “Laterally Coupled-Cavity Semiconductor Lasers,” IEEE J. Quantum Electron. 23(4), 395–400 (1987).
[Crossref]

Yevick, D.

W. Streifer, D. Yevick, T. Paoli, and R. Burnham, “An analysis of cleaved coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 754–764 (1984).
[Crossref]

Yoffe, G.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Yu, T.

L. Wu, Y. Wang, T. Yu, L. Wang, and J. J. He, “Wavelength switchable semiconductor laser based on half-wave coupled Fabry-Perot and rectangular ring resonators,” IEEE Photonics Technol. Lett. 24(12), 991–993 (2012).
[Crossref]

J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with 40 dB side-mode suppression ratio,” Opt. letters 36(21), 4230–4232 (2011).
[Crossref]

Zhang, Q. X.

Zhang, X. M.

Zhao, J.

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Zou, S.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, “Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38(5), 315 (1981).
[Crossref]

IEEE J. Quantum Electron. (5)

R. Lang, A. Yariv, and J. Salzman, “Laterally Coupled-Cavity Semiconductor Lasers,” IEEE J. Quantum Electron. 23(4), 395–400 (1987).
[Crossref]

B. Tilma, Y. Jiao, Smit, and Bente, “Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 um Wavelength Region,” IEEE J. Quantum Electron. 48(2), 87–98 (2012).
[Crossref]

W. Streifer, D. Yevick, T. Paoli, and R. Burnham, “An analysis of cleaved coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 754–764 (1984).
[Crossref]

C. Henry and R. Kazarinov, “Stabilization of single frequency operation of coupled-cavity lasers,” IEEE J. Quantum Electron. 20(7), 733–744 (1984).
[Crossref]

L. Coldren and T. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. Whitbread, P. Williams, D. Reid, A. Carter, and M. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[Crossref]

S. Arafin, G. B. Morrison, M. L. Mashanovitch, L. A. Johansson, and L. A. Coldren, “Compact Low-Power Consumption Single-Mode Coupled Cavity Lasers,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

IEEE Photonics J. (1)

L. Wu, Z. Hu, X. Liao, and J.-J. He, “Half-Wave Coupled Ring-FP Laser with 50-Channel 100GHz-Spaced Wavelength Tuning,” IEEE Photonics J. 6(4), 1501408 (2014).

IEEE Photonics Technol. Lett. (5)

L. Wu, Y. Wang, T. Yu, L. Wang, and J. J. He, “Wavelength switchable semiconductor laser based on half-wave coupled Fabry-Perot and rectangular ring resonators,” IEEE Photonics Technol. Lett. 24(12), 991–993 (2012).
[Crossref]

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photonics Technol. Lett. 14(10), 1457–1459 (2002).
[Crossref]

M. Heck, L. Augustin, B. Smallbrugge, and M. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photonics Technol. Lett. 21(13), 905–907 (2009).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

W. Yao, G. Gilardi, D. D’Agostino, M. K. Smit, and M. J. Wale, “Monolithic Tunable Coupled-Cavity WDM Transmitter in a Generic Foundry Platform,” IEEE Photonics Technol. Lett. 29(6), 496–499 (2017).
[Crossref]

J. Light. Technol. (3)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

E. Kleijn, M. Smit, and X. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Light. Technol. 31(18), 3055–3063 (2013).
[Crossref]

T. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Light. Technol. 8(3), 274–293 (1990).
[Crossref]

Microw. Opt. Technol. Lett. (1)

O. Schwelb and I. Frigyes, “Vernier operation of series-coupled optical microring resonator filters,” Microw. Opt. Technol. Lett. 39(4), 257–261 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. letters (1)

J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with 40 dB side-mode suppression ratio,” Opt. letters 36(21), 4230–4232 (2011).
[Crossref]

Proc. SPIE (1)

D. Lenstra, “Self-consistent rate-equation theory of coupling in mutually injected semiconductor lasers,” Proc. SPIE 10098, 100980K (2017).
[Crossref]

Semicond. Sci. Technol (1)

M. Smit, X. J. M. Leijtens, H. P. M. M. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. J. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol.  29, 083001 (2014).
[Crossref]

Other (6)

L. Wu, Z. Hu, J.-j. Meng, and J.-j. He, “Widely Tunable Semiconductor Laser Based on Double Half-Wave-Coupled Rectangular Ring Resonators,” in Asia Communications and Photonics Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper AF1B.2
[Crossref]

J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, “Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection,” in IEEE 18th International Semiconductor Laser Conference, (IEEE, 2002), pp. 99–100.
[Crossref]

K. Lawniczuk, P. J. Williams, N. D. Whitbread, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “AWG-based multiwavelength lasers fabricated in a multi-project wafer run,” in International Conference on Information Photonics, (IEEE, 2011), pp.1-2

P. Kuindersma, X. Leijtens, J. van Zantvoort, and H. de Waardt, “Widely tunable laser with Dual Ring Resonator and Delayed Interferometer pairs, realized in generic InP technology,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1G.1.

E. Bente, S. Latkowski, T. D. Vries, and M. Smit, “Widely Tunable Monolithically Integrated Lasers Using Intracavity Mach-Zehnder Interferometers,” in 16th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2014), p. Mo.D2.4.
[Crossref]

D. Lenstra, “Rate-equation analysis for an integrated coupled-cavity laser with multi-mode interference anti-phase coupler,” in International Semiconductor Laser Conference (ISLC), (IEEE, 2016), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of extended CCL with coupling element and novel reflective interferometric device outlined by the dashed box. Cx, and Cb denote the complex coupling coefficients between the cavities. The two integrated mirrors with reflectivity r2 are identical components and introduced in more detail in section 3.
Fig. 2
Fig. 2 A schematic of a 3×3 MMI, followed by BPM simulations of the device of 10 µm width under different excitations of the input. The first simulation shows single input excitation (b), after which the two outer inputs are excited with a phase difference of π (c) and 0 (d). The dashed lines in (c) and (d) represent a 45 degree corner to form the integrated mirror.
Fig. 3
Fig. 3 Schematic of proposed interferometer with a 2-Port reflector, which is common for the branches of different length.
Fig. 4
Fig. 4 Simulated bar and cross-port response of interferometer as shown in Fig. 3. The imbalance ΔLM is 20µm.
Fig. 5
Fig. 5 Experimental setup to measure the interferometer in reflection.
Fig. 6
Fig. 6 Measured normalized effective reflectivity of the π-Michelson compared to simulation with |Cb|=0.79 and |Cx |=0.21.
Fig. 7
Fig. 7 Threshold gain ratio between main mode and next two competitors for different reflectivities of coupling mirror r2. Solid lines are the closest side mode, while dashed lines represent the competitor one combined FSR away. The output of the laser is formed by a facet with r1 = 0.55 and the interferometer follows |r3|2 = |r2|2(|Cb|sin(kLM) + |Cx|)2, where ΔLM is the arm-length difference in the interferometer and r2, |Cb|=0.79 and |Cx|=0.21 are reflectivity and coupling coefficients of the integrated mirror
Fig. 8
Fig. 8 Microscope image of the fabricated Coupled Cavity Laser which contains the interferometer as tunable coarse wavelength filter. The geometry of the device is given in the beginning of section 6 in more detail.
Fig. 9
Fig. 9 (a) LI curves when the main cavity current is altered, while the external cavity is kept constant. The legend indicates the value in mA. (b) Spectrum of laser when each SOA is biased with 90 mA.
Fig. 10
Fig. 10 Coarse tuning when the interferometer is tuned. The SOAs are pumped with 70 mA.
Fig. 11
Fig. 11 (a)Measured photo current when cavity phase sections are altered for different SOA currents. (b)Recorded spectra with settings deduced from the minimization of the photo current for different SOA currents.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

f V = f 1 f 2 | f 1 + f 2 |
f M = λ 0 2 n g Δ L M
Ψ i n ( y ) = ν = 0 m 1 c ν ψ ν ( y )
Ψ o u t ( y ) = ν = 0 m 1 c ν ψ ν ( y ) e j ϕ = ν = 0 m 1 c ν ψ ν ( y ) e j ν ( ν + 2 ) L 3 L π
L π = π Δ β 4 n r W 2 3 λ 0
ψ i n ( y ) = ν e v e n c ν ψ ν ( y ) + ν o d d , 5 , 11 c ν ψ ν ( y )
ψ o u t ( y ) = ν e v e n c ν e j ϕ ψ ν ( y ) + j ν o d d , 5 , 11 c ν ψ ν ( y )
Ψ o u t = 1 6 6 ψ 0 + j 1 2 2 ψ 1 1 3 3 e 2 π j / 3 ψ 2
ψ 0 = ( θ 1 + 2 θ 0 + θ 1 ) / 6
ψ 1 = ( θ 1 θ 1 ) / 2
ψ 2 = ( θ 1 + θ 0 θ 1 ) / 3
θ 0 = 1 3 6 ψ 0 + 1 3 3 ψ 2
θ 1 = 1 6 6 ψ 0 + 1 2 2 ψ 1 1 3 3 ψ 2
θ 1 = 1 6 6 ψ 0 1 2 2 ψ 1 1 3 3 ψ
Ψ o u t = θ 1 ( 1 6 + 1 2 j + 1 3 e 2 π j 3 ) + θ 0 ( 1 3 1 3 e 2 π j 3 ) + θ 1 ( 1 6 + 1 2 j + 1 3 e 2 π j 3 ) θ 1 C b + θ 0 C c + θ 1 C x
C b = 3 1 2 3 j = 0.21 j
C c = 3 + j 3 6 = 0.5 + 029 j
C x = 3 + 1 2 3 j = 0.79 j
E 1 = a b C b e 2 i k L 1 + a x C x e i k ( L 1 + L 2 )
E 2 = a x C b e 2 i k L 2 + a b C x e i k ( L 1 + L 2 )
E b = a b 2 C b e 2 i k L 1 + a b a x C x e i k ( L 1 + L 2 ) + a x 2 c b e 2 i k L 2 + a b a x C x e i k ( L 1 + L 2 )
I b = | E b | 2 = | C b | 2 sin 2 ( k Δ L M ) + | C x | 2 2 sin ( k Δ L M ) R e ( C b C x * )
I b = sin 2 ( k Δ L M )
I b = | C b | 2 sin 2 ( k Δ L M ) + | C x | 2
I b = ( | C b | sin ( k Δ L M ) + | C x | ) 2 = | C b | 2 sin 2 ( k Δ L M ) + 2 | C b | | C x | sin ( k Δ L M ) + | C x |
E x = a b a x c b e 2 i k L 2 + a b 2 c x e i k ( L 1 + L 2 ) + a x a b c b e 2 i k L 1 + a x 2 c x e i k ( L 1 + L 2 )
I x = | c b | 2 cos 2 ( k Δ L M )
C b r 1 r 2 e 2 ( g 1 + k ) L 1 + C b r 3 r 2 e 2 ( g 2 + j k ) L 2 ( C b 2 C x 2 ) r 1 r 3 r 2 2 e 2 ( g 2 + j k ) L 2 e 2 ( g 1 + k ) L 1 = 1

Metrics