Abstract

A dimensionless parameter of melting energy increment (ψ) was employed to quantify the synergic effect in laser-arc hybrid welding. The greater of the ψ, the stronger of the synergic effect. The ψ at different welding parameters of laser-tungsten inert gas and laser-metal inert gas hybrid welding was calculated and compared. The former had a stronger synergic effect than the latter because the change range of ψ was far wider than that of the latter, which was −59.3-83.6% and 1-23%, respectively. The differences were discussed according to the electrode mode and the migration behavior of charged particles in the plasmas.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser

Mingjun Zhang, Genyu Chen, Yu Zhou, and Shichun Li
Opt. Express 21(17) 19997-20004 (2013)

Status analysis of keyhole bottom in laser-MAG hybrid welding process

Lin Wang, Xiangdong Gao, and Ziqin Chen
Opt. Express 26(1) 347-355 (2018)

Optical emissions from weld arcs and their effects on the performance of welding robot vision systems

Alan L. Lenef and Chester S. Gardner
Appl. Opt. 24(16) 2587-2595 (1985)

References

  • View by:
  • |
  • |
  • |

  1. J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” Int. J. Adv. Manuf. Technol. 94(5–8), 1825–1847 (2018).
    [Crossref]
  2. Y. Zhang, S. Han, J. Cheon, S. Na, and X. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
    [Crossref]
  3. M. Gao, Y. Kawahito, and S. Kajii, “Observation and understanding in laser welding of pure titanium at subatmospheric pressure,” Opt. Express 25(12), 13539–13548 (2017).
    [Crossref] [PubMed]
  4. J. Wang, Q. Sun, T. Zhang, Y. Liu, and J. Feng, “Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW,” J. Mater. Process. Technol. 254, 254–264 (2018).
    [Crossref]
  5. S. Manikandan, D. Sivakumar, K. Rao, and M. Kamaraj, “Effect of enhanced cooling on microstructure evolution of alloy 718 using the gas tungsten arc welding process,” Weld. World 60(5), 899–914 (2016).
    [Crossref]
  6. Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, “Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding,” J. Mater. Process. Technol. 255, 161–174 (2018).
    [Crossref]
  7. L. Wang, X. Gao, and Z. Chen, “Status analysis of keyhole bottom in laser-MAG hybrid welding process,” Opt. Express 26(1), 347–355 (2018).
    [Crossref] [PubMed]
  8. K. Hao, C. Zhang, X. Zeng, and M. Gao, “Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel,” J. Mater. Process. Technol. 245, 7–14 (2017).
    [Crossref]
  9. C. Zhang, G. Li, M. Gao, and X. Zeng, “Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel,” Materials (Basel) 10(2), 106 (2017).
    [Crossref] [PubMed]
  10. J. Zou, S. Wu, R. Xiao, and F. Li, “Effects of a paraxial TIG arc on high-power fiber laser welding,” Mater. Des. 86, 321–327 (2015).
    [Crossref]
  11. M. Abilash, K. Senthil, G. Padmanabham, R. Padmanaban, and S. Thirumalini, “The effect of welding direction in CO2 Laser-MIG hybrid welding of mild steel plates,” in IOP Conf. Ser. Mater. Sci. Eng. (2016), paper 012031.
  12. A. Mahrle, S. Rose, E. Beyer, and U. Füssel, “Crucial role of beam spot position in laser assisted plasma arc welding,” Sci. Technol. Weld. Join. 19(2), 119–124 (2014).
    [Crossref]
  13. K. Hao, M. Gong, Y. Xie, M. Gao, and X. Zeng, “Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper,” Opt. Laser Technol. 102, 124–129 (2018).
    [Crossref]
  14. I. Bunaziv, O. Akselsen, J. Frostevarg, and A. Kaplan, “Deep penetration fiber laser-arc hybrid welding of thick HSLA steel,” J. Mater. Process. Technol. 256, 216–228 (2018).
    [Crossref]
  15. I. Bunaziv, J. Frostevarg, O. Akselsen, and A. Kaplan, “Process stability during fiber laser-arc hybrid welding of thick steel plates,” Opt. Lasers Eng. 102, 34–44 (2018).
    [Crossref]
  16. B. Hu and G. den Ouden, “Synergetic effects of hybrid laser/arc welding,” Sci. Technol. Weld. Join. 10(4), 427–431 (2005).
    [Crossref]
  17. M. Gao, X. Zeng, and Q. Hu, “Effects of welding parameters on melting energy of CO2 laser-GMA hybrid welding,” Sci. Technol. Weld. Join. 11(5), 517–522 (2006).
    [Crossref]
  18. J. Zhou, H. Tsai, P. Wang, R. Menassa, and S. Marin, “Modeling of hybrid laser-MIG keyhole welding process,” in Proceedings of ICALEO (2003), pp. 135–141.
  19. J. Zhou, W. Zhang, H. Tsai, P. Wang, and R. Menassa, “Modeling the transport phenomena during hybrid laser-MIG welding process,” in Proceeding of IMECE (2003), pp. 1–8.
    [Crossref]
  20. Y. Zhao and H. Chung, “Influence of power source dynamics on metal and heat transfer behaviors in pulsed gas metal arc welding,” Int. J. Heat Mass Transf. 121, 887–899 (2018).
    [Crossref]
  21. H. Ming, J. Wang, and E. Han, “Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods,” Mater. Charact. 139, 186–196 (2018).
    [Crossref]
  22. M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
    [Crossref] [PubMed]
  23. J. Zou, N. Ha, R. Xiao, Q. Wu, and Q. Zhang, “Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding,” Opt. Express 25(15), 17650–17656 (2017).
    [Crossref] [PubMed]
  24. M. Torkamany, F. Malek, R. Poursalehi, and A. Kaplan, “Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V,” Opt. Lasers Eng. 79, 9–15 (2016).
    [Crossref]
  25. M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
    [Crossref]
  26. H. Wang, M. Nakanishi, and Y. Kawahito, “Dynamic balance of heat and mass in high power density laser welding,” Opt. Express 26(5), 6392–6399 (2018).
    [Crossref] [PubMed]
  27. B. Acherjee, “Hybrid laser arc welding: State-of-art review,” Opt. Laser Technol. 99, 60–71 (2018).
    [Crossref]
  28. L. Hu, J. Huang, C. Liu, C. Xu, and Y. Zhao, “Effects of coupling between the laser plasma and two arcs on metal transfer in CO2 laser double-wire MIG hybrid welding,” Opt. Laser Technol. 105, 152–161 (2018).
    [Crossref]
  29. X. Zhan, C. Zhang, Y. Liu, and L. Xia, “The influence of energy distribution factor during laser-MIG hybrid welding of Invar alloy,” Int. J. Adv. Manuf. Technol. 93(9–12), 4305–4316 (2017).
    [Crossref]
  30. B. Hu and G. den Ouden, “Laser induced stabilisation of the welding arc,” Sci. Technol. Weld. Join. 10(1), 76–81 (2005).
    [Crossref]
  31. F. Olsen, Hybrid Laser-arc Welding (Cambridge, 2009).
  32. K. Kang, Y. Kawahito, M. Gao, and X. Zeng, “Effects of laser-arc distance on corrosion behavior of single-pass hybrid welded stainless clad steel plate,” Mater. Des. 123, 80–88 (2017).
    [Crossref]
  33. F. Vollertsen and C. Thomy, “Magnetic stirring during laser welding of aluminum,” in Proceedings of ICALEO (2004), pp.16–24.
  34. H. Tse, H. Man, and T. Yue, “Effect of magnetic and electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 32(1), 55–63 (1999).
    [Crossref]
  35. H. Tse, H. Man, and T. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33(3), 181–189 (2000).
    [Crossref]
  36. M. Kern, M. Beck, and P. Berger, “Process stabilizing potential of shielding gas mixtures,” Proc. SPIE 3092, 526–529 (1996).
  37. M. Zhang, K. Tang, J. Zhang, Y. Hu, and G. Chen, “Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates,” Int. J. Adv. Manuf. Technol. 96(1–4), 491–501 (2018).

2018 (13)

J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” Int. J. Adv. Manuf. Technol. 94(5–8), 1825–1847 (2018).
[Crossref]

J. Wang, Q. Sun, T. Zhang, Y. Liu, and J. Feng, “Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW,” J. Mater. Process. Technol. 254, 254–264 (2018).
[Crossref]

Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, “Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding,” J. Mater. Process. Technol. 255, 161–174 (2018).
[Crossref]

L. Wang, X. Gao, and Z. Chen, “Status analysis of keyhole bottom in laser-MAG hybrid welding process,” Opt. Express 26(1), 347–355 (2018).
[Crossref] [PubMed]

K. Hao, M. Gong, Y. Xie, M. Gao, and X. Zeng, “Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper,” Opt. Laser Technol. 102, 124–129 (2018).
[Crossref]

I. Bunaziv, O. Akselsen, J. Frostevarg, and A. Kaplan, “Deep penetration fiber laser-arc hybrid welding of thick HSLA steel,” J. Mater. Process. Technol. 256, 216–228 (2018).
[Crossref]

I. Bunaziv, J. Frostevarg, O. Akselsen, and A. Kaplan, “Process stability during fiber laser-arc hybrid welding of thick steel plates,” Opt. Lasers Eng. 102, 34–44 (2018).
[Crossref]

Y. Zhao and H. Chung, “Influence of power source dynamics on metal and heat transfer behaviors in pulsed gas metal arc welding,” Int. J. Heat Mass Transf. 121, 887–899 (2018).
[Crossref]

H. Ming, J. Wang, and E. Han, “Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods,” Mater. Charact. 139, 186–196 (2018).
[Crossref]

H. Wang, M. Nakanishi, and Y. Kawahito, “Dynamic balance of heat and mass in high power density laser welding,” Opt. Express 26(5), 6392–6399 (2018).
[Crossref] [PubMed]

B. Acherjee, “Hybrid laser arc welding: State-of-art review,” Opt. Laser Technol. 99, 60–71 (2018).
[Crossref]

L. Hu, J. Huang, C. Liu, C. Xu, and Y. Zhao, “Effects of coupling between the laser plasma and two arcs on metal transfer in CO2 laser double-wire MIG hybrid welding,” Opt. Laser Technol. 105, 152–161 (2018).
[Crossref]

M. Zhang, K. Tang, J. Zhang, Y. Hu, and G. Chen, “Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates,” Int. J. Adv. Manuf. Technol. 96(1–4), 491–501 (2018).

2017 (7)

X. Zhan, C. Zhang, Y. Liu, and L. Xia, “The influence of energy distribution factor during laser-MIG hybrid welding of Invar alloy,” Int. J. Adv. Manuf. Technol. 93(9–12), 4305–4316 (2017).
[Crossref]

K. Kang, Y. Kawahito, M. Gao, and X. Zeng, “Effects of laser-arc distance on corrosion behavior of single-pass hybrid welded stainless clad steel plate,” Mater. Des. 123, 80–88 (2017).
[Crossref]

J. Zou, N. Ha, R. Xiao, Q. Wu, and Q. Zhang, “Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding,” Opt. Express 25(15), 17650–17656 (2017).
[Crossref] [PubMed]

K. Hao, C. Zhang, X. Zeng, and M. Gao, “Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel,” J. Mater. Process. Technol. 245, 7–14 (2017).
[Crossref]

C. Zhang, G. Li, M. Gao, and X. Zeng, “Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel,” Materials (Basel) 10(2), 106 (2017).
[Crossref] [PubMed]

Y. Zhang, S. Han, J. Cheon, S. Na, and X. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

M. Gao, Y. Kawahito, and S. Kajii, “Observation and understanding in laser welding of pure titanium at subatmospheric pressure,” Opt. Express 25(12), 13539–13548 (2017).
[Crossref] [PubMed]

2016 (2)

S. Manikandan, D. Sivakumar, K. Rao, and M. Kamaraj, “Effect of enhanced cooling on microstructure evolution of alloy 718 using the gas tungsten arc welding process,” Weld. World 60(5), 899–914 (2016).
[Crossref]

M. Torkamany, F. Malek, R. Poursalehi, and A. Kaplan, “Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V,” Opt. Lasers Eng. 79, 9–15 (2016).
[Crossref]

2015 (2)

M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

J. Zou, S. Wu, R. Xiao, and F. Li, “Effects of a paraxial TIG arc on high-power fiber laser welding,” Mater. Des. 86, 321–327 (2015).
[Crossref]

2014 (1)

A. Mahrle, S. Rose, E. Beyer, and U. Füssel, “Crucial role of beam spot position in laser assisted plasma arc welding,” Sci. Technol. Weld. Join. 19(2), 119–124 (2014).
[Crossref]

2013 (1)

2006 (1)

M. Gao, X. Zeng, and Q. Hu, “Effects of welding parameters on melting energy of CO2 laser-GMA hybrid welding,” Sci. Technol. Weld. Join. 11(5), 517–522 (2006).
[Crossref]

2005 (2)

B. Hu and G. den Ouden, “Laser induced stabilisation of the welding arc,” Sci. Technol. Weld. Join. 10(1), 76–81 (2005).
[Crossref]

B. Hu and G. den Ouden, “Synergetic effects of hybrid laser/arc welding,” Sci. Technol. Weld. Join. 10(4), 427–431 (2005).
[Crossref]

2000 (1)

H. Tse, H. Man, and T. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33(3), 181–189 (2000).
[Crossref]

1999 (1)

H. Tse, H. Man, and T. Yue, “Effect of magnetic and electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 32(1), 55–63 (1999).
[Crossref]

1996 (1)

M. Kern, M. Beck, and P. Berger, “Process stabilizing potential of shielding gas mixtures,” Proc. SPIE 3092, 526–529 (1996).

Acherjee, B.

B. Acherjee, “Hybrid laser arc welding: State-of-art review,” Opt. Laser Technol. 99, 60–71 (2018).
[Crossref]

Akselsen, O.

I. Bunaziv, O. Akselsen, J. Frostevarg, and A. Kaplan, “Deep penetration fiber laser-arc hybrid welding of thick HSLA steel,” J. Mater. Process. Technol. 256, 216–228 (2018).
[Crossref]

I. Bunaziv, J. Frostevarg, O. Akselsen, and A. Kaplan, “Process stability during fiber laser-arc hybrid welding of thick steel plates,” Opt. Lasers Eng. 102, 34–44 (2018).
[Crossref]

Beck, M.

M. Kern, M. Beck, and P. Berger, “Process stabilizing potential of shielding gas mixtures,” Proc. SPIE 3092, 526–529 (1996).

Berger, P.

M. Kern, M. Beck, and P. Berger, “Process stabilizing potential of shielding gas mixtures,” Proc. SPIE 3092, 526–529 (1996).

Beyer, E.

A. Mahrle, S. Rose, E. Beyer, and U. Füssel, “Crucial role of beam spot position in laser assisted plasma arc welding,” Sci. Technol. Weld. Join. 19(2), 119–124 (2014).
[Crossref]

Bunaziv, I.

I. Bunaziv, J. Frostevarg, O. Akselsen, and A. Kaplan, “Process stability during fiber laser-arc hybrid welding of thick steel plates,” Opt. Lasers Eng. 102, 34–44 (2018).
[Crossref]

I. Bunaziv, O. Akselsen, J. Frostevarg, and A. Kaplan, “Deep penetration fiber laser-arc hybrid welding of thick HSLA steel,” J. Mater. Process. Technol. 256, 216–228 (2018).
[Crossref]

Chen, C.

M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Chen, G.

M. Zhang, K. Tang, J. Zhang, Y. Hu, and G. Chen, “Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates,” Int. J. Adv. Manuf. Technol. 96(1–4), 491–501 (2018).

M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
[Crossref] [PubMed]

Chen, Z.

Cheon, J.

Y. Zhang, S. Han, J. Cheon, S. Na, and X. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

Chung, H.

Y. Zhao and H. Chung, “Influence of power source dynamics on metal and heat transfer behaviors in pulsed gas metal arc welding,” Int. J. Heat Mass Transf. 121, 887–899 (2018).
[Crossref]

den Ouden, G.

B. Hu and G. den Ouden, “Laser induced stabilisation of the welding arc,” Sci. Technol. Weld. Join. 10(1), 76–81 (2005).
[Crossref]

B. Hu and G. den Ouden, “Synergetic effects of hybrid laser/arc welding,” Sci. Technol. Weld. Join. 10(4), 427–431 (2005).
[Crossref]

Feng, J.

J. Wang, Q. Sun, T. Zhang, Y. Liu, and J. Feng, “Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW,” J. Mater. Process. Technol. 254, 254–264 (2018).
[Crossref]

Frostevarg, J.

I. Bunaziv, J. Frostevarg, O. Akselsen, and A. Kaplan, “Process stability during fiber laser-arc hybrid welding of thick steel plates,” Opt. Lasers Eng. 102, 34–44 (2018).
[Crossref]

I. Bunaziv, O. Akselsen, J. Frostevarg, and A. Kaplan, “Deep penetration fiber laser-arc hybrid welding of thick HSLA steel,” J. Mater. Process. Technol. 256, 216–228 (2018).
[Crossref]

Füssel, U.

A. Mahrle, S. Rose, E. Beyer, and U. Füssel, “Crucial role of beam spot position in laser assisted plasma arc welding,” Sci. Technol. Weld. Join. 19(2), 119–124 (2014).
[Crossref]

Gao, M.

K. Hao, M. Gong, Y. Xie, M. Gao, and X. Zeng, “Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper,” Opt. Laser Technol. 102, 124–129 (2018).
[Crossref]

M. Gao, Y. Kawahito, and S. Kajii, “Observation and understanding in laser welding of pure titanium at subatmospheric pressure,” Opt. Express 25(12), 13539–13548 (2017).
[Crossref] [PubMed]

K. Hao, C. Zhang, X. Zeng, and M. Gao, “Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel,” J. Mater. Process. Technol. 245, 7–14 (2017).
[Crossref]

C. Zhang, G. Li, M. Gao, and X. Zeng, “Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel,” Materials (Basel) 10(2), 106 (2017).
[Crossref] [PubMed]

K. Kang, Y. Kawahito, M. Gao, and X. Zeng, “Effects of laser-arc distance on corrosion behavior of single-pass hybrid welded stainless clad steel plate,” Mater. Des. 123, 80–88 (2017).
[Crossref]

M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

M. Gao, X. Zeng, and Q. Hu, “Effects of welding parameters on melting energy of CO2 laser-GMA hybrid welding,” Sci. Technol. Weld. Join. 11(5), 517–522 (2006).
[Crossref]

Gao, X.

L. Wang, X. Gao, and Z. Chen, “Status analysis of keyhole bottom in laser-MAG hybrid welding process,” Opt. Express 26(1), 347–355 (2018).
[Crossref] [PubMed]

Y. Zhang, S. Han, J. Cheon, S. Na, and X. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

Gong, M.

K. Hao, M. Gong, Y. Xie, M. Gao, and X. Zeng, “Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper,” Opt. Laser Technol. 102, 124–129 (2018).
[Crossref]

Guo, L.

M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Ha, N.

Han, E.

H. Ming, J. Wang, and E. Han, “Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods,” Mater. Charact. 139, 186–196 (2018).
[Crossref]

Han, S.

Y. Zhang, S. Han, J. Cheon, S. Na, and X. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

Hao, K.

K. Hao, M. Gong, Y. Xie, M. Gao, and X. Zeng, “Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper,” Opt. Laser Technol. 102, 124–129 (2018).
[Crossref]

K. Hao, C. Zhang, X. Zeng, and M. Gao, “Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel,” J. Mater. Process. Technol. 245, 7–14 (2017).
[Crossref]

Hu, B.

B. Hu and G. den Ouden, “Synergetic effects of hybrid laser/arc welding,” Sci. Technol. Weld. Join. 10(4), 427–431 (2005).
[Crossref]

B. Hu and G. den Ouden, “Laser induced stabilisation of the welding arc,” Sci. Technol. Weld. Join. 10(1), 76–81 (2005).
[Crossref]

Hu, L.

L. Hu, J. Huang, C. Liu, C. Xu, and Y. Zhao, “Effects of coupling between the laser plasma and two arcs on metal transfer in CO2 laser double-wire MIG hybrid welding,” Opt. Laser Technol. 105, 152–161 (2018).
[Crossref]

Hu, M.

M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Hu, Q.

M. Gao, X. Zeng, and Q. Hu, “Effects of welding parameters on melting energy of CO2 laser-GMA hybrid welding,” Sci. Technol. Weld. Join. 11(5), 517–522 (2006).
[Crossref]

Hu, S.

Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, “Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding,” J. Mater. Process. Technol. 255, 161–174 (2018).
[Crossref]

Hu, Y.

M. Zhang, K. Tang, J. Zhang, Y. Hu, and G. Chen, “Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates,” Int. J. Adv. Manuf. Technol. 96(1–4), 491–501 (2018).

Huang, J.

L. Hu, J. Huang, C. Liu, C. Xu, and Y. Zhao, “Effects of coupling between the laser plasma and two arcs on metal transfer in CO2 laser double-wire MIG hybrid welding,” Opt. Laser Technol. 105, 152–161 (2018).
[Crossref]

Kajii, S.

Kamaraj, M.

S. Manikandan, D. Sivakumar, K. Rao, and M. Kamaraj, “Effect of enhanced cooling on microstructure evolution of alloy 718 using the gas tungsten arc welding process,” Weld. World 60(5), 899–914 (2016).
[Crossref]

Kang, K.

K. Kang, Y. Kawahito, M. Gao, and X. Zeng, “Effects of laser-arc distance on corrosion behavior of single-pass hybrid welded stainless clad steel plate,” Mater. Des. 123, 80–88 (2017).
[Crossref]

Kaplan, A.

I. Bunaziv, O. Akselsen, J. Frostevarg, and A. Kaplan, “Deep penetration fiber laser-arc hybrid welding of thick HSLA steel,” J. Mater. Process. Technol. 256, 216–228 (2018).
[Crossref]

I. Bunaziv, J. Frostevarg, O. Akselsen, and A. Kaplan, “Process stability during fiber laser-arc hybrid welding of thick steel plates,” Opt. Lasers Eng. 102, 34–44 (2018).
[Crossref]

M. Torkamany, F. Malek, R. Poursalehi, and A. Kaplan, “Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V,” Opt. Lasers Eng. 79, 9–15 (2016).
[Crossref]

Kawahito, Y.

Kern, M.

M. Kern, M. Beck, and P. Berger, “Process stabilizing potential of shielding gas mixtures,” Proc. SPIE 3092, 526–529 (1996).

Li, F.

J. Zou, S. Wu, R. Xiao, and F. Li, “Effects of a paraxial TIG arc on high-power fiber laser welding,” Mater. Des. 86, 321–327 (2015).
[Crossref]

Li, G.

C. Zhang, G. Li, M. Gao, and X. Zeng, “Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel,” Materials (Basel) 10(2), 106 (2017).
[Crossref] [PubMed]

Li, S.

Liang, Y.

Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, “Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding,” J. Mater. Process. Technol. 255, 161–174 (2018).
[Crossref]

Liu, C.

L. Hu, J. Huang, C. Liu, C. Xu, and Y. Zhao, “Effects of coupling between the laser plasma and two arcs on metal transfer in CO2 laser double-wire MIG hybrid welding,” Opt. Laser Technol. 105, 152–161 (2018).
[Crossref]

Liu, Y.

J. Wang, Q. Sun, T. Zhang, Y. Liu, and J. Feng, “Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW,” J. Mater. Process. Technol. 254, 254–264 (2018).
[Crossref]

X. Zhan, C. Zhang, Y. Liu, and L. Xia, “The influence of energy distribution factor during laser-MIG hybrid welding of Invar alloy,” Int. J. Adv. Manuf. Technol. 93(9–12), 4305–4316 (2017).
[Crossref]

Mahrle, A.

A. Mahrle, S. Rose, E. Beyer, and U. Füssel, “Crucial role of beam spot position in laser assisted plasma arc welding,” Sci. Technol. Weld. Join. 19(2), 119–124 (2014).
[Crossref]

Malek, F.

M. Torkamany, F. Malek, R. Poursalehi, and A. Kaplan, “Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V,” Opt. Lasers Eng. 79, 9–15 (2016).
[Crossref]

Man, H.

H. Tse, H. Man, and T. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33(3), 181–189 (2000).
[Crossref]

H. Tse, H. Man, and T. Yue, “Effect of magnetic and electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 32(1), 55–63 (1999).
[Crossref]

Manikandan, S.

S. Manikandan, D. Sivakumar, K. Rao, and M. Kamaraj, “Effect of enhanced cooling on microstructure evolution of alloy 718 using the gas tungsten arc welding process,” Weld. World 60(5), 899–914 (2016).
[Crossref]

Marin, S.

J. Zhou, H. Tsai, P. Wang, R. Menassa, and S. Marin, “Modeling of hybrid laser-MIG keyhole welding process,” in Proceedings of ICALEO (2003), pp. 135–141.

Menassa, R.

J. Zhou, H. Tsai, P. Wang, R. Menassa, and S. Marin, “Modeling of hybrid laser-MIG keyhole welding process,” in Proceedings of ICALEO (2003), pp. 135–141.

J. Zhou, W. Zhang, H. Tsai, P. Wang, and R. Menassa, “Modeling the transport phenomena during hybrid laser-MIG welding process,” in Proceeding of IMECE (2003), pp. 1–8.
[Crossref]

Ming, H.

H. Ming, J. Wang, and E. Han, “Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods,” Mater. Charact. 139, 186–196 (2018).
[Crossref]

Na, S.

Y. Zhang, S. Han, J. Cheon, S. Na, and X. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

Nakanishi, M.

Pang, J.

Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, “Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding,” J. Mater. Process. Technol. 255, 161–174 (2018).
[Crossref]

Papacharalampopoulos, A.

J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” Int. J. Adv. Manuf. Technol. 94(5–8), 1825–1847 (2018).
[Crossref]

Poursalehi, R.

M. Torkamany, F. Malek, R. Poursalehi, and A. Kaplan, “Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V,” Opt. Lasers Eng. 79, 9–15 (2016).
[Crossref]

Rao, K.

S. Manikandan, D. Sivakumar, K. Rao, and M. Kamaraj, “Effect of enhanced cooling on microstructure evolution of alloy 718 using the gas tungsten arc welding process,” Weld. World 60(5), 899–914 (2016).
[Crossref]

Rose, S.

A. Mahrle, S. Rose, E. Beyer, and U. Füssel, “Crucial role of beam spot position in laser assisted plasma arc welding,” Sci. Technol. Weld. Join. 19(2), 119–124 (2014).
[Crossref]

Shen, J.

Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, “Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding,” J. Mater. Process. Technol. 255, 161–174 (2018).
[Crossref]

Sivakumar, D.

S. Manikandan, D. Sivakumar, K. Rao, and M. Kamaraj, “Effect of enhanced cooling on microstructure evolution of alloy 718 using the gas tungsten arc welding process,” Weld. World 60(5), 899–914 (2016).
[Crossref]

Stavridis, J.

J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” Int. J. Adv. Manuf. Technol. 94(5–8), 1825–1847 (2018).
[Crossref]

Stavropoulos, P.

J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” Int. J. Adv. Manuf. Technol. 94(5–8), 1825–1847 (2018).
[Crossref]

Sun, Q.

J. Wang, Q. Sun, T. Zhang, Y. Liu, and J. Feng, “Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW,” J. Mater. Process. Technol. 254, 254–264 (2018).
[Crossref]

Tang, K.

M. Zhang, K. Tang, J. Zhang, Y. Hu, and G. Chen, “Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates,” Int. J. Adv. Manuf. Technol. 96(1–4), 491–501 (2018).

Thomy, C.

F. Vollertsen and C. Thomy, “Magnetic stirring during laser welding of aluminum,” in Proceedings of ICALEO (2004), pp.16–24.

Torkamany, M.

M. Torkamany, F. Malek, R. Poursalehi, and A. Kaplan, “Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V,” Opt. Lasers Eng. 79, 9–15 (2016).
[Crossref]

Tsai, H.

J. Zhou, W. Zhang, H. Tsai, P. Wang, and R. Menassa, “Modeling the transport phenomena during hybrid laser-MIG welding process,” in Proceeding of IMECE (2003), pp. 1–8.
[Crossref]

J. Zhou, H. Tsai, P. Wang, R. Menassa, and S. Marin, “Modeling of hybrid laser-MIG keyhole welding process,” in Proceedings of ICALEO (2003), pp. 135–141.

Tse, H.

H. Tse, H. Man, and T. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33(3), 181–189 (2000).
[Crossref]

H. Tse, H. Man, and T. Yue, “Effect of magnetic and electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 32(1), 55–63 (1999).
[Crossref]

Vollertsen, F.

F. Vollertsen and C. Thomy, “Magnetic stirring during laser welding of aluminum,” in Proceedings of ICALEO (2004), pp.16–24.

Wang, H.

H. Wang, M. Nakanishi, and Y. Kawahito, “Dynamic balance of heat and mass in high power density laser welding,” Opt. Express 26(5), 6392–6399 (2018).
[Crossref] [PubMed]

Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, “Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding,” J. Mater. Process. Technol. 255, 161–174 (2018).
[Crossref]

Wang, J.

J. Wang, Q. Sun, T. Zhang, Y. Liu, and J. Feng, “Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW,” J. Mater. Process. Technol. 254, 254–264 (2018).
[Crossref]

H. Ming, J. Wang, and E. Han, “Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods,” Mater. Charact. 139, 186–196 (2018).
[Crossref]

Wang, L.

Wang, P.

J. Zhou, H. Tsai, P. Wang, R. Menassa, and S. Marin, “Modeling of hybrid laser-MIG keyhole welding process,” in Proceedings of ICALEO (2003), pp. 135–141.

J. Zhou, W. Zhang, H. Tsai, P. Wang, and R. Menassa, “Modeling the transport phenomena during hybrid laser-MIG welding process,” in Proceeding of IMECE (2003), pp. 1–8.
[Crossref]

Wang, Z.

M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Wu, Q.

Wu, S.

J. Zou, S. Wu, R. Xiao, and F. Li, “Effects of a paraxial TIG arc on high-power fiber laser welding,” Mater. Des. 86, 321–327 (2015).
[Crossref]

Xia, L.

X. Zhan, C. Zhang, Y. Liu, and L. Xia, “The influence of energy distribution factor during laser-MIG hybrid welding of Invar alloy,” Int. J. Adv. Manuf. Technol. 93(9–12), 4305–4316 (2017).
[Crossref]

Xiao, R.

Xie, Y.

K. Hao, M. Gong, Y. Xie, M. Gao, and X. Zeng, “Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper,” Opt. Laser Technol. 102, 124–129 (2018).
[Crossref]

Xu, C.

L. Hu, J. Huang, C. Liu, C. Xu, and Y. Zhao, “Effects of coupling between the laser plasma and two arcs on metal transfer in CO2 laser double-wire MIG hybrid welding,” Opt. Laser Technol. 105, 152–161 (2018).
[Crossref]

Yue, T.

H. Tse, H. Man, and T. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33(3), 181–189 (2000).
[Crossref]

H. Tse, H. Man, and T. Yue, “Effect of magnetic and electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 32(1), 55–63 (1999).
[Crossref]

Zeng, X.

K. Hao, M. Gong, Y. Xie, M. Gao, and X. Zeng, “Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper,” Opt. Laser Technol. 102, 124–129 (2018).
[Crossref]

K. Hao, C. Zhang, X. Zeng, and M. Gao, “Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel,” J. Mater. Process. Technol. 245, 7–14 (2017).
[Crossref]

C. Zhang, G. Li, M. Gao, and X. Zeng, “Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel,” Materials (Basel) 10(2), 106 (2017).
[Crossref] [PubMed]

K. Kang, Y. Kawahito, M. Gao, and X. Zeng, “Effects of laser-arc distance on corrosion behavior of single-pass hybrid welded stainless clad steel plate,” Mater. Des. 123, 80–88 (2017).
[Crossref]

M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

M. Gao, X. Zeng, and Q. Hu, “Effects of welding parameters on melting energy of CO2 laser-GMA hybrid welding,” Sci. Technol. Weld. Join. 11(5), 517–522 (2006).
[Crossref]

Zhan, X.

X. Zhan, C. Zhang, Y. Liu, and L. Xia, “The influence of energy distribution factor during laser-MIG hybrid welding of Invar alloy,” Int. J. Adv. Manuf. Technol. 93(9–12), 4305–4316 (2017).
[Crossref]

Zhang, C.

X. Zhan, C. Zhang, Y. Liu, and L. Xia, “The influence of energy distribution factor during laser-MIG hybrid welding of Invar alloy,” Int. J. Adv. Manuf. Technol. 93(9–12), 4305–4316 (2017).
[Crossref]

K. Hao, C. Zhang, X. Zeng, and M. Gao, “Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel,” J. Mater. Process. Technol. 245, 7–14 (2017).
[Crossref]

C. Zhang, G. Li, M. Gao, and X. Zeng, “Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel,” Materials (Basel) 10(2), 106 (2017).
[Crossref] [PubMed]

Zhang, J.

M. Zhang, K. Tang, J. Zhang, Y. Hu, and G. Chen, “Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates,” Int. J. Adv. Manuf. Technol. 96(1–4), 491–501 (2018).

Zhang, M.

M. Zhang, K. Tang, J. Zhang, Y. Hu, and G. Chen, “Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates,” Int. J. Adv. Manuf. Technol. 96(1–4), 491–501 (2018).

M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
[Crossref] [PubMed]

Zhang, Q.

Zhang, T.

J. Wang, Q. Sun, T. Zhang, Y. Liu, and J. Feng, “Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW,” J. Mater. Process. Technol. 254, 254–264 (2018).
[Crossref]

Zhang, W.

J. Zhou, W. Zhang, H. Tsai, P. Wang, and R. Menassa, “Modeling the transport phenomena during hybrid laser-MIG welding process,” in Proceeding of IMECE (2003), pp. 1–8.
[Crossref]

Zhang, Y.

Y. Zhang, S. Han, J. Cheon, S. Na, and X. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

Zhao, Y.

Y. Zhao and H. Chung, “Influence of power source dynamics on metal and heat transfer behaviors in pulsed gas metal arc welding,” Int. J. Heat Mass Transf. 121, 887–899 (2018).
[Crossref]

L. Hu, J. Huang, C. Liu, C. Xu, and Y. Zhao, “Effects of coupling between the laser plasma and two arcs on metal transfer in CO2 laser double-wire MIG hybrid welding,” Opt. Laser Technol. 105, 152–161 (2018).
[Crossref]

Zhou, J.

J. Zhou, W. Zhang, H. Tsai, P. Wang, and R. Menassa, “Modeling the transport phenomena during hybrid laser-MIG welding process,” in Proceeding of IMECE (2003), pp. 1–8.
[Crossref]

J. Zhou, H. Tsai, P. Wang, R. Menassa, and S. Marin, “Modeling of hybrid laser-MIG keyhole welding process,” in Proceedings of ICALEO (2003), pp. 135–141.

Zhou, Y.

Zou, J.

Appl. Surf. Sci. (1)

M. Gao, C. Chen, M. Hu, L. Guo, Z. Wang, and X. Zeng, “Characteristics of plasma plume in fiber laser welding of aluminum alloy,” Appl. Surf. Sci. 326, 181–186 (2015).
[Crossref]

Int. J. Adv. Manuf. Technol. (3)

X. Zhan, C. Zhang, Y. Liu, and L. Xia, “The influence of energy distribution factor during laser-MIG hybrid welding of Invar alloy,” Int. J. Adv. Manuf. Technol. 93(9–12), 4305–4316 (2017).
[Crossref]

M. Zhang, K. Tang, J. Zhang, Y. Hu, and G. Chen, “Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates,” Int. J. Adv. Manuf. Technol. 96(1–4), 491–501 (2018).

J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” Int. J. Adv. Manuf. Technol. 94(5–8), 1825–1847 (2018).
[Crossref]

Int. J. Heat Mass Transf. (1)

Y. Zhao and H. Chung, “Influence of power source dynamics on metal and heat transfer behaviors in pulsed gas metal arc welding,” Int. J. Heat Mass Transf. 121, 887–899 (2018).
[Crossref]

J. Mater. Process. Technol. (5)

Y. Zhang, S. Han, J. Cheon, S. Na, and X. Gao, “Effect of joint gap on bead formation in laser butt welding of stainless steel,” J. Mater. Process. Technol. 249, 274–284 (2017).
[Crossref]

J. Wang, Q. Sun, T. Zhang, Y. Liu, and J. Feng, “Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW,” J. Mater. Process. Technol. 254, 254–264 (2018).
[Crossref]

Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, “Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding,” J. Mater. Process. Technol. 255, 161–174 (2018).
[Crossref]

K. Hao, C. Zhang, X. Zeng, and M. Gao, “Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel,” J. Mater. Process. Technol. 245, 7–14 (2017).
[Crossref]

I. Bunaziv, O. Akselsen, J. Frostevarg, and A. Kaplan, “Deep penetration fiber laser-arc hybrid welding of thick HSLA steel,” J. Mater. Process. Technol. 256, 216–228 (2018).
[Crossref]

Mater. Charact. (1)

H. Ming, J. Wang, and E. Han, “Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods,” Mater. Charact. 139, 186–196 (2018).
[Crossref]

Mater. Des. (2)

K. Kang, Y. Kawahito, M. Gao, and X. Zeng, “Effects of laser-arc distance on corrosion behavior of single-pass hybrid welded stainless clad steel plate,” Mater. Des. 123, 80–88 (2017).
[Crossref]

J. Zou, S. Wu, R. Xiao, and F. Li, “Effects of a paraxial TIG arc on high-power fiber laser welding,” Mater. Des. 86, 321–327 (2015).
[Crossref]

Materials (Basel) (1)

C. Zhang, G. Li, M. Gao, and X. Zeng, “Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel,” Materials (Basel) 10(2), 106 (2017).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Laser Technol. (3)

B. Acherjee, “Hybrid laser arc welding: State-of-art review,” Opt. Laser Technol. 99, 60–71 (2018).
[Crossref]

L. Hu, J. Huang, C. Liu, C. Xu, and Y. Zhao, “Effects of coupling between the laser plasma and two arcs on metal transfer in CO2 laser double-wire MIG hybrid welding,” Opt. Laser Technol. 105, 152–161 (2018).
[Crossref]

K. Hao, M. Gong, Y. Xie, M. Gao, and X. Zeng, “Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper,” Opt. Laser Technol. 102, 124–129 (2018).
[Crossref]

Opt. Lasers Eng. (4)

I. Bunaziv, J. Frostevarg, O. Akselsen, and A. Kaplan, “Process stability during fiber laser-arc hybrid welding of thick steel plates,” Opt. Lasers Eng. 102, 34–44 (2018).
[Crossref]

M. Torkamany, F. Malek, R. Poursalehi, and A. Kaplan, “Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V,” Opt. Lasers Eng. 79, 9–15 (2016).
[Crossref]

H. Tse, H. Man, and T. Yue, “Effect of magnetic and electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 32(1), 55–63 (1999).
[Crossref]

H. Tse, H. Man, and T. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33(3), 181–189 (2000).
[Crossref]

Proc. SPIE (1)

M. Kern, M. Beck, and P. Berger, “Process stabilizing potential of shielding gas mixtures,” Proc. SPIE 3092, 526–529 (1996).

Sci. Technol. Weld. Join. (4)

B. Hu and G. den Ouden, “Laser induced stabilisation of the welding arc,” Sci. Technol. Weld. Join. 10(1), 76–81 (2005).
[Crossref]

B. Hu and G. den Ouden, “Synergetic effects of hybrid laser/arc welding,” Sci. Technol. Weld. Join. 10(4), 427–431 (2005).
[Crossref]

M. Gao, X. Zeng, and Q. Hu, “Effects of welding parameters on melting energy of CO2 laser-GMA hybrid welding,” Sci. Technol. Weld. Join. 11(5), 517–522 (2006).
[Crossref]

A. Mahrle, S. Rose, E. Beyer, and U. Füssel, “Crucial role of beam spot position in laser assisted plasma arc welding,” Sci. Technol. Weld. Join. 19(2), 119–124 (2014).
[Crossref]

Weld. World (1)

S. Manikandan, D. Sivakumar, K. Rao, and M. Kamaraj, “Effect of enhanced cooling on microstructure evolution of alloy 718 using the gas tungsten arc welding process,” Weld. World 60(5), 899–914 (2016).
[Crossref]

Other (5)

M. Abilash, K. Senthil, G. Padmanabham, R. Padmanaban, and S. Thirumalini, “The effect of welding direction in CO2 Laser-MIG hybrid welding of mild steel plates,” in IOP Conf. Ser. Mater. Sci. Eng. (2016), paper 012031.

J. Zhou, H. Tsai, P. Wang, R. Menassa, and S. Marin, “Modeling of hybrid laser-MIG keyhole welding process,” in Proceedings of ICALEO (2003), pp. 135–141.

J. Zhou, W. Zhang, H. Tsai, P. Wang, and R. Menassa, “Modeling the transport phenomena during hybrid laser-MIG welding process,” in Proceeding of IMECE (2003), pp. 1–8.
[Crossref]

F. Olsen, Hybrid Laser-arc Welding (Cambridge, 2009).

F. Vollertsen and C. Thomy, “Magnetic stirring during laser welding of aluminum,” in Proceedings of ICALEO (2004), pp.16–24.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the energy distribution during welding.
Fig. 2
Fig. 2 Schematic diagram of experimental set-up.
Fig. 3
Fig. 3 Effect of laser-arc distance (DLA) on the melting energy increment (ψ) of TIG-Hybrid and MIG-Hybrid, respectively.
Fig. 4
Fig. 4 Cross-sectional morphologies of TIG-Hybrid welded joints at different laser-arc distance (DLA).
Fig. 5
Fig. 5 Effects of laser-arc distance (DLA) on plasma morphologies of TIG-Hybrid (The plasma morphology at DLA = 6mm is similar with that at DLA = 5mm).
Fig. 6
Fig. 6 Effect of laser power (P) on the melting energy increment (ψ) of TIG-Hybrid and MIG-Hybrid, respectively.
Fig. 7
Fig. 7 Effect of arc current (I) on the melting energy increment (ψ) of TIG-Hybrid and MIG-Hybrid, respectively.
Fig. 8
Fig. 8 Collision process of charged particles in laser-induced plasma, (a) initial stage, (b) expanding stage, (c) stable stage.
Fig. 9
Fig. 9 Distribution of the electric and magnetic fields, and their effects on charged particles in laser-induced plasma, (a) TIG-Hybrid, (b) MIG-Hybrid. Where fB is the Lorentz force, v is the particle velocity, E is the electric field intensity, B is the magnetic field intensity.

Tables (3)

Tables Icon

Table 1 Chemical compositions (wt.%) of BMs and filler wire.

Tables Icon

Table 2 Welding parameters used in the MIG-Hybrid.

Tables Icon

Table 3 Welding parameters used in the TIG-Hybrid.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ψ= S H (S + L S A ) S + L S A ×100%
v= kT m
F = f E + f B =q E +q v × B

Metrics