Abstract

Internal parameter calibration of remote sensing cameras (RSCs) is a necessary step in remote sensing photogrammetry. On-orbit camera calibration widely adopts external ground control points (GCPs) to measure its internal parameters. However, accessible and available GCPs are not easy to achieve when cameras work on a satellite platform. In this paper, we propose an efficient camera self-calibration method using a micro-transceiver in conjunction with deep learning. A supervised learning set is produced by the micro-transceiver, where multiple two-dimensional diffraction grids are produced and transformed into multiple auto-collimating sub-beams equivalent to infinite target-point training examples. A deep learning network is used to invert the learnable internal parameters. The micro-transceiver can be easily integrated into the internal structure of RSCs allowing to calibrate them independently on external ground control targets.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient camera self-calibration method based on the absolute dual quadric

Jing Jin and Xiaofeng Li
J. Opt. Soc. Am. A 30(3) 287-292 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Torlegård, “Sensors for photogrammetric mapping: Review and prospects,” P&RS 47(4), 241–262 (1992).
  2. K. Novak, “Application of digital cameras and GPS for aerial photogrammetric mapping,” Int. Arch. Photogramm. Remote Sens. 29, 5 (1993).
  3. L. I. N. Zongjian, “UAV for mapping-low altitude photogrammetric survey,” in International Archives of Photogrammetry and Remote Sensing (2008), pp.1183–1186.
  4. F. Agüera-Vega, F. Carvajal-Ramírez, and P. Martínez-Carricondo, “Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle,” Measurement 98, 221–227 (2017).
    [Crossref]
  5. C. V. Tao, Y. Hu, and W. Jiang, “Photogrammetric exploitation of IKONOS imagery for mapping applications,” Int. J. Remote Sens. 25(14), 2833–2853 (2004).
    [Crossref]
  6. J. Li, F. Xing, and Z. You, “Space high-accuracy intelligence payload system with integrated attitude and position determination,” Instrument 2, 3–16 (2015).
  7. P. Grattoni, G. Pettiti, F. Pollastri, A. Cumani, and A. Guiducci, “Geometric camera calibration: a comparisons of methods,” In proceedings of IEEE conference on Advanced Robotics,1991.'Robots in Unstructured Environments', 91 ICAR. (IEEE, 1991), pp.1775–1779.
  8. J. Heikkila and S. Olli, “A four-step camera calibration procedure with implicit image correction,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1997), pp.1106–1112.
    [Crossref]
  9. C. Ricolfe-Viala and A. J. Sanchez-Salmeron, “Camera calibration under optimal conditions,” Opt. Express 19(11), 10769–10775 (2011).
    [Crossref] [PubMed]
  10. B. Ergun, T. Kavzoglu, I. Colkesen, and C. Sahin, “Data filtering with support vector machines in geometric camera calibration,” Opt. Express 18(3), 1927–1936 (2010).
    [Crossref] [PubMed]
  11. Y. L. Xiao, X. Su, and W. Chen, “Flexible geometrical calibration for fringe-reflection 3D measurement,” Opt. Lett. 37(4), 620–622 (2012).
    [Crossref] [PubMed]
  12. S. Thibault, A. Arfaoui, and P. Desaulniers, “Cross-diffractive optical elements for wide angle geometric camera calibration,” Opt. Lett. 36(24), 4770–4772 (2011).
    [Crossref] [PubMed]
  13. J. Li and S. F. Tian, “An efficient method for measuring the internal parameters of optical cameras based on optical fibres,” Sci. Rep. 7(1), 12479 (2017).
    [Crossref] [PubMed]
  14. M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
    [Crossref]
  15. M. Wang, B. Yang, F. Hu, and X. Zang, “On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery,” Remote Sens. 6(5), 4391–4408 (2014).
    [Crossref]
  16. J. Li, F. Liu, S. Liu, and Z. Wang, “Optical Remote Sensor Calibration Using Micromachined Multiplexing Optical Focal Planes,” IEEE Sens. J. 17(6), 1663–1672 (2017).
  17. J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000).
    [Crossref]
  18. V. M. Jovanovic, M. A. Bull, M. M. Smyth, and J. Zong, “MISR in-flight camera geometric model calibration and georectification performance,” IEEE Trans. Geosci. Remote Sens. 40(7), 1512–1519 (2002).
    [Crossref]
  19. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  20. F. Pedersini, A. Sarti, and S. Tubaro, “Accurate and simple geometric calibration of multi-camera systems,” Signal Process. 77(3), 309–334 (1999).
    [Crossref]
  21. M. Kröpfl, E. Kruck, and M. Gruber, “Geometric calibration of the digital large format aerial camera UltraCamD,” Int. Arch. Photogramm. Remote Sens. 35(1), 42–44 (2004).
  22. W. Zeitler, C. Doerstel, and K. Jacobsen, “Geometric calibration of the DMC: Method and Results,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 34(1), 324–332 (2002).
  23. J. Li and Y. Zhang, “Micro Coded-Aperture Lead-In of Light for Calibrating Remote Sensing Cameras,” IEEE Photonics Technol. Lett. 29(22), 1939–1942 (2017).
    [Crossref]
  24. B. Liu, J. Q. Jia, and Y. L. Ding, “Geometric calibration with angle measure for CCD aerial photogrammetric camera in laboratory,” Laser & Infrared 3, 019 (2010).
  25. Q. T. Luong and O. D. Faugeras, “Self-calibration of a moving camera from point correspondences and fundamental matrices,” Int. J. Comput. Vis. 22(3), 261–289 (1997).
    [Crossref]
  26. Y. Furukawa and J. Ponce, “Accurate camera calibration from multi-view stereo and bundle adjustment,” Int. J. Comput. Vis. 84(3), 257–268 (2009).
    [Crossref]
  27. E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).
  28. J. Li and Z. Liu, “Optical focal plane based on MEMS light lead-in for geometric camera calibration,” Microsystems Nanoengineering 3, 201758 (2017).
    [Crossref]
  29. D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” P&RS 65(4), 360–368 (2010).
  30. G. D. Wu, B. Han, and X. He, “Calibration of geometric parameters of line-array CCD camera based on exact measuring angle in lab,” Opt. Precision Eng. 10, 029 (2007).
  31. Y. Zhang, M. Zheng, J. Xiong, Y. Lu, and X. Xiong, “On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets,” IEEE Trans. Geosci. Remote Sens. 52(1), 224–234 (2014).
    [Crossref]
  32. D. Mulawa, “On-orbit geometric calibration of the OrbView-3 high resolution imaging satellite. Int. Arch. Photogramm,” Remote Sens. Spat. Inf. Sci. 35, 1–6 (2004).
  33. L. Lucchese, “Geometric calibration of digital cameras through multi-view rectification,” Image Vis. Comput. 23(5), 517–539 (2005).
    [Crossref]
  34. M. Bauer, D. Griessbach, A. Hermerschmidt, S. Krüger, M. Scheele, and A. Schischmanow, “Geometrical camera calibration with diffractive optical elements,” Opt. Express 16(25), 20241–20248 (2008).
    [Crossref] [PubMed]
  35. F. Yuan, W. J. Qi, and A. P. Fang, “Laboratory geometric calibration of areal digital aerial camera,” In IOP Conference Series: Earth and Environmental Science (2014), pp.012196.
    [Crossref]
  36. T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of an airborne linear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
    [Crossref]
  37. F. Yuan, W. Qi, A. Fang, P. Ding, and Y. U. Xiujuan, “Laboratory geometric calibration of non-metric digital camera,” in MIPPR 2013: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications (2013), Vol. 8921, p. 89210A.
  38. Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004).
    [Crossref] [PubMed]
  39. D. S. Lee, J. C. Storey, M. J. Choate, and R. W. Hayes, “Four years of Landsat-7 on-orbit geometric calibration and performance,” IEEE Trans. Geosci. Remote Sens. 42(12), 2786–2795 (2004).
    [Crossref]
  40. J. Takaku and T. Tadono, “PRISM on-orbit geometric calibration and DSM performance,” IEEE Trans. Geosci. Remote Sens. 47(12), 4060–4073 (2009).
    [Crossref]
  41. A. F. Habib, M. Morgan, and Y. R. Lee, “Bundle adjustment with self–calibration using straight lines,” Photogramm. Rec. 17(100), 100635 (2002).
    [Crossref]
  42. D. D. Lichti and C. Kim, “A comparison of three geometric self-calibration methods for range cameras,” Remote Sens. 3(5), 1014–1028 (2011).
    [Crossref]
  43. F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
    [Crossref]
  44. S. Fourest, P. Kubik, L. Lebègue, C. Déchoz, S. Lacherade, and G. Blanchet, “Star-based methods for Pleiades HR commissioning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39, 513–518 (2012).
  45. V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
    [Crossref]
  46. J. M. Delvit, D. Greslou, V. Amberg, C. Dechoz, F. de Lussy, L. Lebegue, and L. Bernard, “Attitude assessment using Pleiades-HR capabilities,” in Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2012).
    [Crossref]
  47. J. Li, F. Xing, D. Chu, and Z. Liu, “High-Accuracy Self-Calibration for Smart, Optical Orbiting Payloads Integrated with Attitude and Position Determination,” Sensors (Basel) 16(8), 1176 (2016).
    [Crossref] [PubMed]
  48. J. Li, Y. Zhang, S. Liu, and Z. Wang, “Self-calibration method based on surface micromaching of light transceiver focal plane for optical camera,” Remote Sens. 8(11), 893 (2016).
    [Crossref]
  49. J. Li, Z. Liu, and F. Liu, “Compressive sampling based on frequency saliency for remote sensing imaging,” Sci. Rep. 7(1), 6539 (2017).
    [Crossref] [PubMed]
  50. J. Li, Z. Liu, and F. Liu, “Using sub-resolution features for self-compensation of the modulation transfer function in remote sensing,” Opt. Express 25(4), 4018–4037 (2017).
    [Crossref] [PubMed]
  51. J. Li and Z. Liu, “Image quality enhancement method for on-orbit remote sensing cameras using invariable modulation transfer function,” Opt. Express 25(15), 17134–17149 (2017).
    [Crossref] [PubMed]
  52. S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
    [Crossref] [PubMed]
  53. P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
    [Crossref]
  54. M. Wang, Y. Cheng, B. Yang, S. Jin, and H. Su, “On-orbit calibration approach for optical navigation camera in deep space exploration,” Opt. Express 24(5), 5536–5554 (2016).
    [Crossref] [PubMed]
  55. J. Skaloud, M. Cramer, and K. P. Schwarz, “Exterior orientation by direct measurement of camera position and attitude,” Int. Arch. Photogramm. Remote Sens. 31(B3), 125–130 (1996).
  56. F. Yılmaztürk, “Full-automatic self-calibration of color digital cameras using color targets,” Opt. Express 19(19), 18164–18174 (2011).
    [Crossref] [PubMed]
  57. P. D. Lin and C. K. Sung, “Comparing two new camera calibration methods with traditional pinhole calibrations,” Opt. Express 15(6), 3012–3022 (2007).
    [Crossref] [PubMed]
  58. K. S. Choi, E. Y. Lam, and K. K. Wong, “Automatic source camera identification using the intrinsic lens radial distortion,” Opt. Express 14(24), 11551–11565 (2006).
    [Crossref] [PubMed]
  59. Z. Wang, “Removal of noise and radial lens distortion during calibration of computer vision systems,” Opt. Express 23(9), 11341–11356 (2015).
    [Crossref] [PubMed]
  60. S. S. Haykin, Neural Networks and Learning Machines, Vol. 3 (Pearson, 2009).
  61. T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of airbornelinear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
    [Crossref]

2018 (1)

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

2017 (8)

J. Li, Z. Liu, and F. Liu, “Compressive sampling based on frequency saliency for remote sensing imaging,” Sci. Rep. 7(1), 6539 (2017).
[Crossref] [PubMed]

J. Li, Z. Liu, and F. Liu, “Using sub-resolution features for self-compensation of the modulation transfer function in remote sensing,” Opt. Express 25(4), 4018–4037 (2017).
[Crossref] [PubMed]

J. Li and Z. Liu, “Image quality enhancement method for on-orbit remote sensing cameras using invariable modulation transfer function,” Opt. Express 25(15), 17134–17149 (2017).
[Crossref] [PubMed]

F. Agüera-Vega, F. Carvajal-Ramírez, and P. Martínez-Carricondo, “Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle,” Measurement 98, 221–227 (2017).
[Crossref]

J. Li and S. F. Tian, “An efficient method for measuring the internal parameters of optical cameras based on optical fibres,” Sci. Rep. 7(1), 12479 (2017).
[Crossref] [PubMed]

J. Li, F. Liu, S. Liu, and Z. Wang, “Optical Remote Sensor Calibration Using Micromachined Multiplexing Optical Focal Planes,” IEEE Sens. J. 17(6), 1663–1672 (2017).

J. Li and Y. Zhang, “Micro Coded-Aperture Lead-In of Light for Calibrating Remote Sensing Cameras,” IEEE Photonics Technol. Lett. 29(22), 1939–1942 (2017).
[Crossref]

J. Li and Z. Liu, “Optical focal plane based on MEMS light lead-in for geometric camera calibration,” Microsystems Nanoengineering 3, 201758 (2017).
[Crossref]

2016 (3)

J. Li, F. Xing, D. Chu, and Z. Liu, “High-Accuracy Self-Calibration for Smart, Optical Orbiting Payloads Integrated with Attitude and Position Determination,” Sensors (Basel) 16(8), 1176 (2016).
[Crossref] [PubMed]

J. Li, Y. Zhang, S. Liu, and Z. Wang, “Self-calibration method based on surface micromaching of light transceiver focal plane for optical camera,” Remote Sens. 8(11), 893 (2016).
[Crossref]

M. Wang, Y. Cheng, B. Yang, S. Jin, and H. Su, “On-orbit calibration approach for optical navigation camera in deep space exploration,” Opt. Express 24(5), 5536–5554 (2016).
[Crossref] [PubMed]

2015 (3)

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Z. Wang, “Removal of noise and radial lens distortion during calibration of computer vision systems,” Opt. Express 23(9), 11341–11356 (2015).
[Crossref] [PubMed]

J. Li, F. Xing, and Z. You, “Space high-accuracy intelligence payload system with integrated attitude and position determination,” Instrument 2, 3–16 (2015).

2014 (2)

Y. Zhang, M. Zheng, J. Xiong, Y. Lu, and X. Xiong, “On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets,” IEEE Trans. Geosci. Remote Sens. 52(1), 224–234 (2014).
[Crossref]

M. Wang, B. Yang, F. Hu, and X. Zang, “On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery,” Remote Sens. 6(5), 4391–4408 (2014).
[Crossref]

2013 (1)

V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
[Crossref]

2012 (3)

F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
[Crossref]

S. Fourest, P. Kubik, L. Lebègue, C. Déchoz, S. Lacherade, and G. Blanchet, “Star-based methods for Pleiades HR commissioning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39, 513–518 (2012).

Y. L. Xiao, X. Su, and W. Chen, “Flexible geometrical calibration for fringe-reflection 3D measurement,” Opt. Lett. 37(4), 620–622 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

B. Ergun, T. Kavzoglu, I. Colkesen, and C. Sahin, “Data filtering with support vector machines in geometric camera calibration,” Opt. Express 18(3), 1927–1936 (2010).
[Crossref] [PubMed]

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” P&RS 65(4), 360–368 (2010).

B. Liu, J. Q. Jia, and Y. L. Ding, “Geometric calibration with angle measure for CCD aerial photogrammetric camera in laboratory,” Laser & Infrared 3, 019 (2010).

2009 (2)

Y. Furukawa and J. Ponce, “Accurate camera calibration from multi-view stereo and bundle adjustment,” Int. J. Comput. Vis. 84(3), 257–268 (2009).
[Crossref]

J. Takaku and T. Tadono, “PRISM on-orbit geometric calibration and DSM performance,” IEEE Trans. Geosci. Remote Sens. 47(12), 4060–4073 (2009).
[Crossref]

2008 (1)

2007 (4)

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of an airborne linear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

G. D. Wu, B. Han, and X. He, “Calibration of geometric parameters of line-array CCD camera based on exact measuring angle in lab,” Opt. Precision Eng. 10, 029 (2007).

P. D. Lin and C. K. Sung, “Comparing two new camera calibration methods with traditional pinhole calibrations,” Opt. Express 15(6), 3012–3022 (2007).
[Crossref] [PubMed]

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of airbornelinear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

2006 (2)

K. S. Choi, E. Y. Lam, and K. K. Wong, “Automatic source camera identification using the intrinsic lens radial distortion,” Opt. Express 14(24), 11551–11565 (2006).
[Crossref] [PubMed]

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

2005 (2)

L. Lucchese, “Geometric calibration of digital cameras through multi-view rectification,” Image Vis. Comput. 23(5), 517–539 (2005).
[Crossref]

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

2004 (5)

M. Kröpfl, E. Kruck, and M. Gruber, “Geometric calibration of the digital large format aerial camera UltraCamD,” Int. Arch. Photogramm. Remote Sens. 35(1), 42–44 (2004).

C. V. Tao, Y. Hu, and W. Jiang, “Photogrammetric exploitation of IKONOS imagery for mapping applications,” Int. J. Remote Sens. 25(14), 2833–2853 (2004).
[Crossref]

Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004).
[Crossref] [PubMed]

D. S. Lee, J. C. Storey, M. J. Choate, and R. W. Hayes, “Four years of Landsat-7 on-orbit geometric calibration and performance,” IEEE Trans. Geosci. Remote Sens. 42(12), 2786–2795 (2004).
[Crossref]

D. Mulawa, “On-orbit geometric calibration of the OrbView-3 high resolution imaging satellite. Int. Arch. Photogramm,” Remote Sens. Spat. Inf. Sci. 35, 1–6 (2004).

2002 (3)

A. F. Habib, M. Morgan, and Y. R. Lee, “Bundle adjustment with self–calibration using straight lines,” Photogramm. Rec. 17(100), 100635 (2002).
[Crossref]

W. Zeitler, C. Doerstel, and K. Jacobsen, “Geometric calibration of the DMC: Method and Results,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 34(1), 324–332 (2002).

V. M. Jovanovic, M. A. Bull, M. M. Smyth, and J. Zong, “MISR in-flight camera geometric model calibration and georectification performance,” IEEE Trans. Geosci. Remote Sens. 40(7), 1512–1519 (2002).
[Crossref]

2000 (2)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000).
[Crossref]

1999 (1)

F. Pedersini, A. Sarti, and S. Tubaro, “Accurate and simple geometric calibration of multi-camera systems,” Signal Process. 77(3), 309–334 (1999).
[Crossref]

1997 (1)

Q. T. Luong and O. D. Faugeras, “Self-calibration of a moving camera from point correspondences and fundamental matrices,” Int. J. Comput. Vis. 22(3), 261–289 (1997).
[Crossref]

1996 (1)

J. Skaloud, M. Cramer, and K. P. Schwarz, “Exterior orientation by direct measurement of camera position and attitude,” Int. Arch. Photogramm. Remote Sens. 31(B3), 125–130 (1996).

1993 (1)

K. Novak, “Application of digital cameras and GPS for aerial photogrammetric mapping,” Int. Arch. Photogramm. Remote Sens. 29, 5 (1993).

1992 (1)

K. Torlegård, “Sensors for photogrammetric mapping: Review and prospects,” P&RS 47(4), 241–262 (1992).

Agüera-Vega, F.

F. Agüera-Vega, F. Carvajal-Ramírez, and P. Martínez-Carricondo, “Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle,” Measurement 98, 221–227 (2017).
[Crossref]

Ahn, D.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

Ahn, H.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

Ahokas, E.

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

Amberg, V.

F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
[Crossref]

Arfaoui, A.

Bauer, M.

Benítez, N.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Blakeslee, J. P.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Blanchet, G.

V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
[Crossref]

S. Fourest, P. Kubik, L. Lebègue, C. Déchoz, S. Lacherade, and G. Blanchet, “Star-based methods for Pleiades HR commissioning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39, 513–518 (2012).

Bull, M. A.

V. M. Jovanovic, M. A. Bull, M. M. Smyth, and J. Zong, “MISR in-flight camera geometric model calibration and georectification performance,” IEEE Trans. Geosci. Remote Sens. 40(7), 1512–1519 (2002).
[Crossref]

Carvajal-Ramírez, F.

F. Agüera-Vega, F. Carvajal-Ramírez, and P. Martínez-Carricondo, “Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle,” Measurement 98, 221–227 (2017).
[Crossref]

Chen, T.

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of an airborne linear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of airbornelinear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

Chen, W.

Cheng, Y.

Choate, M. J.

D. S. Lee, J. C. Storey, M. J. Choate, and R. W. Hayes, “Four years of Landsat-7 on-orbit geometric calibration and performance,” IEEE Trans. Geosci. Remote Sens. 42(12), 2786–2795 (2004).
[Crossref]

Choi, K. S.

Chu, D.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

J. Li, F. Xing, D. Chu, and Z. Liu, “High-Accuracy Self-Calibration for Smart, Optical Orbiting Payloads Integrated with Attitude and Position Determination,” Sensors (Basel) 16(8), 1176 (2016).
[Crossref] [PubMed]

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Chun, Y.

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Chun, Y. T.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

Clampin, M.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Colkesen, I.

Cramer, M.

J. Skaloud, M. Cramer, and K. P. Schwarz, “Exterior orientation by direct measurement of camera position and attitude,” Int. Arch. Photogramm. Remote Sens. 31(B3), 125–130 (1996).

De Lussy, F.

F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
[Crossref]

De Marchi, G.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Dechoz, C.

F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
[Crossref]

Déchoz, C.

S. Fourest, P. Kubik, L. Lebègue, C. Déchoz, S. Lacherade, and G. Blanchet, “Star-based methods for Pleiades HR commissioning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39, 513–518 (2012).

Delvit, J. M.

F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
[Crossref]

Desaulniers, P.

Ding, Y. L.

B. Liu, J. Q. Jia, and Y. L. Ding, “Geometric calibration with angle measure for CCD aerial photogrammetric camera in laboratory,” Laser & Infrared 3, 019 (2010).

Doerstel, C.

W. Zeitler, C. Doerstel, and K. Jacobsen, “Geometric calibration of the DMC: Method and Results,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 34(1), 324–332 (2002).

Ergun, B.

Fang, A. P.

F. Yuan, W. J. Qi, and A. P. Fang, “Laboratory geometric calibration of areal digital aerial camera,” In IOP Conference Series: Earth and Environmental Science (2014), pp.012196.
[Crossref]

Faugeras, O. D.

Q. T. Luong and O. D. Faugeras, “Self-calibration of a moving camera from point correspondences and fundamental matrices,” Int. J. Comput. Vis. 22(3), 261–289 (1997).
[Crossref]

Ford, H. C.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Fourest, S.

F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
[Crossref]

S. Fourest, P. Kubik, L. Lebègue, C. Déchoz, S. Lacherade, and G. Blanchet, “Star-based methods for Pleiades HR commissioning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39, 513–518 (2012).

Furukawa, Y.

Y. Furukawa and J. Ponce, “Accurate camera calibration from multi-view stereo and bundle adjustment,” Int. J. Comput. Vis. 84(3), 257–268 (2009).
[Crossref]

Gilliland, R.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Greslou, D.

F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
[Crossref]

Griessbach, D.

Gruber, M.

M. Kröpfl, E. Kruck, and M. Gruber, “Geometric calibration of the digital large format aerial camera UltraCamD,” Int. Arch. Photogramm. Remote Sens. 35(1), 42–44 (2004).

Habib, A. F.

A. F. Habib, M. Morgan, and Y. R. Lee, “Bundle adjustment with self–calibration using straight lines,” Photogramm. Rec. 17(100), 100635 (2002).
[Crossref]

Han, B.

G. D. Wu, B. Han, and X. He, “Calibration of geometric parameters of line-array CCD camera based on exact measuring angle in lab,” Opt. Precision Eng. 10, 029 (2007).

Hartig, G. F.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Hayes, R. W.

D. S. Lee, J. C. Storey, M. J. Choate, and R. W. Hayes, “Four years of Landsat-7 on-orbit geometric calibration and performance,” IEEE Trans. Geosci. Remote Sens. 42(12), 2786–2795 (2004).
[Crossref]

He, X.

G. D. Wu, B. Han, and X. He, “Calibration of geometric parameters of line-array CCD camera based on exact measuring angle in lab,” Opt. Precision Eng. 10, 029 (2007).

Heikkila, J.

J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000).
[Crossref]

J. Heikkila and S. Olli, “A four-step camera calibration procedure with implicit image correction,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1997), pp.1106–1112.
[Crossref]

Hermerschmidt, A.

Honkavaara, E.

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

Hu, F.

M. Wang, B. Yang, F. Hu, and X. Zang, “On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery,” Remote Sens. 6(5), 4391–4408 (2014).
[Crossref]

Hu, Y.

C. V. Tao, Y. Hu, and W. Jiang, “Photogrammetric exploitation of IKONOS imagery for mapping applications,” Int. J. Remote Sens. 25(14), 2833–2853 (2004).
[Crossref]

Hyyppä, J.

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

Illingworth, G. D.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Jaakkola, J.

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

Jacobsen, K.

W. Zeitler, C. Doerstel, and K. Jacobsen, “Geometric calibration of the DMC: Method and Results,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 34(1), 324–332 (2002).

Jamtsho, S.

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” P&RS 65(4), 360–368 (2010).

Jee, M. J.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Jia, J. Q.

B. Liu, J. Q. Jia, and Y. L. Ding, “Geometric calibration with angle measure for CCD aerial photogrammetric camera in laboratory,” Laser & Infrared 3, 019 (2010).

Jiang, W.

C. V. Tao, Y. Hu, and W. Jiang, “Photogrammetric exploitation of IKONOS imagery for mapping applications,” Int. J. Remote Sens. 25(14), 2833–2853 (2004).
[Crossref]

Jin, S.

Jovanovic, V. M.

V. M. Jovanovic, M. A. Bull, M. M. Smyth, and J. Zong, “MISR in-flight camera geometric model calibration and georectification performance,” IEEE Trans. Geosci. Remote Sens. 40(7), 1512–1519 (2002).
[Crossref]

Kaartinen, H.

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

Kavzoglu, T.

Kim, C.

D. D. Lichti and C. Kim, “A comparison of three geometric self-calibration methods for range cameras,” Remote Sens. 3(5), 1014–1028 (2011).
[Crossref]

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” P&RS 65(4), 360–368 (2010).

Kröpfl, M.

M. Kröpfl, E. Kruck, and M. Gruber, “Geometric calibration of the digital large format aerial camera UltraCamD,” Int. Arch. Photogramm. Remote Sens. 35(1), 42–44 (2004).

Kruck, E.

M. Kröpfl, E. Kruck, and M. Gruber, “Geometric calibration of the digital large format aerial camera UltraCamD,” Int. Arch. Photogramm. Remote Sens. 35(1), 42–44 (2004).

Krüger, S.

Kubik, P.

V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
[Crossref]

S. Fourest, P. Kubik, L. Lebègue, C. Déchoz, S. Lacherade, and G. Blanchet, “Star-based methods for Pleiades HR commissioning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39, 513–518 (2012).

Kuittinen, R.

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

Lacherade, S.

V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
[Crossref]

S. Fourest, P. Kubik, L. Lebègue, C. Déchoz, S. Lacherade, and G. Blanchet, “Star-based methods for Pleiades HR commissioning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39, 513–518 (2012).

Lam, E. Y.

Latry, C.

V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
[Crossref]

Lebegue, L.

V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
[Crossref]

F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
[Crossref]

Lebègue, L.

S. Fourest, P. Kubik, L. Lebègue, C. Déchoz, S. Lacherade, and G. Blanchet, “Star-based methods for Pleiades HR commissioning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39, 513–518 (2012).

Lee, D. S.

D. S. Lee, J. C. Storey, M. J. Choate, and R. W. Hayes, “Four years of Landsat-7 on-orbit geometric calibration and performance,” IEEE Trans. Geosci. Remote Sens. 42(12), 2786–2795 (2004).
[Crossref]

Lee, Y. R.

A. F. Habib, M. Morgan, and Y. R. Lee, “Bundle adjustment with self–calibration using straight lines,” Photogramm. Rec. 17(100), 100635 (2002).
[Crossref]

Li, J.

J. Li, Z. Liu, and F. Liu, “Compressive sampling based on frequency saliency for remote sensing imaging,” Sci. Rep. 7(1), 6539 (2017).
[Crossref] [PubMed]

J. Li and Y. Zhang, “Micro Coded-Aperture Lead-In of Light for Calibrating Remote Sensing Cameras,” IEEE Photonics Technol. Lett. 29(22), 1939–1942 (2017).
[Crossref]

J. Li and Z. Liu, “Optical focal plane based on MEMS light lead-in for geometric camera calibration,” Microsystems Nanoengineering 3, 201758 (2017).
[Crossref]

J. Li, F. Liu, S. Liu, and Z. Wang, “Optical Remote Sensor Calibration Using Micromachined Multiplexing Optical Focal Planes,” IEEE Sens. J. 17(6), 1663–1672 (2017).

J. Li and S. F. Tian, “An efficient method for measuring the internal parameters of optical cameras based on optical fibres,” Sci. Rep. 7(1), 12479 (2017).
[Crossref] [PubMed]

J. Li, Z. Liu, and F. Liu, “Using sub-resolution features for self-compensation of the modulation transfer function in remote sensing,” Opt. Express 25(4), 4018–4037 (2017).
[Crossref] [PubMed]

J. Li and Z. Liu, “Image quality enhancement method for on-orbit remote sensing cameras using invariable modulation transfer function,” Opt. Express 25(15), 17134–17149 (2017).
[Crossref] [PubMed]

J. Li, F. Xing, D. Chu, and Z. Liu, “High-Accuracy Self-Calibration for Smart, Optical Orbiting Payloads Integrated with Attitude and Position Determination,” Sensors (Basel) 16(8), 1176 (2016).
[Crossref] [PubMed]

J. Li, Y. Zhang, S. Liu, and Z. Wang, “Self-calibration method based on surface micromaching of light transceiver focal plane for optical camera,” Remote Sens. 8(11), 893 (2016).
[Crossref]

J. Li, F. Xing, and Z. You, “Space high-accuracy intelligence payload system with integrated attitude and position determination,” Instrument 2, 3–16 (2015).

Li, S.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

Lichti, D. D.

D. D. Lichti and C. Kim, “A comparison of three geometric self-calibration methods for range cameras,” Remote Sens. 3(5), 1014–1028 (2011).
[Crossref]

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” P&RS 65(4), 360–368 (2010).

Lin, P. D.

Lin, Z.

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of airbornelinear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of an airborne linear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

Liu, B.

B. Liu, J. Q. Jia, and Y. L. Ding, “Geometric calibration with angle measure for CCD aerial photogrammetric camera in laboratory,” Laser & Infrared 3, 019 (2010).

Liu, F.

J. Li, F. Liu, S. Liu, and Z. Wang, “Optical Remote Sensor Calibration Using Micromachined Multiplexing Optical Focal Planes,” IEEE Sens. J. 17(6), 1663–1672 (2017).

J. Li, Z. Liu, and F. Liu, “Compressive sampling based on frequency saliency for remote sensing imaging,” Sci. Rep. 7(1), 6539 (2017).
[Crossref] [PubMed]

J. Li, Z. Liu, and F. Liu, “Using sub-resolution features for self-compensation of the modulation transfer function in remote sensing,” Opt. Express 25(4), 4018–4037 (2017).
[Crossref] [PubMed]

Liu, S.

J. Li, F. Liu, S. Liu, and Z. Wang, “Optical Remote Sensor Calibration Using Micromachined Multiplexing Optical Focal Planes,” IEEE Sens. J. 17(6), 1663–1672 (2017).

J. Li, Y. Zhang, S. Liu, and Z. Wang, “Self-calibration method based on surface micromaching of light transceiver focal plane for optical camera,” Remote Sens. 8(11), 893 (2016).
[Crossref]

Liu, Z.

J. Li, Z. Liu, and F. Liu, “Compressive sampling based on frequency saliency for remote sensing imaging,” Sci. Rep. 7(1), 6539 (2017).
[Crossref] [PubMed]

J. Li and Z. Liu, “Optical focal plane based on MEMS light lead-in for geometric camera calibration,” Microsystems Nanoengineering 3, 201758 (2017).
[Crossref]

J. Li and Z. Liu, “Image quality enhancement method for on-orbit remote sensing cameras using invariable modulation transfer function,” Opt. Express 25(15), 17134–17149 (2017).
[Crossref] [PubMed]

J. Li, Z. Liu, and F. Liu, “Using sub-resolution features for self-compensation of the modulation transfer function in remote sensing,” Opt. Express 25(4), 4018–4037 (2017).
[Crossref] [PubMed]

J. Li, F. Xing, D. Chu, and Z. Liu, “High-Accuracy Self-Calibration for Smart, Optical Orbiting Payloads Integrated with Attitude and Position Determination,” Sensors (Basel) 16(8), 1176 (2016).
[Crossref] [PubMed]

Lu, Y.

Y. Zhang, M. Zheng, J. Xiong, Y. Lu, and X. Xiong, “On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets,” IEEE Trans. Geosci. Remote Sens. 52(1), 224–234 (2014).
[Crossref]

Lucchese, L.

L. Lucchese, “Geometric calibration of digital cameras through multi-view rectification,” Image Vis. Comput. 23(5), 517–539 (2005).
[Crossref]

Luong, Q. T.

Q. T. Luong and O. D. Faugeras, “Self-calibration of a moving camera from point correspondences and fundamental matrices,” Int. J. Comput. Vis. 22(3), 261–289 (1997).
[Crossref]

Mack, J.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Markelin, L.

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

Martel, A. R.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Martin, V.

V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
[Crossref]

Martínez-Carricondo, P.

F. Agüera-Vega, F. Carvajal-Ramírez, and P. Martínez-Carricondo, “Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle,” Measurement 98, 221–227 (2017).
[Crossref]

McCann, W. J.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Meurer, G.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Morgan, M.

A. F. Habib, M. Morgan, and Y. R. Lee, “Bundle adjustment with self–calibration using straight lines,” Photogramm. Rec. 17(100), 100635 (2002).
[Crossref]

Mulawa, D.

D. Mulawa, “On-orbit geometric calibration of the OrbView-3 high resolution imaging satellite. Int. Arch. Photogramm,” Remote Sens. Spat. Inf. Sci. 35, 1–6 (2004).

Novak, K.

K. Novak, “Application of digital cameras and GPS for aerial photogrammetric mapping,” Int. Arch. Photogramm. Remote Sens. 29, 5 (1993).

Nurminen, K.

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

Olli, S.

J. Heikkila and S. Olli, “A four-step camera calibration procedure with implicit image correction,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1997), pp.1106–1112.
[Crossref]

Pedersini, F.

F. Pedersini, A. Sarti, and S. Tubaro, “Accurate and simple geometric calibration of multi-camera systems,” Signal Process. 77(3), 309–334 (1999).
[Crossref]

Pivnenko, M.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

Ponce, J.

Y. Furukawa and J. Ponce, “Accurate camera calibration from multi-view stereo and bundle adjustment,” Int. J. Comput. Vis. 84(3), 257–268 (2009).
[Crossref]

Porez-Nadal, F.

V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
[Crossref]

Qi, W. J.

F. Yuan, W. J. Qi, and A. P. Fang, “Laboratory geometric calibration of areal digital aerial camera,” In IOP Conference Series: Earth and Environmental Science (2014), pp.012196.
[Crossref]

Ricolfe-Viala, C.

Sahin, C.

Sanchez-Salmeron, A. J.

Sarti, A.

F. Pedersini, A. Sarti, and S. Tubaro, “Accurate and simple geometric calibration of multi-camera systems,” Signal Process. 77(3), 309–334 (1999).
[Crossref]

Scheele, M.

Schischmanow, A.

Schwarz, K. P.

J. Skaloud, M. Cramer, and K. P. Schwarz, “Exterior orientation by direct measurement of camera position and attitude,” Int. Arch. Photogramm. Remote Sens. 31(B3), 125–130 (1996).

Shibasaki, R.

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of airbornelinear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of an airborne linear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

Shrestha, P.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Sirianni, M.

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Skaloud, J.

J. Skaloud, M. Cramer, and K. P. Schwarz, “Exterior orientation by direct measurement of camera position and attitude,” Int. Arch. Photogramm. Remote Sens. 31(B3), 125–130 (1996).

Smyth, M. M.

V. M. Jovanovic, M. A. Bull, M. M. Smyth, and J. Zong, “MISR in-flight camera geometric model calibration and georectification performance,” IEEE Trans. Geosci. Remote Sens. 40(7), 1512–1519 (2002).
[Crossref]

Sohn, J. I.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

Storey, J. C.

D. S. Lee, J. C. Storey, M. J. Choate, and R. W. Hayes, “Four years of Landsat-7 on-orbit geometric calibration and performance,” IEEE Trans. Geosci. Remote Sens. 42(12), 2786–2795 (2004).
[Crossref]

Su, H.

Su, X.

Sung, C. K.

Tadono, T.

J. Takaku and T. Tadono, “PRISM on-orbit geometric calibration and DSM performance,” IEEE Trans. Geosci. Remote Sens. 47(12), 4060–4073 (2009).
[Crossref]

Takaku, J.

J. Takaku and T. Tadono, “PRISM on-orbit geometric calibration and DSM performance,” IEEE Trans. Geosci. Remote Sens. 47(12), 4060–4073 (2009).
[Crossref]

Tao, C. V.

C. V. Tao, Y. Hu, and W. Jiang, “Photogrammetric exploitation of IKONOS imagery for mapping applications,” Int. J. Remote Sens. 25(14), 2833–2853 (2004).
[Crossref]

Thibault, S.

Tian, S. F.

J. Li and S. F. Tian, “An efficient method for measuring the internal parameters of optical cameras based on optical fibres,” Sci. Rep. 7(1), 12479 (2017).
[Crossref] [PubMed]

Torlegård, K.

K. Torlegård, “Sensors for photogrammetric mapping: Review and prospects,” P&RS 47(4), 241–262 (1992).

Tubaro, S.

F. Pedersini, A. Sarti, and S. Tubaro, “Accurate and simple geometric calibration of multi-camera systems,” Signal Process. 77(3), 309–334 (1999).
[Crossref]

Wang, M.

M. Wang, Y. Cheng, B. Yang, S. Jin, and H. Su, “On-orbit calibration approach for optical navigation camera in deep space exploration,” Opt. Express 24(5), 5536–5554 (2016).
[Crossref] [PubMed]

M. Wang, B. Yang, F. Hu, and X. Zang, “On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery,” Remote Sens. 6(5), 4391–4408 (2014).
[Crossref]

Wang, Z.

J. Li, F. Liu, S. Liu, and Z. Wang, “Optical Remote Sensor Calibration Using Micromachined Multiplexing Optical Focal Planes,” IEEE Sens. J. 17(6), 1663–1672 (2017).

J. Li, Y. Zhang, S. Liu, and Z. Wang, “Self-calibration method based on surface micromaching of light transceiver focal plane for optical camera,” Remote Sens. 8(11), 893 (2016).
[Crossref]

Z. Wang, “Removal of noise and radial lens distortion during calibration of computer vision systems,” Opt. Express 23(9), 11341–11356 (2015).
[Crossref] [PubMed]

Wong, K. K.

Wu, G. D.

G. D. Wu, B. Han, and X. He, “Calibration of geometric parameters of line-array CCD camera based on exact measuring angle in lab,” Opt. Precision Eng. 10, 029 (2007).

Xiao, Y. L.

Xing, F.

J. Li, F. Xing, D. Chu, and Z. Liu, “High-Accuracy Self-Calibration for Smart, Optical Orbiting Payloads Integrated with Attitude and Position Determination,” Sensors (Basel) 16(8), 1176 (2016).
[Crossref] [PubMed]

J. Li, F. Xing, and Z. You, “Space high-accuracy intelligence payload system with integrated attitude and position determination,” Instrument 2, 3–16 (2015).

Xiong, J.

Y. Zhang, M. Zheng, J. Xiong, Y. Lu, and X. Xiong, “On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets,” IEEE Trans. Geosci. Remote Sens. 52(1), 224–234 (2014).
[Crossref]

Xiong, X.

Y. Zhang, M. Zheng, J. Xiong, Y. Lu, and X. Xiong, “On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets,” IEEE Trans. Geosci. Remote Sens. 52(1), 224–234 (2014).
[Crossref]

Xu, Y.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

Yang, B.

M. Wang, Y. Cheng, B. Yang, S. Jin, and H. Su, “On-orbit calibration approach for optical navigation camera in deep space exploration,” Opt. Express 24(5), 5536–5554 (2016).
[Crossref] [PubMed]

M. Wang, B. Yang, F. Hu, and X. Zang, “On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery,” Remote Sens. 6(5), 4391–4408 (2014).
[Crossref]

Yilmaztürk, F.

You, Z.

J. Li, F. Xing, and Z. You, “Space high-accuracy intelligence payload system with integrated attitude and position determination,” Instrument 2, 3–16 (2015).

Yuan, F.

F. Yuan, W. J. Qi, and A. P. Fang, “Laboratory geometric calibration of areal digital aerial camera,” In IOP Conference Series: Earth and Environmental Science (2014), pp.012196.
[Crossref]

Zang, X.

M. Wang, B. Yang, F. Hu, and X. Zang, “On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery,” Remote Sens. 6(5), 4391–4408 (2014).
[Crossref]

Zeitler, W.

W. Zeitler, C. Doerstel, and K. Jacobsen, “Geometric calibration of the DMC: Method and Results,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 34(1), 324–332 (2002).

Zhang, Y.

J. Li and Y. Zhang, “Micro Coded-Aperture Lead-In of Light for Calibrating Remote Sensing Cameras,” IEEE Photonics Technol. Lett. 29(22), 1939–1942 (2017).
[Crossref]

J. Li, Y. Zhang, S. Liu, and Z. Wang, “Self-calibration method based on surface micromaching of light transceiver focal plane for optical camera,” Remote Sens. 8(11), 893 (2016).
[Crossref]

Y. Zhang, M. Zheng, J. Xiong, Y. Lu, and X. Xiong, “On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets,” IEEE Trans. Geosci. Remote Sens. 52(1), 224–234 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004).
[Crossref] [PubMed]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Zhao, S.

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

Zheng, M.

Y. Zhang, M. Zheng, J. Xiong, Y. Lu, and X. Xiong, “On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets,” IEEE Trans. Geosci. Remote Sens. 52(1), 224–234 (2014).
[Crossref]

Zong, J.

V. M. Jovanovic, M. A. Bull, M. M. Smyth, and J. Zong, “MISR in-flight camera geometric model calibration and georectification performance,” IEEE Trans. Geosci. Remote Sens. 40(7), 1512–1519 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Li and Y. Zhang, “Micro Coded-Aperture Lead-In of Light for Calibrating Remote Sensing Cameras,” IEEE Photonics Technol. Lett. 29(22), 1939–1942 (2017).
[Crossref]

IEEE Sens. J. (1)

J. Li, F. Liu, S. Liu, and Z. Wang, “Optical Remote Sensor Calibration Using Micromachined Multiplexing Optical Focal Planes,” IEEE Sens. J. 17(6), 1663–1672 (2017).

IEEE Trans. Geosci. Remote Sens. (4)

V. M. Jovanovic, M. A. Bull, M. M. Smyth, and J. Zong, “MISR in-flight camera geometric model calibration and georectification performance,” IEEE Trans. Geosci. Remote Sens. 40(7), 1512–1519 (2002).
[Crossref]

Y. Zhang, M. Zheng, J. Xiong, Y. Lu, and X. Xiong, “On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets,” IEEE Trans. Geosci. Remote Sens. 52(1), 224–234 (2014).
[Crossref]

D. S. Lee, J. C. Storey, M. J. Choate, and R. W. Hayes, “Four years of Landsat-7 on-orbit geometric calibration and performance,” IEEE Trans. Geosci. Remote Sens. 42(12), 2786–2795 (2004).
[Crossref]

J. Takaku and T. Tadono, “PRISM on-orbit geometric calibration and DSM performance,” IEEE Trans. Geosci. Remote Sens. 47(12), 4060–4073 (2009).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (3)

Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004).
[Crossref] [PubMed]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000).
[Crossref]

Image Vis. Comput. (1)

L. Lucchese, “Geometric calibration of digital cameras through multi-view rectification,” Image Vis. Comput. 23(5), 517–539 (2005).
[Crossref]

Instrument (1)

J. Li, F. Xing, and Z. You, “Space high-accuracy intelligence payload system with integrated attitude and position determination,” Instrument 2, 3–16 (2015).

Int. Arch. Photogramm. Remote Sens. (3)

K. Novak, “Application of digital cameras and GPS for aerial photogrammetric mapping,” Int. Arch. Photogramm. Remote Sens. 29, 5 (1993).

J. Skaloud, M. Cramer, and K. P. Schwarz, “Exterior orientation by direct measurement of camera position and attitude,” Int. Arch. Photogramm. Remote Sens. 31(B3), 125–130 (1996).

M. Kröpfl, E. Kruck, and M. Gruber, “Geometric calibration of the digital large format aerial camera UltraCamD,” Int. Arch. Photogramm. Remote Sens. 35(1), 42–44 (2004).

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci (3)

W. Zeitler, C. Doerstel, and K. Jacobsen, “Geometric calibration of the DMC: Method and Results,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 34(1), 324–332 (2002).

F. De Lussy, D. Greslou, C. Dechoz, V. Amberg, J. M. Delvit, L. Lebegue, and S. Fourest, “Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39(B1), 519–523 (2012).
[Crossref]

S. Fourest, P. Kubik, L. Lebègue, C. Déchoz, S. Lacherade, and G. Blanchet, “Star-based methods for Pleiades HR commissioning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 39, 513–518 (2012).

Int. J. Comput. Vis. (2)

Q. T. Luong and O. D. Faugeras, “Self-calibration of a moving camera from point correspondences and fundamental matrices,” Int. J. Comput. Vis. 22(3), 261–289 (1997).
[Crossref]

Y. Furukawa and J. Ponce, “Accurate camera calibration from multi-view stereo and bundle adjustment,” Int. J. Comput. Vis. 84(3), 257–268 (2009).
[Crossref]

Int. J. Remote Sens. (1)

C. V. Tao, Y. Hu, and W. Jiang, “Photogrammetric exploitation of IKONOS imagery for mapping applications,” Int. J. Remote Sens. 25(14), 2833–2853 (2004).
[Crossref]

Laser & Infrared (1)

B. Liu, J. Q. Jia, and Y. L. Ding, “Geometric calibration with angle measure for CCD aerial photogrammetric camera in laboratory,” Laser & Infrared 3, 019 (2010).

Light Sci. Appl. (1)

P. Shrestha, Y. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Measurement (1)

F. Agüera-Vega, F. Carvajal-Ramírez, and P. Martínez-Carricondo, “Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle,” Measurement 98, 221–227 (2017).
[Crossref]

Microsystems Nanoengineering (1)

J. Li and Z. Liu, “Optical focal plane based on MEMS light lead-in for geometric camera calibration,” Microsystems Nanoengineering 3, 201758 (2017).
[Crossref]

Nat. Commun. (1)

S. Li, Y. T. Chun, S. Zhao, H. Ahn, D. Ahn, J. I. Sohn, Y. Xu, P. Shrestha, M. Pivnenko, and D. Chu, “High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges,” Nat. Commun. 9(1), 393 (2018).
[Crossref] [PubMed]

Opt. Express (10)

Z. Wang, “Removal of noise and radial lens distortion during calibration of computer vision systems,” Opt. Express 23(9), 11341–11356 (2015).
[Crossref] [PubMed]

M. Wang, Y. Cheng, B. Yang, S. Jin, and H. Su, “On-orbit calibration approach for optical navigation camera in deep space exploration,” Opt. Express 24(5), 5536–5554 (2016).
[Crossref] [PubMed]

J. Li, Z. Liu, and F. Liu, “Using sub-resolution features for self-compensation of the modulation transfer function in remote sensing,” Opt. Express 25(4), 4018–4037 (2017).
[Crossref] [PubMed]

J. Li and Z. Liu, “Image quality enhancement method for on-orbit remote sensing cameras using invariable modulation transfer function,” Opt. Express 25(15), 17134–17149 (2017).
[Crossref] [PubMed]

K. S. Choi, E. Y. Lam, and K. K. Wong, “Automatic source camera identification using the intrinsic lens radial distortion,” Opt. Express 14(24), 11551–11565 (2006).
[Crossref] [PubMed]

P. D. Lin and C. K. Sung, “Comparing two new camera calibration methods with traditional pinhole calibrations,” Opt. Express 15(6), 3012–3022 (2007).
[Crossref] [PubMed]

M. Bauer, D. Griessbach, A. Hermerschmidt, S. Krüger, M. Scheele, and A. Schischmanow, “Geometrical camera calibration with diffractive optical elements,” Opt. Express 16(25), 20241–20248 (2008).
[Crossref] [PubMed]

B. Ergun, T. Kavzoglu, I. Colkesen, and C. Sahin, “Data filtering with support vector machines in geometric camera calibration,” Opt. Express 18(3), 1927–1936 (2010).
[Crossref] [PubMed]

C. Ricolfe-Viala and A. J. Sanchez-Salmeron, “Camera calibration under optimal conditions,” Opt. Express 19(11), 10769–10775 (2011).
[Crossref] [PubMed]

F. Yılmaztürk, “Full-automatic self-calibration of color digital cameras using color targets,” Opt. Express 19(19), 18164–18174 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Precision Eng. (1)

G. D. Wu, B. Han, and X. He, “Calibration of geometric parameters of line-array CCD camera based on exact measuring angle in lab,” Opt. Precision Eng. 10, 029 (2007).

P&RS (3)

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” P&RS 65(4), 360–368 (2010).

E. Honkavaara, E. Ahokas, J. Hyyppä, J. Jaakkola, H. Kaartinen, R. Kuittinen, L. Markelin, and K. Nurminen, “Geometric test field calibration of digital photogrammetric sensors,” P&RS 60(6), 387–399 (2006).

K. Torlegård, “Sensors for photogrammetric mapping: Review and prospects,” P&RS 47(4), 241–262 (1992).

PASP (1)

M. Sirianni, M. J. Jee, N. Benítez, J. P. Blakeslee, A. R. Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford, R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and W. J. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” PASP 117(836), 1049–1112 (2005).
[Crossref]

Photogramm. Eng. Remote Sensing (2)

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of an airborne linear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

T. Chen, R. Shibasaki, and Z. Lin, “A rigorous laboratory calibration method for interior orientation of airbornelinear push-broom camera,” Photogramm. Eng. Remote Sensing 73(4), 369–374 (2007).
[Crossref]

Photogramm. Rec. (1)

A. F. Habib, M. Morgan, and Y. R. Lee, “Bundle adjustment with self–calibration using straight lines,” Photogramm. Rec. 17(100), 100635 (2002).
[Crossref]

Proc. SPIE (1)

V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality commissioning: innovative radiometric calibration methods and results,” Proc. SPIE 8866, 886611 (2013).
[Crossref]

Remote Sens. (3)

D. D. Lichti and C. Kim, “A comparison of three geometric self-calibration methods for range cameras,” Remote Sens. 3(5), 1014–1028 (2011).
[Crossref]

M. Wang, B. Yang, F. Hu, and X. Zang, “On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery,” Remote Sens. 6(5), 4391–4408 (2014).
[Crossref]

J. Li, Y. Zhang, S. Liu, and Z. Wang, “Self-calibration method based on surface micromaching of light transceiver focal plane for optical camera,” Remote Sens. 8(11), 893 (2016).
[Crossref]

Remote Sens. Spat. Inf. Sci. (1)

D. Mulawa, “On-orbit geometric calibration of the OrbView-3 high resolution imaging satellite. Int. Arch. Photogramm,” Remote Sens. Spat. Inf. Sci. 35, 1–6 (2004).

Sci. Rep. (2)

J. Li and S. F. Tian, “An efficient method for measuring the internal parameters of optical cameras based on optical fibres,” Sci. Rep. 7(1), 12479 (2017).
[Crossref] [PubMed]

J. Li, Z. Liu, and F. Liu, “Compressive sampling based on frequency saliency for remote sensing imaging,” Sci. Rep. 7(1), 6539 (2017).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. Li, F. Xing, D. Chu, and Z. Liu, “High-Accuracy Self-Calibration for Smart, Optical Orbiting Payloads Integrated with Attitude and Position Determination,” Sensors (Basel) 16(8), 1176 (2016).
[Crossref] [PubMed]

Signal Process. (1)

F. Pedersini, A. Sarti, and S. Tubaro, “Accurate and simple geometric calibration of multi-camera systems,” Signal Process. 77(3), 309–334 (1999).
[Crossref]

Other (7)

F. Yuan, W. Qi, A. Fang, P. Ding, and Y. U. Xiujuan, “Laboratory geometric calibration of non-metric digital camera,” in MIPPR 2013: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications (2013), Vol. 8921, p. 89210A.

J. M. Delvit, D. Greslou, V. Amberg, C. Dechoz, F. de Lussy, L. Lebegue, and L. Bernard, “Attitude assessment using Pleiades-HR capabilities,” in Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2012).
[Crossref]

F. Yuan, W. J. Qi, and A. P. Fang, “Laboratory geometric calibration of areal digital aerial camera,” In IOP Conference Series: Earth and Environmental Science (2014), pp.012196.
[Crossref]

L. I. N. Zongjian, “UAV for mapping-low altitude photogrammetric survey,” in International Archives of Photogrammetry and Remote Sensing (2008), pp.1183–1186.

P. Grattoni, G. Pettiti, F. Pollastri, A. Cumani, and A. Guiducci, “Geometric camera calibration: a comparisons of methods,” In proceedings of IEEE conference on Advanced Robotics,1991.'Robots in Unstructured Environments', 91 ICAR. (IEEE, 1991), pp.1775–1779.

J. Heikkila and S. Olli, “A four-step camera calibration procedure with implicit image correction,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1997), pp.1106–1112.
[Crossref]

S. S. Haykin, Neural Networks and Learning Machines, Vol. 3 (Pearson, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Geometric collinearity relationships of remote sensing imaging
Fig. 2
Fig. 2 Sketch of the original structure light micro-transceiver (a). It is composed of LED, two lenses, encoded aperture mask, CMOS sensor, and beam splitter. The available integration position in the camera for the light micro-transceiver (b), where the light micro-transceiver can be installed in the truss of the secondary mirror or the staggered area on the focal plane of the camera. The focal plane assembly of the camera (c), where the CCDs are arranged as a staggered way.
Fig. 3
Fig. 3 Calibration model using a light micro-transceiver (a) and the imaging position of a virtual point (b).
Fig. 4
Fig. 4 The flow chart of the supervised deep learning with the back-propagation. After a training example is presented on the deep neural network, the forward and backward computations are iterated. In the forward pass, the synaptic weights remain unaltered throughout the network, and the function signals of the network are computed on a neuron-by-neuron basis. The backward pass starts at the output layer by passing the error signals leftward through the network, layer-by-layer, and recursively computing the local gradient for each neuron by propagating the changes to all synaptic weights in the network.
Fig. 5
Fig. 5 (a) Supervised training network for calculating internal parameters with two hidden layers, (b) single node structure of output neuron k connected to hidden neuron j.
Fig. 6
Fig. 6 (a) Schematic overview of the EAM and (b) diffraction model of the EAM with a square aperture on the mask plane.
Fig. 7
Fig. 7 (a) Observed profiles at different aperture sizes (the unit is pixel), and (b) observed intensity profiles at different aperture sizes.
Fig. 8
Fig. 8 Relationships among the diameter of grids, covered pixel number and the aperture size, where the lowest value is the optimized encoded aperture distance.
Fig. 9
Fig. 9 Schematic overview of calibrating of RSC optical system with the light micro-transceiver (a), the single pixel illumination method (b), and the setup of two methods (c), where L1 to L2 are the lenses; M1 is the EAM; C1 is the RSC optical system; F1 is the dichroic filter; BS is the beam splitter; CMOS is the image sensor; turntable α implements the horizontal rotation to calibrate the horizontal coordinates of the principal point, and turntable β implements the vertical rotation to calibrate the vertical coordinates of the principal point.
Fig. 10
Fig. 10 (a) Observed light micro-transceiver calibration grids, and (b) magnified grid and extraction results using a centroid algorithm.
Fig. 11
Fig. 11 The measurement error of the principal distance of the RSC.

Tables (3)

Tables Icon

Algorithm 1 Algorithm 1. Calculating the internal parameters with deep learning

Tables Icon

Table 1 Camera parameters used in the calibration experiments.

Tables Icon

Table 2 Calibrated internal parameters obtained with two different methods.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

r I G = r c G + S i R c G ( ω,φ,κ ) r i c
[ X I Y I Z I ]=[ X o Y o Z o ]+ S i R c G ( ω,φ,κ )[ x i x p dis t x y i y p dis t y c ]
[ x i x p dis t x y i y p dis t y c ]= 1 S i R c G ( ω,φ,κ ) [ X I - X o Y I - Y o Z I - Z o ]
f Z = u X = v Y
[ u v 1 ]=[ f 0 0 0 f 0 0 0 1 ][ X Z Y Z 1 ]
[ u v 1 ]=[ f 0 u 0 0 f v 0 0 0 1 ][ X Z Y Z 1 ]
[ u ^ v ^ ]=[ u v ]+Δ(u,v)=[ u v ]+KΔ( α,β )
Δ(α,β)= [ α β ] T ( k 1 r 2 + k 2 r 4 + )
[ u ^ v ^ ]=[ u 0 v 0 ]+f[ α β ]( 1+ k 1 r 2 + k 2 r 4 + )
v (1) (n)= w 0 (1) + w 1 (1) x 1 (1) (n)+ w 2 (1) x 2 (1) (n)+ w 3 (1) x 3 (1) (n)
v (2) (n)= w 0 (2) + w 1 (2) x 1 (2) (n)+ w 2 (2) x 2 (2) (n)+ w 3 (2) x 3 (2) (n)
e (1) (n)= jC y j (1) d (1) (n)
e (2) (n)= jC y j (2) d (2) (n)
E(n)= 1 2 ( e (1) (n) ) 2 + 1 2 ( e (2) (n) ) 2
( ν j2 (1) , ν j2 (2) )=( i=1 m w ji (1) y i (1) , i=1 m w ji (2) y i (2) )
( y j2 (1) , y j2 (2) )=( φ j ( ν j2 (1) ), φ j ( ν j2 (2) ) )
( Δ w ji (1) ,Δ w ji (2) )=( η δ j (1) ( n ) y i (1) ( n ),η δ j (2) ( n ) y i (2) ( n ) )
( δ j (1) ( n ), δ j (2) ( n ) )=( e (1) φ j ( ν j (1) (n)), e (2) φ j ( ν j (1) (n)) )
φ j ( ν j (1) (n))= y j (1) (n) ν j (1) (n) , φ j ( ν j (2) (n))= y j (2) (n) ν j (2) (n)
δ j (T) ( n )= φ j ( ν j (1) (n)) k δ k (1) ( n ) w kj (1) ( n )
E ˜ =Aexp(i k · r )
E ˜ =Aexp{ ik[ x 0 cos( a )+ y 0 cos( b ) ] }
E ˜ ( P )=C K( θ ) E ˜ ( Q ) exp( ikr ) r dσ
E ˜ ( P )= A iλ aperture e ik[ x 0 cos(a)+ y 0 cos(b)+r ] r dσ
f= n× ( y i tan ω i ) tan ω i y i n tan 2 ω i ( tan ω i ) 2
y 0 = y i ( tan ω i )f n

Metrics